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COMMUTATIVE GROUP ALGEBRAS AND PRÜFER GROUPS

P. V. DANCHEV

Abstract. Suppose G is a multiplicatively written abelian p-group, where p is a

prime, and F is a field of arbitrary characteristic. The main results in this paper are

that none of the Sylow p-group of all normalized units S(FG) in the group ring FG

and its quotient group S(FG)/G cannot be Prüfer groups. This contrasts a classical

conjecture for which S(FG)/G is a direct factor of a direct sum of generalized Prüfer

groups whenever F is a perfect field of characteristic p.

I. Introduction

Throughout the present paper, let G be an arbitrary multiplicative abelian group,

let R be a commutative unitary ring of prime characteristic p and let K be a field of

characteristic different from p. As usual, RG and KG are the group algebras over R

and K respectively, S(RG) is the p-torsion component of the group of all normalized

units V (RG) in RG (note that V (RG) = S(RG) when G is a p-group), S(KG) is the

group of all normalized p-elements in KG, and Gp is the maximal p-primary subgroup

of G. Moreover, N(R) denotes the Baer radical (often called nil-radical) of R. Given a

subgroup H of G and a subring L of R containing the same identity, I(LG; H) denotes

the relative augmentation ideal of LG with respect to H . Terminology and notations

follow [12], [15] and [16].

For instance, following [12] and [13], we shall say that the abelian p-group A is a

Prüfer group if Apω

is cyclic of order p and A/Apω

= ⊕n<ωZ(pn), where Z(pn) is a

cyclic group of order pn. Certainly, A is an infinite countable group, and the non-zero

Ulm-Kaplansky functions of A/Apω

are equal to 1. In fact, we know that BGpω

/Gpω

is a p-basic subgroup of G/Gpω

whenever B is a p-basic subgroup of G. So, for the

n-Ulm-Kaplansky functions fn, where n ≥ 0 is an integer, it follows that fn(G/Gpω

) =

fn(BGpω

/Gpω

) and fn(G) = fn(B) (see, for instance, [12, v. I, section 34, p. 170 and p.

173, Exercise 2]). But BGpω

/Gpω ∼= B, therefore fn(G/Gpω

) = fn(G) whenever n ≥ 0.

Consequently, if A is a Prüfer abelian p-group, then fα(A) = 1 for each α ≤ ω and

fα(A) = 0 for each α > ω.
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From [19, Theorem 6], an abelian p-group A such that Apω

is countable and A/Apω

is a direct sum of cyclic groups can be decomposed as C ×D, where C is countable and
D is a direct sum of cyclic groups. In the case of Prüfer groups we observe that D = 1.

In the theory of commutative group algebras there exists a long-standing conjecture
(see, e.g., [1]) stating that S(RG)/G is a direct factor of a direct sum of generalized
Prüfer groups, defined as in [12, v. II, section 81, pp.103-104], whenever G is a p-group
and R is a perfect ring with characteristic p.

Under this point of view, we are motivated to give a criterion in order to check whether
S(RG) and S(KG) are Prüfer groups. The same purpose we pursue for S(RG)/G and
S(KG)/G, provided G is a p-group. The main results of this article show that none of
S(RG)/G and S(KG)/G cannot be Prüfer’s groups, against ignoring ”a direct sum” in
the above conjecture. For some positive solutions of this conjecture the reader can see
[1], [9], [14], [17] and [18].

II. Main results

The present paper extends [2, Section D]. The theorems are distributed into two
sections.

Commutative modular group algebras and Prüfer groups

The next two lemmas are straightforward and, therefore, their proofs are omitted.

Lemma 1. If g is an element of finite order of G, then

|〈g〉| = o(g).

where 〈g〉 is a finite cyclic group and o(g) is the order of g.

Lemma 2. (a) Assume G is p-primary, and k ∈ IN. Then Spk

(RG) = 1 if and only if

Gpk

= 1.
(b) Assume R has no nilpotent elements and k ∈ IN. Then Spk

(RG) = 1 if and only

if Gpk

p = 1.

Lemma 3.([3, p. 8]) We have S(RG) = Gp if and only if one of the following conditions
is true:

(i) G = 1;

(ii) G 6= Gp = 1 and N(R) = 0;

(iii) |G| = 2 and |R| = 2.

Proposition 1. V (RG) is a cyclic p-group if and only if one of the following equalities
holds:

(1) G = 1;
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(2) p = |G| = |R| = 2.

