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ON THE MAXIMAL TEMPORAL AMPLITUDE OF DOWN STREAM

RUNNING NONLINEAR WATER WAVES

MARWAN

Abstract. This paper concerns with the down-stream propagation of waves over

initially still water. Such a study is relevant to generate waves of large amplitude

in wave tanks of a hydrodynamic laboratory. Input in the form of a time signal is

provided at the wave-maker located at one side of the wave tank; the resulting wave

then propagates over initially still water towards the beach at the other side of the

tank. Experiments show that nonlinear effects will deform the wave and may lead

to large waves with wave heights larger than twice the original input; the deforma-

tions may show itself as peaking and splitting. It is of direct scientific interest to

understand and quantify the nonlinear distortion; it is also of much practical inter-

est to know at which location in the wave tank, the extreme position, the waves

will achieve their maximum amplitude and to know the amplitude amplification

factor. To investigate this, a previously introduced concept called Maximal Tempo-

ral Amplitude (MTA) is used: at each location the maximum over time of the wave

elevation. An explicit expression of the MTA cannot be found in general from the

governing equations and generating signal. In this paper we will use a Korteweg - de

Vries (KdV) model and third order approximation theory to calculate the approx-

imate extreme positions for two classes of waves. The classes are the wave-groups

that originate from initially bi-chromatics and Benjamin-Feir (BF) type of waves,

described by superposition of two or three monochromatic waves. We show that for

initially bi-chromatics signals, the extreme position does not depend on the phases

of the mono-chromatic components. For BF signals, however, the phases of the

mono-chromatic components influence the extreme position essentially. The theo-

retical results are verified for the case of bi-chromatics with numerical as well as

experimental results; for BF signals we use an analytical solution called the Soliton

on Finite Background (SFB) for comparison.

1. Introduction

This study is directly motivated to be able to generate extreme waves in wave tanks of
hydrodynamic laboratories. In such a generation, a time signal is given to a wave-maker
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that determines the motion of flaps that push the water. Waves are then produced that
propagate down stream over initially still water along the wave tank. Because of non-
linear effects the original signal deforms, see [18, 9, 19, 20]. This nonlinear deformation
may lead to amplification of the waves so that waves can occur with wave heights that
cannot be generated in a direct way by wave-maker motions. The nonlinear effects are
difficult to study over the long distances and times that are relevant for the laboratory.
In particular it is not clear which waves, i.e. which waves resulting from a certain signal,
will show amplitude amplification; and if so, at which position in the tank the largest
waves will appear. We will call this position the extreme position. The inverse problem,
given a specified extreme position, find the possible generating wave-maker signals, is of
most scientific interest, and of direct relevance for the hydrodynamic laboratories.

To investigate these problems, it is most fruitful to interpret the down-stream evolu-
tion as a spatial succession of wave signals. Directly related to this is a concept called
the Maximum Temporal Amplitude (MTA) that has been introduced in [2]. The MTA

measures at each location in the wave tank and the wave basin the maximum over time
of the surface elevation. The location where the MTA curve achieves its maximum is the
extreme position: there the largest waves will be found [13, 14]. The time signal of the
surface elevation at that position will be called the extreme signal. Clearly this signal
depends on the input at the wave-maker. The ratio of the maximal value of the MTA

compared to its value at the wave-maker defines the amplification factor. The MTA can
also be used for the inverse problem when a wave-field with a clear extreme position is
considered. Suppose that LD is the distance in the wave tank from the wave-maker where
the extreme signal is requested to appear. If the extreme position of the wave-field is
denoted by xmax, the signal to be generated at the wave-maker should be the the signal
of the wave-field at the location of x = xmax − LD.

The aim of this paper is to derive the approximate extreme positions for certain
wave-fields, and the sensitivity of this position on the phases of constituent monochro-
matic waves at the wave-maker. We restrict ourselves to wave-fields that arise from
bi-chromatics and Benjamin-Feir (BF) wave-maker signals. The bi-chromatics signals
consist of two mono-chromatic components of the same amplitudes but slightly different
frequencies; the BF signals consist of a large mono-chromatic wave perturbed by two
side bands. These signals develop into highly distorted wave-groups with clear ampli-
tude amplification from nonlinear effects. They are prototypes of interesting wave-groups
with extreme waves, see for instance the insightful investigations in Longuet-Higgins [12],
Phillips [17] and Donelan [7].

For bi-chromatics, many numerical and experimental results are available to verify
our theoretical investigation, such as [18, 19]. The BF signals lead to the well known
Benjamin Feir instability [5]; this case is particularly nice, since there exists an exact
solution of the full nonlinear evolution in the form of an explicit solution of the Non-
linear Schrődinger (NLS) equation called the (spatial) Soliton on Finite Background

(SFB) [1]. Written in the field variables, see e.g. [4, 10], this spatial SFB is in the far
field in the form of a mono-chromatic with two small symmetric side bands, the BF-
instability case. For this last case, the amplitude amplification can be as large as three,
depending on the modulation length, while for the bi-chromatics it is a bit less.
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To simplify the technical calculations in the following, instead of the full surface wave

equations, we will use a modified Korteweg - de Vries (KdV) model with exact dispersion

relation; for the kind of waves under consideration, this is a valid approximation. As
has been shown in previous work, see also [2], for narrow banded spectra, the third

order effects can dominate the second order effects and are responsible for the large

amplification factors. For that reason we will use third order theory for our analysis.
The organization of the paper is as follows. In the next session we present the math-

ematical model to be used and the third order asymptotic expansion for this model. In

Section 3, we approximate the MTA by an explicit expression obtained from third order
theory. In subsection 3.1, we derive the approximate extreme position for bi-chromatics

signals, and in subsection 3.2. for BF signals. The effect of the phase of the mono-

chromatic components in the signal at a wave-maker on the extreme position is explicitly
presented in the derived formulas. The results, and the verification of the derived for-

mulas for the extreme position are presented in Section 4. Finally in Section 5, we make

some concluding remarks.

