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REAL HYPERSURFACES OF AN ALMOST

HYPERBOLIC HERMITIAN MANIFOLD

SUSHIL SHUKLA

Abstract. The purpose of the present paper is to study real hyper surfaces of an

almost hyperbolic Hermitian manifold.

1. Introduction

Definition 1.1. Let us consider a differentiable manifold M of class C∞endowed with

a tensor field F of type (1, 1) such that

F̃ 2 = I, i.e. · · ·

F̃h
k F̃ k

i = δh
i ,

and

g(FX, FY ) + g(X, Y ) = 0

Then we say that g is compatible with structure F and (F, g) is called almost hy-

perbolic Hermitian structure and the manifold M with this structure is called almost

hyperbolic Hermitian manifold.

Summation Convention: In the sequel, manifolds, tensor fields, connections and map-

pings we consider are assumed to be differentiable and of class C∞ unless otherwise stated

and the indices a, b, c, d, e, . . . run over the range {1, 2, . . .2n + 1}, the summation con-

vention being used with respect to this system of indices.

Let there be given, on a manifold M of odd dimension 2n + l(≥ 3), a tensor field f

of type (1, 1), a vector field ξ and a 1-form θ satisfying

f2 = I − θ ⊗ ξ, f(ξ) = 0, θ(f) = 0, θ(ξ) = 1, (1.1)

I being the identity tensor field of type (1, 1), or

fa
e fe

b = δa
b − θ ⊗ ξ, fa

e ξe = 0, θef
e
b = 0 θeξ

e = 1, (1.2)
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fa
b , ξa and θb denoting components of f, ξ, θ respectively. Then the triple(f, ξ, θ) is called

an almost para contact structure in M .

We define tensor fields S of type (1, 2), G of type (0, 2), T of type (0, 2), P of type

(1, 1) and Q of type (0, 1) as those with components

Sa
cb = fe

c∇ef
a
b − fe

b∇ef
a
c − (∇cf

e
b −∇bf

e
c )fa

e + (∇cθb −∇bθb)ξ
a (1.3)

Gcb = fe
c (∇eθb −∇bθe) (1.4)

Tcb = Gcb − Gcb, (1.5)

P a
b = −[ξe∇ef

a
b − (∇eξ

a)fe
b + (∇bξ

e)fa
b ] (1.6)

Qb = −[ξe∇eθb + (∇bξ
e)θe] (1.7)

respectively, where ∇ denotes the operator of covariant differentiation with respect to

an arbitrary symmetric affine connection in M . We easily see that these tensor fields
are independent of the symmetric connection ∇ used to define them. Then S and G

are respectively called the torsion tensor and the Levi tensor of (f, ξ, θ). The following

propositions are well known [4].

(A1) S = 0 implies T = 0, P = 0 and Q = 0;

(A2) P = 0 implies Q = 0.

When the tensor field S vanishes identically, the almost para contact structure (f, ξ, θ)
is said to be normal.

We now state an elementary lemma for later use. Let V be a vector space over real

number field with almost hyperbolic Hermitian structure F . That is, F : V → V is

a linear transformation satisfying F 2 = I and g(FX, FY ) + g(X, Y ) = 0. Then V is
necessarily even-dimensional, say dim V = 2n + 2(≥ 4). Take arbitrarily a (2n + l)

-dimensional subspace W of V . Then FW is also (2n + 1)-dimensional. We can now

state.

Lemma 1.1. Put D = W ∩ FW and N = D − FW . Then FD = D, FN ⊂ W ,

V = W +FW , dimD = 2n, N = (ax0+y/a ∈ R, a 6= O, y ∈ D), x0 being a fixed element

of N , and any element x of N is uniquely represented as x = ax0 + y (a ∈ R, y ∈ D).