Proof. Obviously, if V (RG) is cyclic, then G is cyclic. From Lemmas 1 and 2(a), we

deduce |V (RG)| = |G| and so V (RG) = G. Lemma 3 concludes the necessity.

Conversely, the result follows again by Lemma 3.

We shall now generalize Proposition 1.

Proposition 2. S(RG) is cyclic if and only if one of the following is valid:

(1) G = 1;

(2) G 6= Gp = 1 and N(R) = 0;

(3) |G| = 2 and |R| = 2;

(4) Gp = 1, |G| = 2 and |N(R)| = p ≥ 3.

Proof. First, assume that S(RG) is cyclic. We distinguish two cases, namely:

Case 1: N(Rpi

) = Npi

(R) 6= 0 for all i ∈ IN.

(a) Since there is g ∈ G with gn 6= 1 for every n ∈ IN, G is either torsion-free or mixed.

Let 0 6= r ∈ N(R). For m ∈ IN we construct the infinite number of different elements

1+r(1−gpm

) ∈ S(R〈g〉) where S(R〈g〉) is cyclic, hence finite, as a subgroup of S(RG).

Note that 〈g〉 is an infinite cyclic group in this situation. Therefore, S(R〈g〉) = 1,

i.e., g = 1 which is a contradiction.

(b) By what we have just shown in the previous point, G must be torsion.

(b.1) N(Rpi′

) = N(Rpi′+1

) for some i′ ∈ IN0 = IN∪{0}. Thus 1+I(N(Rpi′

)Gq ; Gq) =

1 being both a divisible and cyclic group since Gq is p-divisible whenever q 6= p

is a prime. Therefore, Gq = 1, i.e., G is p-primary.

(b.2) N(Rpi

) 6= N(Rpi+1

) for each i ∈ IN0. Then the sequence N(R), N(Rp),

N(Rp2

), . . ., N(Rpi

), . . . has an infinite number of different members. Choose

the elements xi = 1+rpi

i (1−gq) where ri ∈ N(R); rpi

i ∈ N(Rpi

) with rpi

i 6= rpi+1

i+1

and gq ∈ Gq. Thus xi 6= xi+1 and S(RGq) is infinite cyclic, i.e., S(RGq) = 1,

whence Gq = 1. Finally, we conclude that G is p-torsion.

In that aspect Proposition 1 substantiates our claim.

Case 2: N(Rpj

) = 0 for some j ∈ IN0.

If P is a commutative ring with unity of characteristic p such that N(P ) = 0, as in

Proposition 1, S(PG) cyclic yields S(PG) = Gp, because we have exp(S(PG)) = exp(Gp)

by Lemma 2(b).

Consequently, S(RG) cyclic gives S(Rpj

G) is cyclic, hence in view of the conclusions

above, S(Rpj

G) = Gp. So, Lemma 3 leads us to G = 1, or G 6= Gp = 1, or G = Gp 6= 1,

|Rpj

| = 2, |G| = 2. We will consider the following two subcases.



88 P. V. DANCHEV

(2.1) Assume Gp 6= 1. Hence R is a field which follows from Proposition 1 since G is a
p-group.
We also note that Rpj

is a field and N(R) = 0, whence R is a field. If 0 6= r ∈ R, then
0 6= rpj

∈ Rpj

. So, there exists some 0 6= α ∈ Rpj

such that rpj

·α = r(rpj
−1 ·α) = 1.

Therefore, r is invertible in R and this allows us to deduce that R is a field.

(2.2) Assume Gp = 1 and N(R) 6= 0. Each element of S(RG) will be of the form

1+ r1g1 + . . .+ rkgk, where 0 6= ri ∈ N(R) with
∑k

i=1 ri = 0 and gi ∈ G; 1 ≤ i ≤ k.
Clearly, |N(R)| ≤ |S(RG)| and |G| ≤ |S(RG)| since 1 + r(1 − g) = 1 + r′(1 − g′) if
and only if r = r′ and g = g′, where r, r′ ∈ N(R) \ {0} and g, g′ ∈ G \ {1}. Since
tr 6= 0 whenever 1 ≤ t ≤ p − 1, we obtain that |N(R)| ≥ p. On the other hand, if
|G| ≥ 3, then as above |N(R)| < |S(RG)| whenever |S(RG)| < ℵ0.

