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IMPLICIT TYPE VOLTERRA INTEGRODIFFERENTIAL

EQUATION

B. G. PACHPATTE

Abstract. In this paper we study the existence, uniqueness and other properties of
solutions of a certain nonlinear implicit type Volterra integrodifferential equation.
The Banach fixed point theorem and a certain integral inequality with explicit
estimate are used to establish the results.

1. Introduction

Let Rn denotes the real n-dimensional Euclidean space with appropriate norm de-
noted by | · |. We denote by R+ = [0,∞) the given subset of R, the set of real numbers
and E = Rn × Rn and C(A, B) the class of continuous functions from the set A to
the set B. In 1996 A. Constantin [3] studied the global existence of solution of the
integrodifferential equation

x′ (t) = F
(

t, x (t) ,

∫ t

0

K (t, s, x (s)) ds
)

, x (0) = 0, (1.1)

by using the topological transversality argument and a certain integral inequality with
explicit estimate on the unknown function (see also [7, 10]). In (author?) [5, p.185] C.
Corduneanu dealt with the Volterra functional-differential equation of the form

x′ (t) + (Lx′) (t) + f (x (t)) = g (t) , (1.2)

in which the operator L is defined by

(Lx) (t) =

∫ t

0

k (t, s)x (s) ds, (1.3)

for t ∈ R+. Many higher order differential equations of considerable interest can be
reduced to the equation of the form (1.2). An important example of this is the Liénard
equation with memory in the restoring force which we write as

x′′ + f (x) x′ +

∫ t

0

C (t, s) g (x (s)) ds = e (t) . (1.4)
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Integrating both sides of equation (1.4) from 0 to t ∈ R+, one may arrive at a slight
variant of equation of the form (1.2). The vast literature exists dealing with the special
and even more general versions of equations (1.1), (1.2) and (1.4) by using different
techniques (see [1, 5, 6, 9, 10]). Owing to the importance of equations of the forms
(1.1), (1.2) and (1.4) arising in many physical problems, the simple, unified and concise
treatment of these equations is desired. The main objective of the present paper is to
study the existence, uniqueness and other properties of solutions of the following general
implicit type Volterra integrodifferential equation

y′ (t) = f

(

t, y (t) , y′ (t) ,

∫ t

0

g (t, σ, y (σ) , y′ (σ)) dσ

)

, (1.5)

with the given initial condition
y (0) = y0, (1.6)

for t ∈ R+, where f ∈ C (R+ × Rn × Rn × Rn, Rn) and for 0 ≤ s ≤ t < ∞, g ∈
C

(

R2
+ × Rn × Rn, Rn

)

. The main tools employed in the analysis are based on the appli-
cations of the well known Banach fixed point theorem (see (author?) [5, p. 37]) coupled
with Bielecki type norm [2] and a suitable integral inequality with explicit estimate (see
(author?) [8, Theorems 1.4.1 and 3.5.5]).

2. Existence and uniqueness

For a function y(t) and its derivative y′ (t) in C (R+, Rn) we denote by |y (t)|
E

=
|y (t)| + |y′ (t)| . Let S be the space of those functions (φ (t) , φ′ (t)) ∈ E which are con-
tinuous for t ∈ R+ and fulfil the condition

|φ (t)|
E

= O (exp (λt)) , (2.1)

for t ∈ R+, where λ > 0 is a constant. In the space S we define the norm

|φ|
S

= sup
t∈R+

[|φ (t)|
E

exp (−λt)] . (2.2)

It is easy to see that S with norm defined in (2.2) is a Banach space. We note that the
condition (2.1) implies that there exists a constant N ≥ 0 such that |φ (t)|

E
≤ N exp (λt)

for t ∈ R+. Using this fact in (2.2) we observe that

|φ|
S
≤ N. (2.3)

We need the following integral inequality similar to those of given in (author?) [8,
Theorems 1.4.1 and 3.3.5]. We shall give it in the following lemma for completeness.