2. Third order theory for the KdV model

The evolution of rather long and rather small surface gravity waves is governed to

a reasonable approximation by the well known KdV equation. In normalized variables,

the KdV equation with full dispersion [8] has the form

∂tη + iΩ(−i∂x)η +
µ

2
∂xη

2 = 0, (1)

where η(x, t) is the surface elevation. The parameter µ is the non-linear coefficient, and
Ω is the operator that produces the dispersion relation between frequency ω and wave

number k for small amplitude waves given by ω = Ω(k) = k
√

tanh k/k.

The laboratory variables for the wave elevation, horizontal space and time ηlab, xlab,
tlab are related to the normalized variables by ηlab = hη, xlab = hx and tlab = t

√
h/g,

where h is the uniform water depth and g is the gravity acceleration. Consequently, cor-

responding transformed wave parameters such as wave length, wave number and angular
frequency, are given by λlab = hλ, klab = k/h, ωlab = ω

√
g/h.

In this paper, we approximate solutions of (1) using a direct expansion up to third

order in the power series of the wave elevation. Here, we write

η ≈ εη(1) + ε2η(2) + ε3η
(3)
sb , (2)

where ε is a positive small number representing the order of magnitude of the wave

amplitude. The terms η(1), η(2) and η(3) describe the linear first order, the second and

third order non-linear term, respectively. Assuming that the linear term η(1) consists of
three frequencies that are close to each other (narrow band), in the third order we take

only the largest contribution, namely the third order side band η
(3)
sb . The frequencies of

the side bands are close to the frequency of the linear term. It is known that this direct
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expansion leads to resonance in the third order, see [6, 2]. To prevent the resonant term,
we modify this expansion using Linstead-Poincare technique [21] by allowing a nonlinear
modification of the dispersion relation

k ≈ k(0) + εk(1) + ε2k(2) (3)

with k(0) = Ω−1(ω0).
For the linear signal we take

η(1) =
N∑

p=1

ape
iφp + c.c., (4)

where N = 2 or 3 for bi-chromatics or BF signals respectively. Here φp = kpx−ωpt+ψp,
where (kp, ωp) are related by the linear dispersion relation, and with ψp the phase of
each mono-chromatic wave; c.c. denotes the complex conjugate of the previous terms.
The following procedure has been described in [6, 3] without taking the phases of the
mono-chromatic components of the signals into account, i.e. for ψp = 0. Since we aim
to investigate the effect of these mono-chromatic phases on the global behaviour of the
propagating signal along the wave tank, we add arbitrary phases ψp. Substituting (2)
and (3) into (1), for η(1) as the linearized solution as in (4), the second order leads to

k
(1)
p = 0, p = 1, . . . , N and

η(2) = µ

(
N∑

p=1

N∑

q=1

apaq

(
s+e

i(φp+φq) + s−e
i(φp−φq)

))
+ c.c., (5)

where

s± =
1

2

k
(0)
p ± k

(0)
q

ωp ± ωq − Ω(k
(0)
p ± k

(0)
q )

.

In order to distinguish the free waves that will be introduced later, we call the second
order solution in (5) the second order bound wave; this solution contains non-linear terms
as the results of mode generation. The resonant terms in the third order bound wave,
lead to the non-linear dispersion relation

knlp = k(0)
p + k(2)

p

with

k(2)
p = −µ2 k

(0)
p

Vg(k
(0)
p )

(
N∑

q=1

a2
q(s+ + s−)

)
, p = 1, . . . , N. (6)

The third order side band η
(3)
sb can be expressed as

η
(3)
sb = µ2

N∑

p=q

N∑

q 6=r

N∑

r=1

apaqarLpq,r(sp + sq,r)e
i(φp+φq−φr)

+
1

2
µ2

N∑

p6=q,p6=r

N∑

q 6=r

N∑

r=1

apaqarLpq,r(sp,r + spq + sq,r)e
i(φp+φq−φr) + c.c.,

(7)
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where

sp =
k

(0)
p

2ωp − Ω(2k
(0)
p )

, spq =
1

2

k
(0)
p + k

(0)
q

ωp + ωq − Ω(k
(0)
p + k

(0)
q )

,

sp,r =
k

(0)
p − k

(0)
r

ωp − ωr − Ω(k
(0)
p − k

(0)
r )

, Lpq,r =
k

(0)
p + k

(0)
q − k

(0)
r

ωp + ωq − ωr − Ω(k
(0)
p + k

(0)
q − k

(0)
r )

,

and
Vg(k

(0)
p ) = Ω′(k(0)

p ), p = 1, . . . , N.