Now consider S(RG) = {1, v, v2, . . . , vpm
−1|vpm

= 1}, where 1 ≤ m ≤ j; thus
|S(RG)| = pm. Moreover, |R| ≥ 4, |N(R)| ≤ pm and |G| < pm; we observe that
|G| = pm means G = Gp = 1.

Suppose j = 1 (hence m = 1). But |S(RG)| = p and p ≥ 3, since in the remaining
case when p = 2 we deduce |G| < 2, i.e., G = 1. Because of the above given inequalities,
we obtain |N(R)| = p so N(R) = {0, r, 2r, . . . , (p−1)r|r2 = 0} and Np(R) = N(Rp) = 0.
Utilizing the above ideas, it follows that |G| = 2.

Now, let m ≥ 2, so j ≥ 2. Since S(Rpj−1

G) ⊆ S(RG) is cyclic and Sp(Rpj−1

G) =
1, we conclude that |S(Rpj−1

G)| = p. Hereafter, the above step can be successfully
employed to deduce that |G| = 2; of course N(Rpj−1

) 6= 0, otherwise 1 ≤ m ≤ j − 1 and
the first point will be started for j = 2. That is why, |N(R)| = pm and |N(Rpj−1

)| = p.
Evidently, every element of S(RG) is of the form 1 + r(1 − g), where r ∈ N(R). If

r ∈ N(R), it follows that {0, r, 2r, . . . , (p − 1)r} ⊆ N(R). Likewise, if r ∈ N(R) with
rs = 0, s ≥ 2 and rs−1 6= 0, it holds that the set {r, r2, . . . , rs−1} of s − 1 elements is a
set of different nilpotent elements. All of these arguments lead us to the evaluation that
|N(R)| ≥ 1 + (s− 1)(p− 1) for s ≥ 2. Since the sum of nilpotent elements is a nilpotent,
there are s− 2 nilpotent elements by considering the different sums r + r2, . . . , r + rs−1.
Finally, we compute that |N(R)| ≥ (s− 1)(p− 1) + 1 + s− 2 = (s− 1)p, s ≥ 2; of course
there is an exact estimation of the cardinality of the finite ideal N(R), but however this
inequality works.

So, if S(RG) is cyclic of exp(S(RG)) = pm for m ≥ 2, it is routine to verify that
there exists a nilpotent element β ∈ R such that βpm

= 0, βpm
−1 6= 0 for m ≥ 2 and

S(RG) = 〈1 + β(1 − g)〉.
By what we have just shown for s = pm with m ≥ 2, it follows that |N(R)| ≥

(pm − 1)p > pm whenever p ≥ 2, m ≥ 2; notice that pm − 1 > pm−1 holds even for p ≥ 3,
m ≥ 1. This contradicts our equality |N(R)| = pm.

Finally, we find that m < 2 and j < 2 when S(RG) is cyclic. The result follows.
Conversely, assume that conditions (1)−(4) are satisfied. For points (1)−(3) we di-

rectly apply Lemma 3 to conclude that S(RG) = Gp and since Gp is cyclic, the result
follows. If now (4) holds, it is easily verified that every element of S(RG) is of the type
1 + nr(1 − g) = (1 + r(1 − g))n, where 0 ≤ n ≤ p − 1 and r ∈ N(R) with r2 = 0. So,
S(RG) is a cyclic group of order p.
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Remark 1. 1 6= S(RG) cyclic yields that N(R) is finite. On the other hand, 1 6= S(RG)
cyclic implies that R is perfect provided Gp 6= 1. From [7, Example 9], N(R) = 0.
Actually, Cases 1 and 2 in Proposition 2 may be reduced to N(R) = 0 and Gp 6= 1; or
N(R) 6= 0 and Gp = 1, or N(R) 6= 0 and Gp 6= 1.

The reader can see also [4, Theorem, pp.262-263] where we have established a criterion
for S(RG) to be a direct sum of cyclic groups of the same order pt for t ≥ 1.

The next constructions illustrate Proposition 2.

Example 1. Consider the following rings and their nil-radicals.

(1) R = {0, 1,−1}, char (R) = 3, N(R) = {0};

(2) R = {0, 1, r, 1 − r|r2 = 0}, char (R) = 2, N(R) = {0, r};

(3) R = {0, 1,−1, r, 2r, r+1, r−1,−r−1, 1−r|r2 = 0}, char (R) = 3, N(R) = {0, r, 2r};

(4) N(R) = {0, r, r2, r + r2|r3 = 0}, char (R) = 2;

(5) N(R) = {0, r, 2r, r2, 2r2, r + r2,−r − r2, r − r2, r2 − r|r3 = 0}, char (R) = 3.