The subset N appearing in Lemma 1.1 has two connected components, each of which

is homeomorphic to a Euclidean space of dimension 2n + 1. The subset T is called the

affine normal space to W in the vector space V with al,ost hyperbolic Hermitian structure

F .
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2. Hypersurfaces of almost hyperbolic Hermitian manifold

Let M be a almost hyperbolic Hermitian manifold of real dimension 2n+2(≥ 4) with

almost hyperbolic Hermitian structure F , where F is a tensor field of type (1, 1) in M

satisfying F̃ 2 = I, i.e. . . .

F̃h
k F̃ k

i = δh
i , (2.1a)

and

g(FX, FY ) + g(X, Y ) = 0 (2.1b)

F̃h
i denoting components of F̃ .

Let there be given a hyper surface M immersed in M̃ . For each point P of M , denote

the tangent space to M̃ and that to M at P by TP (M̃) and TP (M) respectively. Then

the subspace DP = TP (M) ∩ F̃ TP (M) is 2n-dimensional and hence the correspondence

P → DP defines a distribution D of dimension 2n in M . Since FD = D, we can define

a tensor field J of type (1, 1) in D by JX = F̃X, X being an arbitrary vector field

belonging to D. Then F̃ 2 = I implies J2 = ID, where ID denotes the identity tensor

field of type (1, 1) in D. Thus the D is called a hyperdistribution with almost hyperbolic

Hermitian structure J in M and said to be induced in M from F̃ by the immersion [3].

Since the tangent space TP (M̃) is a vector space with almost hyperbolic Hermitian

structure F̃ , by Lemma 1.1 the subspace TP (M) of TP (M̃) has its affine normal space

NP . We call N =
⋃

P∈M NP the affine normal bundle to the hyper surface M .

Since NP has two connected components, each of which is homeomorphic to a Eu-

clidean space, N has a global cross-section if M is orientable.

Let U be a coordinate neighborhood of M̃ such that any connected component U of

U ∩M is a coordinate neighborhood of M . In the sequel by U we mean such a coordinate

neighborhood of M . Take a local cross-section C of the affine normal bundle N over U

and call it a local affine normal to M in U . Then by Lemma 1.1 F̃C is tangent to M in

U and hence

ξ = F̃C (2.2)

is a non-vanishing vector field in U . Next, for any vector field X in M , we can decompose

F̃X uniquely as

F̃X = fX + θ(X)C, (2.3)

where fX is tangent to M . Thus f and θ are a tensor field of type (1, 1) and a 1-form in U

respectively. Applying F̃ to (2.3) and using F̃2 = I, we find X = (f2X+θ(X)ξ)+θ(fX)C,

which implies

f2 = I − θ ⊗ ξ, θ(f) = 0. (2.4)

If we put X = ξ in (2.3), we obtain F̃ ξ = f(ξ) + θ(ξ)C. On the other hand (2.2) gives

F̃ ξ = C. Hence we get

f(ξ) = 0, θ(ξ) = l. (2.5)
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Equations (2.4) and (2.5) show that the triple (f, ξ, θ) is an almost contact structure in

U , which is called an almost contact structure induced in M by an affine normal C in
U . A vector field X in M belongs to D if and only if F̃ X belongs to D. Thus, because
of (2.3), X belongs to D if and only if θ(X) = 0. Hence the distribution D is defined
by θ = 0 in U . Therefore the almost contact structure (f, ξ, θ) is associated with the
hyperdistribution D with complex structure [3].

We now take another affine normal C to M in U . Then by Lemma 1.1 we have

C = −
1

α
(C + A), (2.6)

where α is a non-vanishing function and A a vector field being tangent to M and belonging

to D, α and A being defined in U . Thus we have

f = −f + θ ⊗ ξ, ξ = −
1

α
(ξ − fA), θ = αθ, (2.7)

where (f, ξ, θ) is the almost contact structure induced in M by (2.3) and (2.5), C being
replaced by C. The change (2.7) of almost contact structures has been discussed in [3]
and is called a change of almost contact structures associated with D.

3. Induced affine connections

We now assume that the ambient manifold M̃ is a complex manifold of complex
dimension n + 1(≥ 2) with almost hyperbolic Hermitian structure F̃ . It is well known
that there is a symmetric affine connection ∇̃ satisfying∇̃F̃ = 0, i.e.