In this paper, we mimic the generation of waves in a hydrodynamic laboratory and so
we are interested in a solution that at a given position, say x = 0, is given by the signal

η̃(0, t) =

N∑

p=1

ape
iθp + c.c., (8)

where θp = ωpt + ψp, p = 1, 2, 3. To satisfy the signal at this position, the contribution
of the second order and third order side band terms at x = 0 have to be compensated
by harmonic modes, called free waves. The second order free waves are given by

η
(2)
free = µ

[
N∑

p=1

N∑

q=1

apaq

(
s+e

iϑ(ωp+ωq) + s−e
iϑ(ωp−ωq)

)]
+ c.c. (9)

This is a wave with the same frequencies as in the second order bound wave, but consisting
of harmonic modes that satisfy the linear dispersion relation. The third order side band
free wave consists similarly of monochromatic waves and is of the form

η
(3)
sb,free = µ2

N∑

p=q

N∑

q 6=r

N∑

r=1

apaqarLpq,r(sp + sq,r)e
iϑ(ωp+ωq−ωr)

+
1

2
µ2

N∑

p6=q,p6=r

N∑

q 6=r

N∑

r=1

apaqarLpq,r(sp,r + spq + sq,r)e
iϑ(ωp+ωq−ωr) + c.c.,

(10)

with ϑ(ωp) = Ω−1(ωp)x−ωpt+ψp, p = 1, . . . , N . Taken together, the third order solution
of (1) and satisfying (8) is

η̃ ≈ η(1) + η(2) − η
(2)
free + η

(3)
sb − η

(3)
sb,free. (11)

3. Maximal Temporal Amplitude and the extreme position

In previous studies of bi-chromatics waves [18], [9], [19], [20], it was found experi-
mentally, numerically and theoretically that depending on the wave amplitude, but just
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as well as on the frequency difference, large deformations and amplitude increase can

develop. This was made more clearly visible in [2] where, for the corresponding optical

problem, the so-called maximal temporal amplitude (MTA) was introduced. At each

position downstream from the wave generator, this MTA measures the maximum over

time of the surface elevation. When plotted as a curve in the down stream direction, this

curve shows (almost periodic) oscillatory behaviour in which several wavelengths can be

seen and interpreted. At specific locations the curve achieves its maximum at places

where the amplitude amplification (compared to the amplitude of the generated wave)

is maximal and where ‘extreme’ waves appear.

According to the previous section, the third order approximated solution of (1)is given

by (11); we will use this approximation to study the MTA, and hence we take the MTA

to be defined as

m(x) = max
t
η̃(x, t). (12)

In deterministic extreme wave generation performed in hydrodynamic laboratories, MTA

is proved to be a useful concept to predict the position where the most extreme signal

appears in the wave tank, [4]. Furthermore, it gives a practical value of the Amplitude

Amplification Factor, AAF = m(xmax)/m(0), where xmax is the first position where

m(xmax) = maxxm(x), for 0 < x < L and L the length of the wave tank. Therefore it

is of interest to calculate the value of xmax and the dependence of this position on the

input signal at the wave-maker.

In [2] an explicit expression was given for xmax for input signals in the form of bi-

chromatics waves with zero phases for a KdV model of an optical pulse propagation

in non-linear media using third order approximation. A similar formulation for uni-

directional bi-chromatics are derived in [13] for propagation of water wave where the

initial phases of the mono-chromatic components are zero. It will be shown in the next

subsection that for bi-chromatics signals xmax does not depend on the initial phases of
the mono-chromatic components. In the second subsection we will consider the similar

problem for BF-signals.

3.1. The extreme position for bi-chromatics signals

In the following we briefly derive the explicit expression of xmax for an input signal

in the form of bi-chromatics wave and show that this xmax does not depend on the
initial phases of the mono-chromatic components. Denoting the indices 1 and 2 in the

expressions (4) – (10) by (+) and (−) for the case of bi-chromatics signals, the linear

term can be written as

η(1) = q(cos θ+ + cos θ−), (13)

where θ± = k
(0)
± x−ω±t+ψ±, with ψ± the phase of each mono-chromatic wave, and the

wave numbers ordered according to k
(0)
+ > k

(0)
− .

The following expressions are rewritten from (5)−(10).

η(2) = µq2(s+ cos(2θ+) + s− cos(2θ−) + 2s cos(θ+ + θ−) + s0 cos(θ+ − θ−)), (14)
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η
(2)
fw = µq2

[
s+ cos(Ω−1(2ω+)x− 2ω+t) + s− cos(Ω−1(2ω−)x− 2ω−t)

]

+µq2
[
2s cos(Ω−1(ω+ + ω−)x− (ω+ + ω−)t)

]

+µq2
[
s0 cos(Ω−1(ω+ − ω−)x − (ω+ − ω−)t)

]
, (15)

k
(2)
± = −µ2q2

k
(0)
±

V g(k
(0)
± )

(s0 + s± + 2s). (16)

Using this wave number correction, the first order expansion η(1) can be written as

η(1) = 2q cos(k
nl
x− ωt+ α+) cos(κx− νt+ α−) (17)

with ω = (ω+ + ω−)/2, ν = (ω+ − ω−)/2 and κ = Ω−1(ν).
The third order bound and free waves are expressed as

η
(3)
sb = q3B+ cos(k

nl
x− ωt+ α+) cos(3κnlx− 3νt+ 3α−) −

q3B− sin(k
nl
x− ωt+ α+) sin(3κnlx− 3νt+ 3α−) (18)

and

η
(3)
sb,fw = q3B+ cos(Kx− ωt+ α+) cos(K̃x− 3νt+ 3α−) −

q3B− sin(Kx− ωt+ α+) sin(K̃x− 3νt+ 3α−), (19)

where k
nl

and κnl are nonlinear wave numbers; corresponding to ω and ν respectively,
K = (Ω−1(2ω+ −ω−)+ Ω−1(2ω−−ω+))/2, K̃ = (Ω−1(2ω+ −ω−)−Ω−1(2ω− −ω+))/2.
The coefficients of third order side bands are B± = a+ ± a−, with

a+ = µ2(s+ + s0)
2k

(0)
+ − k

(0)
−

2ω+ − ω− − Ω(2k
(0)
+ − k

(0)
− )

,

a− = µ2(s− + s0)
2k

(0)
− − k

(0)
+

2ω− − ω+ − Ω(2k
(0)
− − k

(0)
+ )

,

see [13], α+ = (ψ+ + ψ−)/2, and α− = (ψ+ − ψ−)/2.