Suppose now that |S(RG)| = 4 (p = 2, m = 2), that |G| = 3 with G = 〈g〉 and
that R is as in 2). Therefore, S(RG) = {1, 1 + r(1 − g), 1 + r(1 − g2), 1 + rg(1 − g)}.
Because S2(RG) = 1, S(RG) is not cyclic but is a direct sum of the two cyclic groups
{1, 1 + r(1 − g)} and {1, 1 + r(1 − g2)} each of which is with order 2; we observe that
(1 + r(1 − g))(1 + r(1 − g2)) = 1 + rg(1 − g).

Let now p = 3 and m = 2, as well as |G| = 2 and N(R) be as in 5). Consequently,
S(RG) = {1 + α(1 − g)|α ∈ N(R)} is of power 9. But S(RG) is not cyclic of order 9
since Sp(RG) = 1, i.e., (1 + α(1 − g))3 = 1 + α3(1 − g3) = 1; note that Np(R) = 0.

Proposition 3. Suppose that G is a p-group. Then V (RG)/G is cyclic if and only if
one of the following conditions is true:

(1) G = 1;

(2) p = |R| = |G| = 2;

(3) p = |G| = 2 and |R| = 4;

(4) p = |R| = 2, G2 6= 1 and |G| = 4;

(5) p = |R| = |G| = 3.

Proof. Let V (RG)/G be a nontrivial cyclic group of order pm for m ≥ 1. So, V =
V (RG)/G = {1, v, v2, . . . , vpm

−1|vpm

= 1} for some element v = (r1g1 + . . . + rngn)G;
0 6= ri ∈ R with

∑n

i=1 ri = 1, gi ∈ G; 1 ≤ i ≤ n. If G is decomposable, then by [1,
Theorem (Direct Factor)], V (RG)/G must be decomposable (see also [9]). But this is
impossible and thus G is indecomposable.

Since (V (RG)/G)pm

= 1, we have V pm

(RG)G = G, i.e., V (Rpm

Gpm

) = Gpm

. Using
Lemma 3, we derive Gpm

= 1, or Gpm

6= 1, p = |Rpm

| = |Gpm

| = 2. Both R and G are

finite. Moreover either Gpk

6= 1 and |Rpk

| > 2, or |Gpk

| > 2, for 0 ≤ k < m.
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We shall distinguish five cases:

Case 1: p = 2, m = 1. Thus V (RG)/G = {1, v|v2 = 1}. Assume that |R| > 2. Hence,
1 6= [1 + r(1 − g)]G = v for 0, 1 6= r ∈ R and 1 6= g ∈ G with [1 + r(1 − g)]2 ∈ G, i.e.,
1+ r2(1− g2) ∈ G. This is equivalent to r2 = 0 or r2 = 1 or g2 = 1. Besides, we consider
[1 + r′(1− h)]G for some r′ ∈ R \ {0, 1, r} and h ∈ G \ {1, g} such that [1 + r′(1− h)]G =
[1+r(1−g)]G, i.e., r′ = 1+r and h = g−1. Consequently, [1+r(1−g)]G 6= [1+r(1−g−1)]G
when g 6= g−1. That is why, |G| = 2 and |R| = 4.

Let us now |R| = 2, whence |G| > 2 and more precisely |G| ≥ 4. This will be studied
in the next case.

Case 2: p = 2, m ≥ 2. Starting with m = 2, V (LG)/G ⊆ V (RG)/G is cyclic of order 2
or 4 where L = {0, 1} ≤ R. Since G4 = 1 and G2 6= 1, or G4 6= 1 with |R4| = |G4| = 2,
there exists 1 6= g ∈ G such that g2 6= 1, g3 6= 1 whence {1, g, g2, g3|g4 = 1} ≤ G.

First, |V (LG)/G| = 2, and |G| = 4, i.e., G = {1, g, g2, g3|g4 = 1}, so G2 = {1, g2}.
Since V (RG) = G∪ {1 + g + g2, 1 + g + g3, 1 + g2 + g3, g + g2 + g3}, it is immediate that
V = {1, [1 + g + g2]G}.