∇̃j F̃
h
i = 0. (3.1)

In the sequel we fix this affine connection ∇̃ .
Consider a real hypersurface M immersed in M̃ and a coordinate neighborhood U of

M such that U is a connected component of U ∩M , U being a coordinate Neighborhood
of M̃ . Let (xh) and (ya) be coordinates in U and in U respectively. We assume that M
is represented in U by

xh = xh(ya). (3.2)

Take an affine normal C to M in U and put

Bh
b = ∂xh/∂ya (3.3)

in U . Then Bb = Bh
b ∂/∂xh and C = Ch∂/∂xh form an affine (2n + 2)-frame along U .

Thus on putting
Ba

i

Ci

= −(Bh
b , Ch)−1

we have
Bi

bB
a
i = δa

b , Ba
i Ci = 0, CiC

i = 1 (3.4)
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Bh
e Be

i + ChCi = −δh
i . (3.5)

Thus Ba = Ba
i ∂xi and C = Ci∂xi form a coframe dual to {Bb, C} along U .

The affine connection ∇ induced in U from T̃ h
ji with respect to the affine normal C

has, by definition, components given by

T a
cb = (∂cB

h
b + T̃ h

jiB
j
cB

i
b)B

a
h (3.6)

where ∂b = ∂/∂yb and T̃ h
ji denote components of ∇̃ in Ũ . Since ∇̃ is symmetric, i.e. . . .

since T̃ h
ji = T̃ h

ij∇ is also symmetric, i.e. . . .T a
cb = T a

bc. Thus if we define the so- called

vander Waerden- Bortolotti covariant derivative of Bh
b along M by

∇cB
h
b = −∂cB

h
b − T̃ h

jiB
j
cB

i
b + T a

cbB
h
a (3.7)

in U , then we have(∇cB
h
b )Ba

b = 0, which shows that∇cB
h
b is of the form

∇cB
h
b = hcbC

h, (3.8)

where hcb are defined by

hcb = hbc = ∂cB
h
b + (T̃ h

jiB
J
c Bi

b)Ch (3.9)

and are called components of the covariant second fundamental tensor h of M with

respect to the affine normal C, h being of type (0, 2).

Differentiating Bh
b Ba

h = −δa
b covariantly along M and using (3.8) and ChBa

h = 0 we

find Bh
bcb

(∇cB
a
h) = 0 from which

∇cB
a
i = −Ha

c Ci (3.10)

where ∇cB
a
i are defined by

∇cB
a
i = −∂cB

a
i − T̃ h

jiB
j
cB

a
h − T a

cbB
b
i (3.11)

in U and Ha
c by

Ha
c = (∂cB

h
b + T̃ h

jiB
j
cC

i)Ba
h. (3.12)

The Ha
c are called components of the mixed second fundamental tensor H of M with

respect to the affine normal C in U , H being of type (1.1).

We next differentiate Ba
i Ci = 0 covariantly along M and use (3.10). Then we obtain

Ha
c − Ba

i (∇cC
i) = 0 from which

∇cC
h = Ha

c Bh
a − lcC

h (3.13)

where lc are defined by

lc = (∂cC
h + T̃ h

jiB
j
cC

i)Ch (3.14)



76 SUSHIL SHUKLA

and ∇cC
h by

∇cC
h = ∂cC

h + T̃ h
jiB

j
cC

i (3.15)

in U . The lc are called components of the third fundamental tensor l of M with respect
to the affine normal C in U , l being of type (0, 1). The l gives a linear connection in the
one-dimensional vector bundle

⋃

p∈U

{aCP /aǫR} over U .

Finally, differentiating Bi
bCi = 0 covariantly along M and using (3.8), CiBa

i = 0 and
CiCi = 1, we find lc − Ci(∂cCi) = 0, from which

∇cCi = hce + lcCi (3.16)

where ∇cCi are defined in U by

∇cCi = ∂cCi + T̃ h
jiB

j
cCh. (3.17)

Equations (3.8) and (3.10) are those of Gauss for the real hypersurface M and equations
(3.11) and (3.13) are those of Weingarten for M .