For wave parameters of laboratory interest B− << B+, the expressions (17) and (18)
show that the first and the third order side band bound wave have approximately the
same carrier. The superposition of the first order with the third order side band bound
and free waves leads to a spatial envelope of the carrier wave, resulting in a modulation
of the carrier. Under the assumption B− << B+, the phases of first order, third order

side band bound and free waves are the same, namely α+, and so the spatial envelope

has modulation length λ = 2π/
∣∣∣(knl −K)/2

∣∣∣. This value can in fact be obtained by

considering the superposition of the third order bound waves and free waves only where
λ appears as the ’wave length’ of MTA. The positions of zero phase of the spatial envelope
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show that the location of the first maximum of MTA does not depend on the phases of

mono-chromatic components and it can be expressed in the form

x̌max ≈ π∣∣∣knl −K
∣∣∣

≈ π∣∣∣2ν2β̃ + 2q2(γ̃ + 2µ2σ2k/Vg(k))
∣∣∣

= O
(

1

ν2
,

1

q2

)
(20)

where

β̃ = − Ω′′(k)

2V 3
g (k)

, γ̃ =
µ2k

Vg(k)

(
1

Vg(k) − 1
+

k

2ω − Ω(2k)

)
and σ2 =

k

2ω − Ω(2k)
.

3.2. Extreme position for BF signals

Recent progress in deterministic extreme wave generation is based on the so called

(spatial) Soliton on Finite Background (SFB), [4, 10, 11]. The SFB is an exact solution

of the (spatial) Non-linear Schrodinger equation and is described in detail in [1] and has

been considered in [15, 16] as a possible description of large amplitude increase for surface

waves, leading to ‘freak’, or ‘rogue’ waves. This spatial SFB is at each position periodic

in time, but with surface wave elevations that resemble a soliton profile in space. But

the asymptotic values have a finite nonzero value, the amplitude of the mono-chromatic

wave in the far field. Written in physical variables, SFB is the nonlinear extension

of the modulation (Benjamin-Feir) spatial instability of a mono-chromatic wave. The

family of SFB solutions depend essentially on three parameters, namely the frequency

of the carrier waves, the modulation length, and the maximum amplitude of the extreme

signal; one of these parameters can be replaced by the amplitude of the asymptotic mono-

chromatic wave. The first parameter, the frequency of the carrier wave, enters indirectly

through the value of the coefficients of the NLS equation.

In the far field the physical SFB is a modulated mono-chromatic wave, a mono-

chromatic wave with two symmetric side bands. The frequencies are therefore written as

the central frequency ω2 = ω0, and sidebands ω3 = ω0 + ν, ω1 = ω0 − ν. The amplitude

of the central wave is a0, and ones of the side bands are a3 = a1 = δa0 for some small

parameter δ. In this paper, we will investigate the effects of the initial phases of the

mono-chromatic components. This makes that we take (8) in the form

η̃(0, t) = a0e
i(−ω0t+ψ0) + δa0e

i(−ω1t+ψ1) + δa0e
i(−ω3t+ψ3) + c.c. (21)

where ψ0 and ψ1, ψ3 are the initial phases of the mono-chromatic and the two side

bands respectively. For ease of presentation, we rewrite the phases ψ0, ψ1 and ψ3 as
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ψ1 = ψ0 + α − β and ψ3 = ψ0 + α + β, with arbitrary values of ψ0, α and β. Then the
expression for the signal at the wave-maker can be written as

η̃(0, t) = a0e
i(−ω0t+ψ0) + δa0e

iα[e−i(−νt+β) + ei(−νt+β)]ei(ω0t+ψ0) + c.c.

= a0[1 + 2δeiα cos(−νt+ β)]ei(−ω0t+ψ0) + c.c. (22)

The expression of η(1)(x, t) in (4) becomes

η(1)(x, t) = a0e
i(knl

0 x−ω0t+ψ0) + δa0e
i(knl

1 x−ω1t+ψ1) + δa0e
i(knl

3 x−ω3t+ψ3) + c.c.

= a0[1 + 2δei((k
nl−knl

0 )x+α) cos(κnlx− νt+ β)]ei(k
nl
0 x−ω0t+ψ0) + c.c. (23)

where knl = (knl1 + knl3 )/2, κnl = (knl3 − knl1 )/2, and knl0 is the non-liner wave number
corresponding to ω0. From (23), we observe that the superposition of the three mono-
chromatic waves leads to a spatial envelope that is modulated with wave length λ1 =
2π/|knl − knl0 |.