If now |G| = 8, i.e., G = {1, g, . . . , g7|g8 = 1}, we observe that V contains five
different elements, that are 1, (1 + g + g2)G, (1 + g + g3)G, (1 + g + g2 + g3 + g4)G and
(1 + g + g2 + g3 + g4 + g5 + g6)G. This contradicts the power of V which is precisely 4.

If |G| = 4 and |R| = 4, then G = {1, g, g2, g3|g4 = 1} and R = {0, 1, r, 1 + r}.
Furthermore, we see that V = {1, (1+g+g2)G, (1+r−rg)G, (1+r−rg2)G, (1+r−rg3)G}
consists of five different elements because 1 + r 6= −r, but this is not true. Thus |R| < 4
or |G| < 4, i.e., |R| ≤ 2 or |G| ≤ 2.

Next, for m ≥ 3 we observe that V (Lpm−2

Gpm−2

)G/G ∼= V (Lpm−2

Gpm−2

)/Gpm−2

is
a cyclic group of order p2 as a subgroup of V (LG)/G. This is exactly the previous step.
Thus, when m ≥ 2, V (RG)/G is not cyclic.

Case 3: p = 3, m = 1. Since p = 3 there is r ∈ R with r 6= 0, 1, hence {0, 1,−1} ⊆ R.
Moreover, G3 = 1 and G2 6= 1. Let us now |R| = 3, i.e., R = {0, 1,−1} and |G| = 3,
that is, G = {1, g, g2|g3 = 1}. Therefore, V (RG) = {1, 1 + g(1 − g), 1 − g(1 − g),−g −
g2,−1 − g, g, g2} and V = {1, [1 + g(1 − g)]G, [−1 − g]G}. Moreover, we calculate that
[1+g(1−g)]G = [1+g−g2]G = [1−g+g2]G = [1+2g+g2]G = [−1−g]2G = [(−1−g)G]2.

If we suppose that |R| > 3 or |G| > 3, i.e., |R| ≥ 9 or |G| ≥ 9, it is not difficult to
obtain in the same manner that |V | > 3, which is a contradiction.

Case 4: p = 3, m ≥ 2. Start with m = 2. Certainly, G9 = 1 and so |G| = 9 since other-
wise if |G| = 3 it follows that G3 = 1, a contradiction. Thus G = {1, g, g2, . . . , g8|g9 = 1}
and as above R ⊇ {0, 1,−1}. Consider the elements (1 + g − gk)G for 2 ≤ k ≤ 8. It is
only a technical matter to check that (1+g−gk)G 6= (1+g−gj)G whenever gk 6= gj and
2 ≤ j ≤ 8, because 1 6= −1. Moreover, two different elements are also (1 + g + g2 + g3)G
and (1 + g + g2− g3− g4)G. A crucial approach here is that the canonical forms of these
elements are with different lengths. Consequently, V ⊇ {1, (1 + g − gk)G for 2 ≤ k ≤ 8,
(1+g+g2+g3)G, (1+g+g2−g3−g4)G} contains ten elements. This gives a contradiction
and finishes the step m = 2.
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When m ≥ 3 we have |G| ≥ 27 and, therefore, we can copy the idea from Case 2.

Case 5: p ≥ 5. Begin with m = 1. Since the characteristic of R is p and R ⊇

{0, 1, 2, . . . , p−1}, it holds that |R| ≥ p. Moreover, Gp = 1 and Gs 6= 1 for 1 ≤ s ≤ p−1.

It is a routine technical exercise to verify that (1+(1−gk))G = (2−gk)G 6= (2−gj)G =

(1 + (1 − gj))G when gk 6= gj and 1 ≤ k 6= j ≤ p − 1 for some g ∈ G. In this

way (1 + g(1 − g))G 6= (2 − gk)G for all 1 ≤ k ≤ p − 1. Finally, V contains the set

of p + 1 different elements {1, (2 − g)G, (2 − g2)G, . . . , (2 − gp−1)G, (1 + g(1 − g))G}

while |V | = p. This contradiction shows that this case cannot happen. After this,

because V (Rpm−1

Gpm−1

)/Gpm−1 ∼= V (Rpm−1

Gpm−1

)G/G ⊆ V (RG)/G is cyclic of order

p whenever m ≥ 2, we conclude that the case is contradictory. This completes the

necessity.

As for the sufficiency, we observe that for the first four situations we have |V (RG)/G| =
1, hence V (RG)/G = 1, or |V (RG)/G| = 2. The fifth dependence was considered in Case

3 above.