Consider a vector field X = Xh∂/∂xh tangent to M . Then we have Xh = XaBh
a

Thus using (3.8), we have

∇cX
h = −(∂cX

a)Bh
a − hcbX

bCh, (3.18)

where we have put in U

∇cX
h = ∂cX

h + T̃ h
jiB

j
cX

i, ∇cX
a = ∂cX

a + T a
cbX

b.

Let (f, ξ, θ) be the almost contact structure induced in M by the affine normal C to
M in U . Then (2.2) and (2.3) can be written as

F̃h
i Ci = ξbBh

b , (3.19)

F̃h
i Bi

b = fa
b Bh

a − lbC
h (3.20)

respectively. Applying ∇c to (3.20) and using ∇cF̃
h
i = Bj

c∇̃j F̃
h
i = 0, we obtain

hcb(f
aBh

a ) = (∇cf
a
b )Bh

a + hcef
e
b Ch − (∇cθb)C

h + (Ha
c Bh

a − lcC
h),

where we have used (2.2), (2.3) with X = Bb (3.16) and (3.17). Thus we obtain

∇cf
a
b hcbξ

a − Ha
c θb, (3.21)

∇cθb = hcef
e
b + lcθb. (3.22)

Next, applying ∇c to (3.19), we have in a similar way as above from which

∇cξ
a = fa

e He
c − lcξ

a (3.23)

He
c θe = −hceξ

e (3.24)
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Substituting (3.21), (3.22) and (3.23) into (1.3) and using (3.24), we obtain

Sa
cb = (−Ha

e fe
c + fa

e He
c − lcξ

a)θb + (−Ha
e fe

b + fa
e He

b − lbξ
a)θc, (3.25)

Gcb = hcb + fe
c fd

b hed − hbeξ
eθc + fe

c Ieθb, (3.26)

Qb = −lb + (Ieξ
e)θb + hedξ

efd
b . (3.27)

When a hyperdistribution D with almost hyperbolic Hermitian structure J is given on
a manifold of odd dimension and when Sa

cb ≡ 0, (mod θc, θb) is satisfied for an almost
para contact structure (f, ξ, θ) associated with D, the D is said to be torsionless. Thus
we have from (3.25).

Proposition 3.1. For any real hypersurface M of an almost hyperbolic Hermitian man-

ifold the induced hyperdistribution D of M with almost hyperbolic Hermitian structure J

is always torsionless.

Equations (3.26) imply

Proposition 3.2. For any real hypersurface M of a almost hyperbolic Hermitian man-

ifold, the Levi-tensor G of an almost para contact structure (f, ξ, θ)induced in M has

components of the form

Gcb = hcb + fe
c fd

b hed (mod θc, θb) (3.28)

in U , when an affine normal C to M is given in a coordinate neighborhood U of M .

Proposition 3.2 implies that

g(X, Y ) = g(Y, X), g(JX, JY ) + g(X, Y ) = 0

for any vector fields X and Y belonging to the hyperdistribution D with hyperbolic RAC
Structure J. Equations (3.25) imply.

Proposition 3.3. Let (f, ξ, θ) be an almost para contact structure induced on a real

hypersurface M of an almost hyperbolic Hermitian manifold by giving an affine normal

C to M in a coordinate neighborhood U of M . Then (f, ξ, θ) is normal if and only if

−Ha
e fe

b + fa
e He

b − lbξ
a ≡ 0, (mod θc, θb). (3.29)

We take another affine normal C to M in U and assume C is given by (2.6). Denote
by ∇, l, h and H respectively the induced affine connection, the third fundamental tensor,
the covariant and the mixed second fundamental tensors of M in U , which are determined
by (3.6), (3.14), (3.9) and (3.12) in terms of C.