Lemma. Let u (t) , f (t) ∈ C (R+, R+) and for 0 ≤ s ≤ t < ∞, e(t, s), ∂

∂t
e (t, s) , k (t, s) ∈

C
(

R2
+, R+

)

and c ≥ 0 is a constant. If

u (t) ≤ c +

∫ t

0

[

f (s)u (s) + e (t, s)u (s) +

∫ s

0

k (s, σ)u (σ) dσ

]

ds, (2.4)
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for t ∈ R+, then

u (t) ≤ c exp

(
∫ t

0

[f (s) + A (s)]ds

)

, (2.5)

for t ∈ R+, where

A (t) = e (t, t) +

∫ t

0

{

k (t, σ) +
∂

∂t
e (t, σ)

}

dσ. (2.6)

Proof. Define a function w(t) by the right hand side of (2.4). Then w (t) ≥ 0, w (0) =

c, u (t) ≤ w (t) , w(t) is nondecreasing in t and

w′ (t) = f (t)u (t) + e (t, t)u (t) +

∫ t

0

∂

∂t
e (t, s)u (s) ds +

∫ t

0

k (t, σ) u (σ) dσ

≤ f (t)w (t) + e (t, t)w (t) +

∫ t

0

∂

∂t
e (t, s)w (s) ds +

∫ t

0

k (t, σ)w (σ) dσ

≤ [f (t) + A (t)] w (t) . (2.7)

The inequality (2.7) implies the estimate

w (t) ≤ c exp

(
∫ t

0

[f (s) + A (s)] ds

)

. (2.8)

Using (2.8) in u (t) ≤ w (t) we get the required inequality in (2.5).

Now we are in a position to formulate the main result of this section.

Theorem 1. Assume that

(i) the functions f , g in equation (1.5) satisfy the conditions

|f (t, y, z, u) − f (t, ȳ, z̄, ū)| ≤ k [|y − ȳ| + |z − z̄|] + |u − ū| , (2.9)

|g (t, s, y, z) − g (t, s, ȳ, z̄)| ≤ h (t, s) [|y − ȳ| + |z − z̄|] , (2.10)

where k ≥ 0 is a constant and h ∈ C
(

R2
+, R+

)

,

(ii) for λ as in (2.1)

(a) there exists a nonnegative constant α such that α < 1 and

H (t) +

∫ t

0

H (s) ds ≤ α exp (λt) , (2.11)

for t ∈ R+, where

H (t) = k exp (λt) +

∫ t

0

h (t, σ) exp (λσ)dσ, (2.12)
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(b) there exists a nonnegative constant β such that

|y0| +

∣

∣

∣

∣

f

(

t, 0, 0,

∫ t

0

g (t, σ, 0, 0) dσ

)∣

∣

∣

∣

+

∫ t

0

∣

∣

∣

∣

f

(

s, 0, 0,

∫ s

0

g (s, σ, 0, 0) dσ

)∣

∣

∣

∣

ds ≤ β exp (λt) . (2.13)

Then the initial value problem (IVP for short) (1.5)−(1.6) has a unique solution
on R+.

Proof. Let y (t) ∈ S and define the operator T by

(Ty) (t) = y0 +

∫ t

0

f

(

s, y (s) , y′ (s) ,

∫ s

0

g (s, σ, y (σ) , y′ (σ)) dσ

)

ds. (2.14)

Differentiating both sides of (2.14) with respect to t we get

(Ty)
′
(t) = f

(

t, y (t) , y′ (t) ,

∫ t

0

g (t, σ, y (σ) , y′ (σ)) dσ

)

. (2.15)

First we shall show that Ty maps S into itself. Evidently Ty is continuous on R+ and
Ty ∈ Rn. We verify that (2.1) is fulfilled. From (2.14), (2.15), using the hypotheses and
(2.3), we have

|(Ty) (t)| +
∣

∣(Ty)
′
(t)

∣

∣

≤ |y0| +

∫ t

0

∣

∣

∣

∣

f

(

s, y (s) , y′ (s) ,

∫ s

0

g (s, σ, y (σ) , y′ (σ)) dσ

)