As shown in [2, 13], the second order terms do not affect the extreme position; hence
this position can be approximated by considering the first and the third order side bands
only. The most important third order side bands that determine the position are the
terms in (7) that have wave numbers close to that of the first order term. These important

terms as a part of η
(3)
sb can be written in the form

η
(3)∗
sb (x, t) = a3

0ρe
i((knl

3 +knl
1 −knl

0 )x−ω0t+ψ0+2α)

+a3
0β−3e

i((2knl
0 −knl

1 )x−(ω0−ν)t+ψ0−α+β)

+a3
0β+3e

i((2knl
0 −knl

3 )x−(ω0+ν)t+ψ0−α−β) + c.c., (24)

and the corresponding terms of η
(3)
sb,free(x, t) are

η
(3)∗
sb,free(x, t) = a3

0ρe
i(Ω−1(ω0)x−ω0t+ψ0+2α)

+a3
0β−3e

i(Ω−1(2ω0−ω1)x−(ω0−ν)t+ψ0−α+β)

+a3
0β+3e

i(Ω−1(2ω0−ω3)x−(ω0+ν)t+ψ0−α−β) + c.c. (25)

Here ρ = δ2µ2(s1,2 + s3,2 + s13)L13,2, β−3 = δµ2(s2,1 + s2)L22,1, and β+3 = δµ2(s2,3 +
s2)L22,3. Since δ << 1 it follows that ρ << β±3 and so the terms a3

0ρ cos((knl3 + knl1 −
knl0 )x + ψ0 + 2α) in η

(3)∗
sb (x, t) and a3

0ρ cos(Ω−1(ω0)x + ψ0 + 2α) in η
(3)∗
sb,free(x, t) can be

neglected. The remaining terms in (24) and (25) become

η
(3)∗
sb (x, t) ≈ a3

0β−3e
i{[(knl

0 −knl)x−α]+[κnlx−νt+β]+[knl
0 x−ω0t+ψ0]}

+a3
0β+3e

i{[(knl
0 −knl)x−α]−[κnlx−νt+β]+[knl

0 x−ω0t+ψ0]} + c.c.

≈ a3
0e

−i[(knl−knl
0 )x+α]Bbw(x, t)ei[k

nl
0 x−ω0t+ψ0] + c.c., (26)

and
η
(3)∗
sb,free(x, t) ≈ a3

0e
−i[− 1

2
K′′(ω0)ν

2x+α]Bfw(x, t)ei[K(ω0)x−ω0t+ψ0] + c.c., (27)
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where

Bbw(x, t) = β−3e
i[κnlx−νt+β] + β+3e

−i[κnlx−νt+β],

Bfw(x, t) = β−3e
i[K′(ω0)νx−νt+β] + β+3e

−i[K′(ω0)νx−νt+β],

K(ω0) = Ω−1(ω0), and K(ω0 ± ν) ≈ K(ω0) ±K ′(ω0)ν +K ′′(ω0)ν
2/2.

It is interesting to see that the third order side band bound and free waves have

spatial envelopes that do not depend on time. The first order term has an envelope with

the same length as the third order bound wave η
(3)∗
sb (x, t). Thus superposition of the

first order term with the third order side band bound and free waves leads to a spatial

envelope with a short modulation length λs = 4π/[| − 1
2K

′′(ω0)ν
2| + |(knl − knl0 )|] and

a longer modulation length λl = 4π/|| − 1
2K

′′(ω0)ν
2| − |(knl − knl0 )||. These values of

λs and λl are obtained by only considering the superposition of the third order bound

waves and free waves where λs shows how MTA oscillates with λl as the overall ‘wave

length’ of the MTA. Furthermore, since the spatial envelopes of the third order bound

waves and free waves contain the phase α, the location of the first maximal position of
MTA can be expressed in the form

x̂max =
π

| − 1
2K

′′(ω0)ν2| + |(knl − knl0 )|
− 2α

− 1
2K

′′(ω0)ν2 + (knl − knl0 )

=
π

| − 1
2K

′′(ω0)ν2| + |(k(2)
1 + k

(2)
3 )/2 − k

(2)
0 |

−

2α

− 1
2K

′′(ω0)ν2 + (k
(2)
1 + k

(2)
3 )/2 − k

(2)
0

= O
(

1

ν2
,

1

a(2)

)
, (28)

where the expressions for k
(2)
i , i = 1, 2 and knl0 are described in the previous section.

4. Verification of the derived formulas

In what follows, we verify the formulas derived in Section 3. For the case of bi-
chromatics signals, we use available numerical and experimental results. For the exper-

iments, the propagated signals are measured only at a limited number of locations in

the wave tank; hence, the location where the MTA is maximal, the extreme position,

can only be obtained within a range determined by the locations where the signals are
measured. For the case of BF signals, verifications are done through the exact expression

of the physical SFB solution.

In this section we use laboratory variables in standard SI units [m,s]. We consider

a typical wave tank with a layer of water of 5m deep, and with a length of 250m, and

express all quantities in laboratory variables.



DOWN STREAM RUNNING NONLINEAR WATER WAVES 61

Table 1: Comparisons of the extreme positions: x̌max calculated with third order theory
(20) above, the numerical results xmax(HBR) calculated numerically, and the experimental
result xmax(EXP ) with specification of the various cases listed in the given references.

Case xmax(HBR) x̌max xmax(EXP )

q = 0.09, ω+ = 3.264, ω− = 3.028 155.0m 157.50m 140m-160m, [20]
q = 0.08, ω+ = 3.300, ω− = 2.990 127.0m 118.00m 100m-120m, [18] & [20]
q = 0.09, ω+ = 3.300, ω− = 2.990 109.8m 110.90m 100m-120m, [20]
q = 0.10, ω+ = 3.491, ω− = 2.856 47.0m 48.62m 40m-60m, [20]

10 60 110 160 210 260
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0.3

0.35

M
T
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x : distance from wave maker

Figure 1: MTA for bi-chromatics signal with q = 0.08, ω+ = 3.3, ω− = 2.99 and
ν = 0.155.