Then components T
a

ca of ∇, hcb of h, H
a

b of H and lb of l are respectively given by

T
a

cb = T a
cb + hcbA

a, hcb = αhcb

H
a

b = −
1

α
[Ha

b + ∇bA
a − (lb + hbeA

e)Aa], (3.30)

lb = −(lb + hbeA
e) + ∇b log |α|,
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where α is a non-vanishing function and A = AaBh
a∂/∂xh is a vector field belonging to

D, both being defined in U . To obtain (3.30), we have used (2.6), B
h

b = Bh
b and

B
a

i = Ba
i + AaCi, ci = Ci, (3.31)

where

(
B

a

i

Ci

) = −(B
h

a , C
h
)−1.

Proposition 3.2 and hcb = αhcb appearing in (3.30) imply the following well known
Proposition [1, 2, 3, 5]:

Proposition 3.4. Let (f, ξ, θ) and (f, ξ, θ) be two almost para contact structures induced

on a real hypersurface M and assume that they are related to each other by (2.7). Then

Gcb = αGcb (mod θc, θb)

α being a non-vanishing function, where Gcb and Gcb are respectively components of the

Levi tensors of (f, ξ, θ) and (f, ξ, θ).

Proposition 3.4 shows that the restriction GD of the Levi tensor G to D is deter-
mined up to a non-vanishing factor. Thus GD is sometimes called the Levi tensor of the
induced hyper distribution D with almost hyperbolic Hermitian structure. When G is
of the maximum rank 2n everywhere in M , the real hyper surface M is said to be non-
degenerate. By P3.1, for any real hyper surface M of an almost hyperbolic Hermitian
manifold the hyper distribution D of M with almost hyperbolic Hermitian structure is
torsion less. This fact means that any real hyper surface M admits a pseudo-conformal
structure when M is non-degenerate [1, 2, 5].

4. Pseudo-conformal mappings

Let M and ′M be two manifolds admitting hyperdistributions D and ′D with almost
hyperbolic Hermitian structures J and ′J respectively. Assume that there is a homeo-
morphism Φ : M → ′M such that, for any vector field X belonging to D, Φ∗X belongs
to ′D and Φ∗J = ′JΦ∗, where Φ∗ denotes the differential of Φ. Then Φ : M → ′M is
called a pseudo-conformal mapping [3, 5].

Let Φ̃ : M̃ → M̃ be a holomorphic transformation of the ambient almost hyperbolic
Hermitian manifold M̃ with almost hyperbolic Hermitian structure F̃ . Then Φ̃∗F̃ = F̃ Φ̃∗,
where Φ̃∗ denotes the differential of Φ̃. Consider real hypersurfaces M and ′M immersed
in Φ̃ and assume Φ̃(M) = ′M. Denote by Φ : M → ′M the restriction of Φ̃ to M . Then
Φ is a homeomorphism and is called the mapping induced from Φ̃. Let D and ′D be
the hyperdistributions with almost hyperbolic Hermitian structure induced in M and ′M
reservedly. Denote by J and ′J the almost hyperbolic Hermitian structures induced in
D and ′D respectively. Then we can easily verify that Φ∗X belongs to ′D whenever X
belongs to D and that Φ∗J = ′JΦ∗. Thus Φ : M → ′M is a pseudo-conformal mapping.
Hence we have the following proposition:
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Proposition 4.1. Any holomorphic transformation of the ambient Φ̃ : M̃ → M̃ of

the ambient almost hyperbolic Hermitian manifold induces a pseudo-conformal mapping

Φ : M → ′M, where M and ′M are real hypersurfaces in M̃ such that ′M = Φ̃(M).

Let Φ̃ : M̃ → M̃ and Φ : M → ′M be taken as above. If we take an affine normal C
to M in a coordinate neighborhood U of M , then C̃ = Φ∗(C) is also an affine normal to
′M in ′U = Φ(U) because of Φ̃ ∗ F̃ = F̃Φ∗. Thus, taking an affine normal ′C to ′M in
′U, we get because of (2.6)