−f

(

s, 0, 0,

∫ s

0

g (s, σ, 0, 0) dσ

)∣

∣

∣

∣

ds

+

∫ t

0

∣

∣

∣

∣

f

(

s, 0, 0,

∫ s

0

g (s, σ, 0, 0) dσ

)
∣

∣

∣

∣

ds

+

∣

∣

∣

∣

f

(

t, y (t) , y′ (t) ,

∫ t

0

g (t, σ, y (σ) , y′ (σ)) dσ

)

−f

(

t, 0, 0,

∫ t

0

g (t, σ, 0, 0) dσ

)∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

t, 0, 0,

∫ t

0

g (t, σ, 0, 0) dσ

)
∣

∣

∣

∣

≤ β exp (λt) +

∫ t

0

{

k [|y (s)| + |y′ (s)|] +

∫ s

0

h (s, σ) [|y (σ)| + |y′ (σ)|] dσ

}

ds

+k [|y (t)| + |y′ (t)|] +

∫ t

0

h (t, σ) [|y (σ)| + |y′ (σ)|] dσ

≤ β exp (λt) + |y|
S

{
∫ t

0

H (s) ds + H (t)

}

≤ [β + Nα] exp (λt) . (2.16)
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From (2.16), we observe that

|Ty|
S
≤ [β + Nα] ,

and hence it follows that Ty ∈ S. This proves that T maps S into itself.

Next, we verify that the operator T is a contraction map. Let y (t) , z (t) ∈ S. From

(2.14), (2.15) and using the hypotheses, we have

|(Ty) (t) − (Tz) (t)| +
∣

∣(Ty)
′
(t) − (Tz)

′
(t)

∣

∣

≤

∫ t

0

∣

∣

∣

∣

f

(

s, y (s) , y′ (s) ,

∫ s

0

g (s, σ, y (σ) , y′ (σ)) dσ

)

−f

(

s, z (s) , z′ (s) ,

∫ s

0

g (s, σ, z (σ) , z′ (σ)) dσ

)∣

∣

∣

∣

ds

+

∣

∣

∣

∣

f

(

t, y (t) , y′ (t) ,

∫ t

0

g (t, σ, y (σ) , y′ (σ)) dσ

)

−f

(

t, z (t) , z′ (t) ,

∫ t

0

g (t, σ, z (σ) , z′ (σ)) dσ

)
∣

∣

∣

∣

≤

∫ t

0

{

k [|y (s) − z (s)| + |y′ (s) − z′ (s)|]

+

∫ s

0

h (s, σ) [|y (σ) − z (σ)| + |y′ (σ) − z′ (σ)|] dσ

}

ds

+k [|y (t) − z (t)| + |y′ (t) − z′ (t)|]

+

∫ t

0

h (t, σ) [|y (σ) − z (σ)| + |y′ (σ) − z′ (σ)|] dσ

≤ |y − z|
S

{
∫ t

0

H (s) ds + H (t)

}

≤ |y − z|
S

α exp (λt) . (2.17)

From (2.17), we observe that

|Ty − Tz|
S
≤ α |y − z|

S
.

Since α < 1, it follows from Banach fixed point theorem (see (author?) [5, p.37]) that

T has a unique fixed point in S. The fixed point of T is however a solution of IVP

(1.5)−(1.6). The proof is complete.

Remark 1. The norm | · |S defined in (2.2) was first used by Bielecki [2] for proving

global existence and uniqueness of solutions of ordinary differential equations. For a

detailed discussion related to this topic, see [4] and the references cited therein.

The following theorem deals with the uniqueness of solutions of IVP (1.5)−(1.6) in

the whole space Rn, without existence part.
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Theorem 2. Assume that the functions f , g in equation (1.5) satisfy the conditions

|f (t, y, z, u) − f (t, ȳ, z̄, ū)| ≤ d [|y − ȳ| + |z − z̄|] + |u − ū| , (2.18)

|g (t, s, y, z) − g (t, s, ȳ, z̄)| ≤ r (t, s) [|y − ȳ| + |z − z̄|] , (2.19)

where d is a nonnegative constant such that d < 1 and for 0 ≤ s ≤ t<∞, r (t, s) , ∂

∂t
r (t, s)

∈ C
(

R2
+, R+

)

. Then the IVP (1.5)−(1.6) has at most one solution on R+.