Example 2. There are four special commutative unitary rings of power 4 and with

characteristic 2 which illustrate the criteria in Propositions 2 and 3. Specifically, they

are the following:

(1) R = {0, 1, r, 1 + r|r2 = 0}, N(R) = {0, r};

(2) R = {0, 1, r, 1 + r|r2 = 1}, N(R) = {0, 1 + r};

(3) R = {0, 1, r, 1 + r|r2 = r}, N(R) = {0} and R has two zero divisors {r, 1 + r} which
are idempotents, so R is perfect;

(4) R = {0, 1, r, 1 + r|r2 = 1 + r}, N(R) = {0} and R has three units {1, r, 1 + r}, i.e.,

R is a perfect field.

We are now prepared to proceed by proving the main assertions. In the next two

theorems we use results on Ulm-Kaplansky invariants of V (RG)/G provided G is a

p-group and R is a perfect ring of prime characteristic p (see details in [10, p. 138],

Theorem 6 and p. 141, Remark]). Utilizing the same ideas, it easily follows that these

Ulm-Kaplansky invariants are either infinite or zero when G is infinite and R is not

necessarily perfect.

Theorem 1. Suppose G is a p-group or R is a ring with no nilpotent elements. Then

S(RG) cannot be a Prüfer group.

Proof. (1) Assume G = Gp and by contradiction, let S(RG) = V (RG) be a Prüfer

group. Thus V pω

(RG) = V (Rpω

Gpω

) is cyclic of order p, hence Proposition 1 and its

proof guarantee that V (Rpω

Gpω

) = Gpω

. On the other hand, V (RG) is countable and so

V (RG)/G is countable. Since G is nice in V (RG) (cf., [10, p.135, Lemma 1]), we deduce

that (V (RG)/G)pω

= V pω

(RG)G/G = 1, whence V (RG)/G is separable. By the second

Prüfer’s theorem (see [12, v. I, Theorem 17.3]), V (RG)/G is a direct sum of cyclic groups.

Furthermore, because of the purity of G in V (RG), a result due to L. Kulikov (e.g., [12,
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v. I, Theorem 28.2]) is applicable to obtain V (RG) ∼= G × (V (RG)/G). Therefore,

V (RG)/Gpω ∼= (G/Gpω

) × (V (RG)/G). Assume G = Gpω

. Then G is both cyclic and

divisible. This gives a contradiction when G 6= 1. Thus we conclude that G 6= Gpω

,

whence G is infinite because Gpω

6= 1. Moreover, V (RG)/Gpω

= V (RG)/V pω

(RG) has

Ulm-Kaplansky functions equal to 1. On the other hand, conforming with [12, v. I,
section 37, p.185, Exercise 8], these invariants for V (RG)/Gpω

are equal to the sum

of the Ulm-Kaplansky invariants of G/Gpω

and V (RG)/G respectively. Moreover, [10,

p.138, Theorem 6] applies to show that V (RG)/G has infinite Ulm-Kaplansky invariants

when either G or R is infinite and G 6= Gp; as early observed G 6= Gp holds. If both G
and R are finite, then S(RG) is obviously finite whence it is not Prüfer. Consequently,

V (RG) = G, so Lemma 3 leads us to |R| = |G| = 2, which is the desired contradiction

with the infinite cardinality of the Prüfer groups.

(2) Assume N(R) = 0. This case can be processed similarly as that in (1).

Theorem 2. Suppose G is a p-group and R is a commutative unitary ring of prime
characteristic p. Then V (RG)/G cannot be a Prüfer group.

Proof. Assume the contrary. In view of the definition and our assumption (V (RG)/G)pω

=

V pω

(RG)G/G = V (Rpω

Gpω

)G/G ∼= V (Rpω

Gpω

)/Gpω

is cyclic of order p, whence Gpω

6=

V (Rpω

Gpω

) and thus G is infinite. However, by the above commentaries, V (RG)/G
should be with Ulm-Kaplansky functions precisely 1. But, complying with [10, p.138,

Theorem 6], when G is infinite we deduce that these invariants computed for V (RG)/G

are infinite or 0. So, we obtain the wanted contradiction.

In case G is finite, we yield that V (RG)/G is bounded whence it is not a Prüfer

group.

The following illustrates Theorem 1.