C = −
1

α
(′C + A) (4.1)

in ′U, where α is a non-vanishing function and A a vector field belonging to ′D, both
being defined in ′U . Let (f, ξ, θ) be the almost para contact structure induced in M by

the affine normal C to M in U . Let (f̃ , ξ̃, θ̃) be the almost para contact structure induced
in ′M by the affine normal ′C to ′M in ′U . Then putting

f = Φ∗f(Φ∗)−1, ξ = Φξ, θ = θ(Φ) (4.2)

we see that (f̃ , ξ̃, θ̃) is an almost para contact structure associated with ’D in ’U. Thus,
taking account of (2.7), we have from (4.1)

f = −′f + ′θ ⊗ A, ξ = −
1

α
(ξ − ′fA), θ = α′θ. (4.3)

In general, the following proposition prevails:

Proposition 4.2. For a homeomorphism Φ : M → ′M of a manifold M admitting a

hyperdistributwn with almost hyperbolic Hermitian structure onto another ′M, (4.3) is a

necessary and sufficient condition for Φ : M → ′M to be a pseudo-conformal mapping.

5. Infinitesimal pseudo-conformal transformations

Let X be a vector field on a manifold M admitting a hyperdistribution D with almost
hyperbolic Hermitian structure and assume that any local transformations Φt(−ǫ < t <
ǫ, ǫ > 0) of M generated by X are always pseudo-conformal transformations. Then X is
called an infinitesimal pseudo-conformal transformation or simply a pseudo- conformal
vector field in M . Let (f, ξ, θ) be an almost para contact structure associated with D in a
coordinate neighborhood U . Then we have the following lemma for a manifold admitting
a hyperdistribution with almost hyperbolic Hermitian structure:

Proposition 5.1. In a real hypersurface M of an almost hyperbolic Hermitian manifold,

a vector field X is pseudo-conformal if and only if X satisfies

LXf = θ ⊗ V, LXξ = aξ + fV, LXθ = aθ, (5.1)

where a is a function and V a vector field belonging to D, both being defined in U .
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It is known that a pseudo-conformal vector field X in M vanishes identically if X

belongs to D, where D is assumed to be torsionless and non-degenerate. On the other

hand, by Proposition 3.1, for any real hypersurface M of an almost hyperbolic Hermitian
manifold M the induced hyperdistribution D of M is always torsionless. Thus we have

Proposition 5.2. Let M be a non-degenerate real hypesurface of an almost hyperbolic

Hermitian manifold M̃. A pseudo-conformal vector field X in M vanishes identically if

X belongs to the induced hyperdistribution D with almost hyperbolic Hermitian structure.

Consider a real hypersurface M of an almost hyperbolic Hermitian manifold M̃ with

almost hyperbolic Hermitian structure F̃ . Let a holomorphic vector field X̃ in M̃ be

tangent to M . Then, since X is holomorphic, X satisfies

F̃h
k ∇̃iX̃

k = ∇̃kX̃kF̃ k
i . (5.2)

On the other hand, since X̃ is tangent to M, we have along M

X̃h = XaBh
a . (5.3)

Transvection of (5.2) with Bi
b gives

F̃h
k (∇̃iX̃

k) = (∇̃kX̃h)F̃ k
i Bi

b, (5.4)

which is equivalent to

[−(∇bX
e)fa

e +(∇eX
a)fe

b +hbeX
eξa]Bh

a−[(∇bX
e)θe−fe

b hedXd]Ch = θb(C
k∇̃kX̃h) (5.5)

because of (3.18), (3.19), (3.20) and (5.3), where(f, ξ, θ) almost para contact structure
induced in each coordinate neighborhood U of M by fixing an affine normal C to M in

U . Next, transvection of (5.2) with Ci gives

Ci∇̃iX̃
h = −ξc[(∇cX

e)fa
e − hceX

eξa]Bh
a − [ξc(∇cX

e)θe]C
k (5.6)

because of (3.18), (3.19), (3.20) and (5.3). Substituting (5.6) into (5.5), we have

−(∇iX
e)fa

e + (∇eX
a)fe

b + hbeX
eξa] = θb[−ξc(∇cX

e)fa
e + hceξ

cXeξa]
(5.7)