Proof. Let y1 (t) and y2 (t) be two solutions of IVP (1.5)−(1.6) and u (t) = |y1 (t)−y2 (t)|
+ |y′

1 (t) − y′

2 (t)| . Then by hypotheses, we have

u (t) ≤

∫ t

0

∣

∣

∣

∣

f

(

s, y1 (s) , y′

1 (s) ,

∫ s

0

g (s, σ, y1 (σ) , y′

1 (σ)) dσ

)

−f

(

s, y2 (s) , y′

2 (s) ,

∫ s

0

g (s, σ, y2 (σ) , y′

2 (σ)) dσ

)∣

∣

∣

∣

ds

+

∣

∣

∣

∣

f

(

t, y1 (t) , y′

1 (t) ,

∫ t

0

g (t, σ, y1 (σ) , y′

1 (σ)) dσ

)

−f

(

t, y2 (t) , y′

2 (t) ,

∫ t

0

g (t, σ, y2 (σ) , y′

2 (σ)) dσ

)∣

∣

∣

∣

≤

∫ t

0

{

d [|y1 (s) − y2 (s)| + |y′

1 (s) − y′

2 (s)|]

+

∫ s

0

r (s, σ) [|y1 (σ) − y2 (σ)| + |y′

1 (σ) − y′

2 (σ)|]dσ
}

ds

+d [|y1 (t) − y2 (t)| + |y′

1 (t) − y′

2 (t)|]

+

∫ t

0

r (t, σ) [|y1 (σ) − y2 (σ)| + |y′

1 (σ) − y′

2 (σ)|]dσ. (2.20)

From (2.20), we observe that

u (t) ≤
1

1 − d

∫ t

0

{

du (s) + r (t, s)u (s) +

∫ s

0

r (s, σ)u (σ) dσ

}

ds. (2.21)

Now a suitable application of Lemma (with e(t, s) = k(t, s) = r(t, s) and c = 0) to (2.21)
yields

|y1 (t) − y2 (t)| + |y′

1 (t) − y′

2 (t)| ≤ 0,

which implies y1 (t) = y2 (t) for t ∈ R+. Thus there is at most one solution to the IVP
(1.5)−(1.6) on R+.

3. Boundedness and continuous dependence

In this section we shall study the boundedness of solutions of IVP (1.5)−(1.6) and
the continuous dependence of solutions of equation (1.5) on the given initial data and
the functions involved therein.

The following theorem contains the estimate on the solution of IVP (1.5)−(1.6).
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Theorem 3. Assume that the functions f, g in equation (1.5) satisfy the conditions

|f (t, y, z, u)| ≤ γ [|y| + |z|] + |u| , (3.1)

|g (t, s, y, z)| ≤ q (t, s) [|y| + |z|] , (3.2)

where γ is a nonnegative constant such that γ < 1 and for 0 ≤ s ≤ t<∞, q (t, s) , ∂

∂t
q (t, s)

∈ C
(

R2
+, R+

)

. If y(t), t ∈ R+ is any solution of IVP (1.5)−(1.6), then

|y (t)| + |y′ (t)| ≤
|y0|

1 − γ
exp

(
∫ t

0

[

γ

1 − γ
+ Ā (s)

]

ds

)

, (3.3)

for t ∈ R+, where

Ā (t) =
1

1 − γ

[

q (t, t) +

∫ t

0

{

q (t, σ) +
∂

∂t
q (t, σ)

}

dσ

]

. (3.4)

Proof. Using the fact that y(t) is a solution of IVP (1.5)−(1.6), the hypotheses and
following closely the proof of Theorem 2, we have

|y (t)| + |y′ (t)| ≤ |y0| +

∫ t

0

{

γ [|y (s)| + |y′ (s)|] +

∫ s

0

q (s, σ) [|y (σ)| + |y′ (σ)|]dσ

}

ds

+γ [|y (t)| + |y′ (t)|] +

∫ t

0

q (t, σ) [|y (σ)| + |y′ (σ)|]dσ. (3.5)

From (3.5), we observe that

|y (t)| + |y′ (t)| ≤
|y0|

1 − γ
+

1

1 − γ

∫ t

0

{

γ [|y (s)| + |y′ (s)|] + q (t, s) [|y (s)| + |y′ (s)|]

+

∫ s

0

q (s, σ) [|y (σ)| + |y′ (σ)|] dσ

}

ds. (3.6)

Now a suitable application of Lemma to (3.6) yields (3.3).