Example 3. Consider V (RG) = ⊕n<ωZ(pn). Evidently, |V (RG)| = ℵ0 ⇐⇒ |R| +

|G| = ℵ0 with |R| ≤ ℵ0 and |G| ≤ ℵ0. Besides, V pω

(RG) = 1 ⇐⇒ Gpω

= 1 and,
for each n ≥ 1, V pn

(RG) 6= 1 ⇐⇒ Gpn

6= 1. By assumption, for every k ≥ 0, the

k-Ulm-Kaplansky invariants of V (RG) are 1, while owing to [22, Theorem 7] they are

equal to 0 or to max(|Rpk

|, |Gpk

|) if either |Rpk

| ≥ ℵ0 or |Gpk

| ≥ ℵ0. In the case k = 0,

we obtain a contradiction. That is why, V (RG) 6= ⊕n<ωZ(pn).

Another idea to show that the equality V (RG) = ⊕n<ωZ(pn) is not true is like this:

If yes, G should be a direct sum of cyclic groups, hence, in virtue of [5] or [6], so is
V (RG)/G. Furthermore, as we have just seen above, V (RG) = G × V (RG)/G. But

then the Ulm-Kaplansky functions argument means that V (RG) = G, i.e., by Lemma 3,

V (RG) is finite which is against our hypothesis.
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Commutative semisimple group algebras and Prüfer groups

Theorem 3. Suppose G is a p-group and K is the first kind field with respect to p. Then

S(KG) cannot be a Prüfer group.

Proof. Let S(KG) be a Prüfer group. By definition, Spω

(KG) is cyclic of order p.
Exploiting [20, Theorem 19], Spω

(KG) is divisible. Thus Spω

(KG) = 1, a contradiction.

Note 1: In the situation of Theorem 3, S(KG)/Spω

(KG) ∼= S(KG) has Ulm-Kaplansky

invariants equal to 1. Taking into account [21, Theorem 7], S(KG) possesses Ulm-
Kaplansky functions equal to 0 or to |B| where B is the basic subgroup of G. Hence,

B = 1, i.e., G is divisible. Furthermore, in virtue of [8, Theorem 4], we derive that
S(KG) is divisible. But it is reduced, i.e., S(KG) = 1, a contradiction.

Theorem 4. Suppose G is a p-group and K is a field of the first kind with respect to p.

Then S(KG)/G cannot be a Prüfer group.

Proof. According to [11, Proposition 1], (S(KG)/G)pω

is always divisible (see also [8]).

So, it cannot be a cyclic group of order p. That is why S(KG)/G cannot be a Prüfer
group, as asserted.

Note 2: As in Note 1, the Ulm-Kaplansky arguments from [11] are also applicable to

deduce that S(KG)/G cannot be, in fact, a Prüfer group.

Theorem 5. Suppose G is a p-group and K is the second kind field with respect to p.
Then S(KG) cannot be a Prüfer group.

Proof. Owing to [20, p.36 and Theorem 21], we find that S(KG) is a direct sum of

co-cyclic groups, hence it is not a Prüfer group.

Theorem 6. Suppose G is a p-group and K is a field of the second kind with respect to

p. Then S(KG)/G cannot be a Prüfer group.

Proof. If G is finite, S(KG) is finite or divisible whence so is S(KG)/G. Therefore, it
is not a Prüfer group.

When G is infinite, we employ [20, p.45, Theorem 21] to infer that S(KG)/G need
not be a Prüfer group. In fact, if p 6= 2, then S(KG) is divisible, whereas if p = 2 and

Gp 6= 1, then Sp(KG) is divisible. Thus in both cases (S(KG)/G)p = Sp(KG)G/G is
divisible, and consequently (S(KG)/G)pω

= (S(KG)/G)p is not cyclic. When Gp = 1,

we observe that S(KG) is bounded by p, whence the same is S(KG)/G.
So, in any event, S(KG)/G is not a Prüfer group, as expected.

Example 4. As in the modular case, one can illustrate in Theorem 3 that the equality
S(KG) = ⊕n<ωZ(pn) is not valid by applying [20] and [21]; see the proof of Theorem 3

as well.



94 P. V. DANCHEV

Global case

Combining both the modular and semi-simple cases, we establish the following.

Global Theorem 7. Let G be a p-group and let F be a field of arbitrary characteristic.
Then S(FG) and S(FG)/G cannot be Prüfer groups.

Proof. Each field has characteristic p or characteristic different from p. These fields
with characteristic 6= p are either of the first kind with respect to p or of the second kind
with respect to p, respectively. Henceforth, the foregoing theorems work.
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