(∇bX
e)θe − fe

b hedX
d = θb(∇cX

e)ξcθe

which reduce respectively to

LXfa
b = θbV

a, LXθb = aθb (5.8)

where we have put

V a = Ha
e Xe + hceξ

cXeξa − ξ(∇cX
e)fa

e ,
(5.9)

a = (∇cX
e)ξcθe − leX

e.
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Thus, taking account of (3.24), we see easily that θeV
e = 0, . . . that V a are components of

a vector field V belonging to the induced hyperdistribution D of M . Next, the identities
θbξ

b = 1 and fa
b ξb = 0 imply respectively

(LXθb)ξ
b + θb(LXξb) = 0, and (LXfa

b )ξb + fa
b (LXξb) = 0.

Substituting (5.8) into these equations, we obtain

LXξb = aξa + fa
e V e. (5.10)

Consequently, we have (5.1) from (5.8) and (5.10). Thus we have the following proposi-
tion:

Proposition 5.3. Let M be a real hypersurface immersed in an almost hyperbolic Hermi-

tian manifold. If a holomorphic vector field X̃ in M̃ is tangent to M , then the restriction

X of X̃ to M is a pseudo-conformal vector field in M .

Let (f, ξ, θ) be an almost para contact structure induced in a coordinate neighborhood
U of M and assume that ξ is a pseudo-conformal vector field in U . Then (f, ξ, θ) is said

to be regular [5]. If this is the case, (5.1) implies

P a
b = Lξf

a
b = 0,

becauseLξξ = 0 and (5.1) gives V = 0 and a = 0. Therefore (3.25) and (3.28) implies

−Ha
e fe

b + fa
e He

b − lbξ
a (mod θb)

if and only if (f, ξ, θ) is regular.Thus we have, from Proposition 3.3.

Proposition 5.4. In a real hypersurface M immersed in an almost hyperbolic Hermitian

manifold, an induced almost para contact structure of M is normal if and only if it is

regular.

Proposition 5.3 is however a consequence of Proposition 3.1.

Let (Zλ) be a system of complex coordinates in a coordinate neighborhood Ũ of the
ambient almost hyperbolic Hermitian manifold M . Then we have

Proposition 5.5. The condition (5.2) is equivalent to each of the following conditions

∂X̃λ

∂zµ = 0 (5.11)

dX̃λ ∧ dz1 ∧ · · · ∧ dzn+1 = 0 (5.12)

It is easily verified that condition (5.8) is equivalent to (5.7) which is equivalent to (5.5)

and hence to (5.4). Thus we have
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Proposition 5.6. Condition (5.8) is equivalent to (5.4) or to

dX̃λ ∧ d(z1oi) ∧ · · · ∧ d(zn+1oi) = 0 (5.13)

where i : M → M̃ is the immersion of M .

Let there be given a vector field X in M and put X̂h = XaBh
a where Xa are compo-

nents of X in U . Then we have

Proposition 5.7. The condition (5.8) for a vector field Xa∂/∂ya tangent to M is

equivalent to the condition

dX̃λ ∧ d(z1oi) ∧ · · · ∧ d(zn+1oi) = 0 (5.14)

where i : M → M̃ is the immersion of M and X̃h = XaBh
a .

We now assume that M is a real hypersurface analytically immersed in M and that X

is an analytic vector field in M . Then, as is well known, the differential equation (5.12)

with unknown functions X̃λ(zµ, zµ) has a local solution X̃λ satisfying the boundary
condition

(X̃λoi) = X̃λ

along M , when X satisfy condition (5.13) [5]. Therefore, taking account of Proposition
5.3 and Lemmas 5.5, 5.6 and 5.7, we can prove the following proposition:

Proposition 5.8. Let M be a real hypersurface analytically immersed in an almost

hyperbolic Hermitian manifold M̃ . Then an analytic vector field X in M is pseudo-

conformal if and only if, for any point P belonging to M , there are a neighborhood O of

M containing P and a homomorphic vector field X̃ in Õsuch that X is the restriction of

X̃ to Õ ∩ M.
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