Remark 2. We note that the estimate obtained in (3.3) yields not only the bound on the

solution y(t) of IVP (1.5)−(1.6) but also the bound on y′ (t) for t ∈ R+. If the estimate

on the right hand side in (3.3) is bounded, then the solution y(t) of IVP (1.5)−(1.6) and
also y′ (t) are bounded on R+.

The next theorem deals with the continuous dependence of solutions of equation (1.5)

on given initial values.

Theorem 4. Assume that the functions f, g in equation (1.5) satisfy the conditions

(2.18), (2.19). Let y1 (t) and y2 (t) be the solutions of equation (1.5) with the given

initial conditions

y1 (0) = c1, (3.7)
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and

y2 (0) = c2, (3.8)

respectively, where c1, c2 are constants. Then

|y1 (t) − y2 (t)| + |y′

1 (t) − y′

2 (t)| ≤
|c1 − c2|

1 − d
exp

(
∫ t

0

[

d

1 − d
+ B (s)

]

ds

)

, (3.9)

for t ∈ R+, where

B (t) =
1

1 − d

[

r (t, t) +

∫ t

0

{

r (t, σ) +
∂

∂t
r (t, σ)

}

dσ

]

. (3.10)

Proof. Let u (t) = |y1 (t) − y2 (t)| + |y′

1 (t) − y′

2 (t)| for t ∈ R+. Following the proof of

Theorem 3 and using the hypotheses, we have

u (t) ≤ |c1 − c2| +

∫ t

0

{

d [|y1 (s) − y2 (s)| + |y′

1 (s) − y′

2 (s)|]

+

∫ s

0

r (s, σ) [|y1 (σ) − y2 (σ)| + |y′

1 (σ) − y′

2 (σ)|]dσ

}

ds

+d [|y1 (t) − y2 (t)| + |y′

1 (t) − y′

2 (t)|]

+

∫ t

0

r (t, σ) [|y1 (σ) − y2 (σ)| + |y′

1 (σ) − y′

2 (σ)|]dσ. (3.11)

From (3.11), we observe that

u (t) ≤
|c1 − c2|

1 − d
+

1

1 − d

∫ t

0

{

du (s) + r (t, s)u (s) +

∫ s

0

r (s, σ)u (σ) dσ

}

ds. (3.12)

Now an application of Lemma to (3.12) yields the bound in (3.9), which shows the

dependency of solutions of equation (1.5) on given initial values.

Next, we consider the IVP (1.5)−(1.6) and the corresponding IVP

z′ (t) = F

(

t, z (t) , z′ (t) ,

∫ t

0

G (t, σ, z (σ) , z′ (σ)) dσ

)

, z (0) = z0, (3.13)

for t ∈ R+, where F ∈ C (R+ × Rn × Rn × Rn, Rn) and for 0 ≤ s ≤ t < ∞, G ∈

C
(

R2
+ × Rn × Rn, Rn

)

.

The following theorem deals with the continuous dependence of solutions of IVP

(1.5)−(1.6) on the functions involved therein.