4.1. Verification for bi-chromatics input signals

The predicted extreme position x̌max derived by the third order approximation (TOA)

in (20) will be compared with results from a numerical wave tank, HUBRIS, used at

Maritime Research Institute Netherlands (MARIN) [20] and with experimental results

reported in [18, 20]. We present the results in Table 1, providing the reference to the ex-

periments. It is seen that the predicted values are reasonably close to both the numerical

values as well as to the experimental results.

In Figure 1, we present MTA curve computed numerically with HUBRIS for an input

bi-chromatics signals with amplitude q = 0.08, and frequencies of the mono-chromatics

ω+ = 3.30 and ω− = 2.99. Experiments for this case have been conducted independently

in [18] and [20] where in both experiments the largest signal appears at a distance of

approximately 120m away from the wave-maker, which is the extreme position. In Figure

2, we show signals at different locations in the wave tank computed using HUBRIS. As
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Figure 2: Bi-chromatics signal at some positions with q = 0.08, ω+ = 3.30, ω− = 2.99
and ν = 0.155 computed using HUBRIS.

shown in Table 1, for this case the third order approximation in (20) gives the position

of x̌max ≈ 118m away from the wave-maker. This result of the extreme location shows

a good agreement with the same approximation using multidirectional KP model for

multidirectional wave in case the wave propagation angle is zero(see[14]).

4.2. Approximated MTA for BF input signals

In the next subsection we will verify the derived formula for the extreme position

x̂max in (28) for an initial BF signal by comparing with an exact analytical solution

SFB. Before doing so, in this subsection we will first show that the global behaviour of

MTA can be captured by the first and third order terms only. Further we will illustrate

that although we do not use all the third order terms in approximating this location

x̂max, the derived formula is reasonably good in comparison to first maximum xmax of

m−2(x) = maxt[η̃(x, t) − η(2)(x, t)], where η̃(x, t) contains all orders.

We take a0 = 0.16m, δ = 0.1, ω0 = 3.145/s and ν = 0.155/s with some different

values of α related to the phases of the mono-chromatic components. The non-linear

coefficient of KdV is taken to be µ = 3/2, see [8].

In Figure 3, we show MTA as a function of x based on the full third order solution.

The upper figure shows m(x) = maxt η̃(x, t) and the lower figure is obtained when the
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Figure 3: The Maximal Temporal Amplitude calculated in the upper figure with all
orders, maxt η̃(x, t), and in the lower figure without the second order contributions:
maxt[η̃(x, t) − η(2)(x, t)].

Table 2: The first maximum xmax of m−2(x) and the approximated value x̂max in (28)
for various values of phases α.

Case xmax for m−2(x) x̂max

α=π 173.5m 185.06m
α=π/2 343.0m 370.13m
α=π/3 302.0m 308.40m
α=π/4 280.0m 277.60m
α=π/5 261.5m 259.10m
α=π/6 246.5m 246.75m

second order terms are subtracted: m−2(x) = maxt[η̃(x, t) − η(2)(x, t)]. The phases of
the tri-chromatics are ψ0 = 0, α = β = 0 so that ψ1 = ψ3 = 0. It is seen from these
results that the global behaviour of the MTA m(x) can be captured by the third order
interaction m−2(x) only.

For the case above the first position of m−2(x) is xmax = 180m while the approximate
x̂max = 185m. We will now investigate how the phases of the mono-chromatic components
influence the value xmax and x̂max. In Table 2, we show the value xmax and the predicted
value x̂max for the same case above but for different values of α. In Figure 4 we show
m−2(x) for two different values of α, the upper figure for α = 0 and the lower one for
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Figure 4: Maximal Temporal Amplitude for two different values of α, (Upper) α=0 and
(lower) α=π/4.

α = π/4. It is clearly seen that there is a significant difference of the location where the
maximum value is obtained.

4.3. Comparison of MTA of SFB and third order calculations

Since numerical and experimental results are not easily accessible, to verify the derived
formula (28) we use an exact solution SFB which is a special solution of NLS equation.

First we briefly describe this SFB solution. It is an exact solution of the spatial NLS

equation that corresponds to the KdV equation. With η(x, t) the wave elevation, we
write η(x, t) with a complex slowly varying envelope A(ξ, τ)

η(x, t) = A(ξ, τ)ei(k0x−ω0t) + c.c. (29)

with slow variables ξ = x and shifted time variable τ = t− x/Ω′(k0). Then this complex
amplitude satisfies the spatial NLS equation that can be derived as in [8]. From [1] an
exact solution called soliton-on-finite-background (SFB) can be found for this equation,
which is a modulation of a mono-chromatic signal by a small frequency ν, explicitly given
by

A(ξ, τ) = Λ(ξ, τ)a0e
ia2

0γξ, (30)

where

Λ(ξ, τ) =
(ν̂2 − 1) cosh(κξ) +

√
1 − ν̂2/2 cos(ντ) + iν̂

√
2 − ν̂2 sinh(κξ)

cosh(κξ) −
√

1 − ν̂2/2 cos(ντ)
.

Here ν̂ is a normalised modulation frequency such that 0 < ν̂ <
√

2 is the region of
Benjamin Feir (BF) instability. The wavenumber κ is given by κ(ν) = βν

√
2ν2

∗ − ν2 =
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Figure 5: SFB signal with parameters (ω0, a0, ν̂) = (3.5, 0.1, 1). (Upper) at 150m before
extreme position and (lower) at extreme position.