Theorem 5. Assume that the functions f, g in equation (1.5) satisfy the conditions
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(2.18), (2.19). Let z(t) be a solution of equation (3.13) and suppose that

|y0 − z0| +

∫ t

0

∣

∣

∣

∣

f

(

s, z (s) , z′ (s) ,

∫ s

0

g (s, σ, z (σ) , z′ (σ)) dσ

)

−F

(

s, z (s) , z′ (s) ,

∫ s

0

G (s, σ, z (σ) , z′ (σ)) dσ

)
∣

∣

∣

∣

ds

+

∣

∣

∣

∣

f

(

t, z (t) , z′ (t) ,

∫ t

0

g (t, σ, z (σ) , z′ (σ)) dσ

)

−F

(

t, z (t) , z′ (t) ,

∫ t

0

G (t, σ, z (σ) , z′ (σ)) dσ

)∣

∣

∣

∣

≤ ε, (3.14)

where y0, f, g and z0, F, G are as in IVP (1.5)−(1.6) and IVP (3.13), ε > 0 is an arbitrary
small constant. Then the solution y(t) of IVP (1.5)−(1.6) depends continuously on the
functions involved therein.

Proof. Let u (t) = |y (t) − z (t)| + |y′ (t) − z′ (t)| for t ∈ R+. From the hypotheses, we
have

u (t) ≤ |y0 − z0| +

∫ t

0

∣

∣

∣

∣

f

(

s, y (s) , y′ (s) ,

∫ s

0

g (s, σ, y (σ) , y′ (σ))dσ

)

−f

(

s, z (s) , z′ (s) ,

∫ s

0

g (s, σ, z (σ) , z′ (σ)) dσ

)∣

∣

∣

∣

ds

+

∫ t

0

∣

∣

∣

∣

f

(

s, z (s) , z′ (s) ,

∫ s

0

g (s, σ, z (σ) , z′ (σ)) dσ

)

−F

(

s, z (s) , z′ (s) ,

∫ s

0

G (s, σ, z (σ) , z′ (σ)) dσ

)∣

∣

∣

∣

ds

+

∣

∣

∣

∣

f

(

t, y (t) , y′ (t) ,

∫ t

0

g (t, σ, y (σ) , y′ (σ)) dσ

)

−f

(

t, z (t) , z′ (t) ,

∫ t

0

g (t, σ, z (σ) , z′ (σ)) dσ

)
∣

∣

∣

∣

+

∣

∣

∣

∣

f

(

t, z (t) , z′ (t) ,

∫ t

0

g (t, σ, z (σ) , z′ (σ)) dσ

)

−F

(

t, z (t) , z′ (t) ,

∫ t

0

G (t, σ, z (σ) , z′ (σ)) dσ

)∣

∣

∣

∣

≤ ε +
{

∫ t

0

d [|y (s) − z (s)| + |y′ (s) − z′ (s)|]

+

∫ s

0

r (s, σ) [|y (σ) − z (σ)| + |y′ (σ) − z′ (σ)|]dσ
}

ds

+d [|y (t) − z (t)| + |y′ (t) − z′ (t)|]

+

∫ t

0

r (t, σ) [|y (σ) − z (σ)| + |y′ (σ) − z′ (σ)|]dσ. (3.15)
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From (3.15), we observe that

u (t) ≤
ε

1 − d
+

1

1 − d

∫ t

0

{

du (s) + r (t, s)u (s) +

∫ s

0

r (s, σ)u (σ) dσ

}

ds. (3.16)

Now a suitable application of Lemma to (3.16) yields

u (t) ≤
ε

1 − d
exp

(
∫ t

0

[

d

1 − d
+ B (s)

]

ds

)

, (3.17)

for t ∈ R+, where B(t) is given by (3.10). From (3.17) it follows that the solutions of

IVP (1.5)−(1.6) depends continuously on the functions involved therein.

Remark 3. We note that our approach to the study of IVP (1.5)−(1.6) is different from

those in [3,5,7,10] and we believe that the results given here are of independent interest.

We also note that the idea employed here can be extended to the study of higher order

integrodifferential equation of the form

y(n) (t) = f
(

t, y (t) , . . . , y(n−1) (t) , y(n) (t) , Qy (t)
)

, (3.18)

with the given initial conditions

y(k) (0) = ck, k = 0, 1, . . . , n − 1, (3.19)

where

Qy (t) =

∫ t

0

g
(

t, σ, y (σ) , . . . , y(n−1) (σ) , y(n) (σ)
)

dσ. (3.20)

Naturally, these considerations will make the analysis more complicated. However, the

detailed discussion of such results is left to another place.
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