γr20 ν̂
√

2 − ν̂2. The largest elevation is at (ξ, τ) = (0, 0) and at far distance from the

position ξ = 0, |A(ξ, τ)| → a0 for ξ → ±∞. This shows that a0 is the amplitude of the

asymptotic monochromatic wave (the ‘back ground’). Furthermore, it is seen that 1 <

|A(ξ, τ)|/a0 < 3 and limυ→0 |A(ξ, τ)|/a0 = 3. Hence, the largest possible amplification

factor is 3.

The MTA of the SFB m (x) = maxt η(x, t) is explicitly given (up to a spatial shift)

by (see [4]) (
m (x)

2a0

)2

= 1 +
2ν̂2
√

1 − ν̂2/2

cosh (σx) −
√

1 − ν̂2/2
.

We will now use this exact solution to validate the derived formula x̂max in (28). We

note here that the analytic SFB has precisely one extreme position (symmetric around

this position), while the third order solution will produce some quasi-periodic curve; so

globally very different. Therefore comparison can only be made with the first hump of

the third order calculation.

We first take a case of SFB with parameters (ω0, a0, ν̂) = (3.5, 0.1, 1). For these

parameters, we map the signal at extreme position (x, t) = (0, 0) into the position x = LD
in the tank, a distance LD = 150m from the wave-maker. In Figure 5 we present the

SFB signal at the extreme position and at the position of the wave-maker. With η̂(ω) the

Fourier transform of the signal at the wave-maker, the absolute value of the amplitude

spectrum
√
η̂(ω)η̂∗(ω) is given in the upper plot of Figure 6. This shows that the signal at

the wave-maker can well be approximated by a superposition of three mono-chromatics,

with frequencies (ω0, ω1, ω3) = (3.5, 3.0916, 3.9084). From the signal at the wave-maker

the corresponding phases in radiant are given by (ψ0, ψ1, ψ3) = (−1.5708, 1.0308, 0.5777).
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Figure 6: Amplitude spectra of SFB signal with parameters (ω0, a0, ν̂) = (3.5, 0.1, 1).
(Upper) at 150m before extreme position and (lower) at extreme position.

Table 3: Comparison of the extreme positions x̂max calculated with TOA (the third order
approximation, given by (28)) and the exact value for the SFB solution, for various values
of the parameters.

a0 δ ω0 υ̂ ψ1 ψ0 ψ3 m(0) xmax(SFB) x̂max

0.0822 0.146 3.7 0.70 −0.93 −1.82 −0.60 0.194 140m 145.6m
0.0849 0.120 3.7 0.80 −2.18 −1.79 0.54 0.196 140m 133.6m
0.0810 0.148 3.8 0.65 0.95 2.09 −0.87 0.190 130m 136.3m
0.0822 0.145 3.8 0.70 −2.88 −3.01 −1.03 0.194 125m 130.6m
0.0835 0.122 3.8 0.75 −0.47 2.12 0.46 0.192 130m 125.7m

The lower plot in Figure 6 is the amplitude spectrum at the extreme position, the position

x = 150m in the wave tank.

Table 3 compares the position x̂max of the first maximum of the MTA approximated

by the third order calculation (TOA) given by (28) with the position of the maximum

MTA of the exact SFB. The results in Table 3 show that the predicted values are

reasonably close to the exact values. To interpret the results of this table, we relate it to

the significance of the MTA as illustrated in Figure 7. This picture shows a snap shot

of wave elevation under the MTA curve for the SFB, which asymptotically looks like a

slightly modulated monochromatic, corresponding to a BF signal. Shown is the spatial

pattern: the modulated mono-chromatic evolves into wave-groups with largely deformed
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Figure 7: Snap shot of wave elevation under an MTA curve for a tri-chromatics signal
based on SFB with parameters (ω0, a0, ν̂) = (3.5, 0.1, 1).

envelopes, increasing in maximal amplitude till the extreme position xmax(SFB).

5. Concluding remarks

We have considered propagation in initially still water of waves generated at a wave-

maker by a specific signal. The signals that were considered belong two classes of wave-

groups, namely bi-chromatics and BF signals. Such signals can easily be used as input

to a wave-maker at one side of a wave tank used in a hydrodynamic laboratory. The first

class contains signals having two mono-chromatic components of the same amplitudes

but slightly different frequencies. The BF signal is tri-chromatics: a mono-chromatic

perturbed by two symmetric side bands. All these signals have a narrow banded spec-

trum. While propagating down stream from the wave-maker, the input signals changes

in shape and amplitude; in the considered cases, a largely amplified elevation is found

somewhere down stream in the tank. To find the precise location where the largest signal

appears in the tank, the concept of MTA has been used. MTA gives at each location

in the wave tank the maximum of the surface elevation over time. For deterministic ex-

treme wave generation knowing this extreme position is of most interest. Furthermore,

prescribing the position where the extreme wave has to appear in the wave tank, the

MTA can be used to assist what kind of signal has to be generated at the wave-maker in

such a way that the propagating signal produces the requested extreme wave elevation

at the requested position.

For the two classes of wave-groups as input signals at the wave-maker, we have derived

an approximation for the extreme position, using third order perturbation theory. We
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have investigated the effects of the phases of the mono-chromatic components on the

location of the extreme position. We showed that for bi-chromatics signals, the location

of maximum MTA is almost independent on the phases. For the BF signal, however,

the phases of the mono-chromatic components influence the location of the maximum

MTA considerably.

For the bi-chromatics case, we verified the calculated extreme position with published

numerical and experimental results. Since experimental results for BF signals are not

easily accessible we verified the formula using an exact solution of NLS equation called

spatial Soliton on Finite Background which is a non-linear extension of the Benjamin Feir

instablity. These comparisons show reasonably close values of the predicted locations and

the known results. Thus we conclude that for a given input to the wave-maker in the

form of bi-chromatics or BF signals the derived explicit formula can be used to predict

the location where the most extreme wave elevations appear in the wave tank. Future

works will focus on multi-directional wave propagation and apply similar methods used

in this paper.

Acknowledgements

The authors are very grateful to Prof. E. van Groesen and Dr. Andonowati for

fruitful discussion throughout the execution of this research. They sincerely thank Dr.

Rene Huijsmans from Maritime Research Institute Netherlands and Dr. J. H. Westhuis

for making HUBRIS accessible to verify the results of this paper.

References

[1] N. N. Akhmediev and A. Ankiewicz, Solitons-Nonlinear Pulses and Beams, Chapmann &

Hall, 1997.

[2] Andonowati and E. van Groesen, Optical pulse deformation in second order non-linear

media, Journal of Non-linear Optics Physics and Materials, vol. 12, no. 22, 2003.

[3] Andonowati, Marwan, E. van Groesen, Maximal Temporal Amplitude of generated wave

group with two or three frequencies, Proc. of 2nd ICPMR&DT, Singapore, v2, 111–116,

2003.

[4] Andonowati, N. Karjanto, E. van Groesen, Extreme waves arising from down stream evolu-

tion of modulated wave dislocation and non-linear amplitude amplification for extreme fluid

surface waves, Submitted to Mathematical Models and Methods in Applied Sciences, 2004.

[5] T. B. Benjamin and J. E. Feir, The disintegration of wave trains on deep water. Part 1.

Theory, J. Fluid Mech., 27: 417, 1967.

[6] E. Cahyono, Analytical wave codes for predicting surface waves in a laboratory basin, Ph.D

Thesis, Fac. of Mathematical Sciences Univ. of Twente, the Netherlands, 2002.

[7] M. A. Donelan and W. H. Hui, Mechanics of ocean surface waves. Surface Waves and

Fluxes, Kluwer, Editors: G. L. Geernaert and W. J. Plants, 1(1990), 209–246.

[8] E. van Groesen, Wave groups in uni-directional surface wave models, Journal of Engineering

Mathematics, 34(1998), 215–226.



DOWN STREAM RUNNING NONLINEAR WATER WAVES 69

[9] E. van Groesen, Andonowati and E. Soewono, Non-linear effects in bi-chromatic surface

waves, Proc. Estonian Acad. Sci., Mathematics and Physics 48(1999), 206–229.

[10] E. van Groesen, Andonowati and N. Karjanto, Deterministic aspects of non linear modu-

lation instability, Proc. of Rogue Waves, Brest, France, 2004.

[11] R. Huijsmans, N. Karjanto, Andonowati, G. Klopman and E. van Groesen, Extreme wave

generation in MARIN wave tank: Part 1: Deterministic waves based on Soliton of Finite

background, Proc. of Rogue Waves, Brest, France, 2004.

[12] Longuet and M. S. Higgins, Statistical properties of wave groups in a random sea state,

Philos. Trans. Roy. Soc. London, A312(1984), 219–250.

[13] Marwan and Andonowati, Wave deformation on the propagation of bi-chromatics signal

and its effect to the maximum amplitude, JMS FMIPA ITB, 8(2003), 81–87.

[14] Marwan, Toto Nusantara and Andonowati, Spatial evolution of multidirectional surface

gravity waves based on third order solution of KP equations, Journal of Indones. Math.

Soc., 12(2006), 211–224.

[15] A.R. Orsbone, M. Onorato and M. Serio, The nonlinear dynamics of rogue waves and holes

in deep water gravity wave trains, Physics Letters A, 275 (2000), 386–393.

[16] A. R. Orsbone, The random and deterministics dynamics of rogue waves in unidirectional,

deep water wave trains, Marine Structures 14, 275–293.

[17] O. M. Phillips, D. Gu and M. A. Donelan, Expected structure of extreme waves in a Gaussian

sea. Part I. Theory and SWADE buoy measurements, J. Phys. Oceanogr 23(1993), 992–

1000.

[18] C. T. Stansberg, On the non–linear behaviour of ocean wave groups, Ocean Wave Mea-

surement and Analysis, Reston, VA, USA : American Society of Civil Engineers (ASCE),

Editors: B. L. Edge and J. M. Hemsley, 2(1998), 1227–1241.

[19] J. Westhuis, E. van Groesen and R. H. M. Huijsmans, Long time evolution of unstable

bi-chromatic waves, Proc. 15th IWWW & FB, Caesarea Israel (2000), 184–187.

[20] J. Westhuis, E. van Groesen and R. H. M. Huijsmans, Experiments and numerics of bi-

chromatic wave groups, J. Waterway, Port, Coastal and Ocean Engineering, 127 (2001),

334–342.

[21] G. B. Whitham, Linear and Non-Linear Waves, John Wiley and Sons, New York, 1974.

Department of Mathematics, Faculty of Science, Syiah Kuala University, Banda Aceh-Indonesia.

E-mail: marwan.ramli@math-usk.org

mailto:marwan.ramli@math-usk.org

	1. Introduction
	2. Third order theory for the KdV model
	3. Maximal Temporal Amplitude and the extreme position
	3.1. The extreme position for bi-chromatics signals
	3.2. Extreme position for BF signals

	4. Verification of the derived formulas
	4.1. Verification for bi-chromatics input signals
	4.2. Approximated MTA for BF input signals
	4.3. Comparison of MTA of SFB and third order calculations

	5. Concluding remarks
	References

