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LOGARITHMICALLY COMPLETE MONOTONICITY PROPERTIES

AND CHARACTERIZATIONS OF THE GAMMA FUNCTION

AI-JUN LI AND CHAO-PING CHEN

Abstract. In this paper, the logarithmically complete monotonic properties of the functions
Q

n

i=1
Γ(x−ai)

Γ(x−bi)
,Γ(x)αΓ

“

x −

P

n

i=1 ai

”

/
Q

n

i=1 Γ(x − ai), and xr(e/x)xΓ(x) are obtained. Some

characterizations of the gamma function are deduced.

1. Introduction

The classical gamma function is usually defined for Rez > 0 as

Γ(z) =

∫

∞

0

tz−1e−tdt.

It is one of the most important functions in analysis and its applications. The history
and development of this function are described in detail [11].

The psi or digamma function, the logarithmic derivative of the gamma function, and

the polygamma functions can be defined [20, p.16] as

ψ(x) =
Γ

′

(x)

Γ(x)
= −γ +

∫

∞

0

e−t − e−xt

1 − e−t
dt (1)

or

ψ(x) = −γ +
∞
∑

n=0

( 1

1 + n
−

1

x+ n

)

, (2)

ψ(k)(x) = (−1)k+1

∫

∞

0

tk

1 − e−t
e−xtdt (3)

or

ψ(k)(x) = (−1)k+1k!

∞
∑

i=0

1

(x + i)k+1
(4)
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for x > 0 and k ∈ N, where γ = 0.57721566490153286 . . . is the Euler-Mascheroni
constant.

A function f is said to be completely monotonic on an interval I if f has derivatives
of all orders on I which alternate successively in sign, that is

(−1)nf (n)(x) ≥ 0 (x ∈ I;n = 0, 1, 2, · · · ). (5)

If the inequality (5) is strict, then f is said to be strictly completely monotonic on I.
“Completely monotonic functions have remarkable applications in different branches.

For instance, they play a role in potential theory [8], probability theory [9, 15, 19],
physics [12], numerical and asymptotic analysis [17, 28], and combinatorics [6]. A detailed
collection of the most important properties of completely monotonic functions can be
found in [27, Chapter IV], and in an abstract in [7].” [3, p.446]

A positive function f is said be logarithmically completely monotonic on an interval
I if its logarithm ln f satisfies

(−1)n[ln f(x)](n) ≥ 0 (6)

for x ∈ I and n ∈ N := 1, 2, . . .. If inequality (6) is strict, then f is said to be strictly
logarithmically completely monotonic. The terminology “(strictly) logarithmically com-
pletely monotonic function” was introduced in [24]. It is also shown in this paper that
a (strictly) logarithmically completely monotonic function is also (strictly) completely
monotonic.

In the past many articles [1, 13, 18, 25] were published providing some different
properties for the ratio Γ(x+1)/Γ(x+ s), where x > 0 and s ∈ (0, 1). In 1986, J. Bustoz
and M.E.H. Ismail [10] established the function

p(x; a, b) =
Γ(x)Γ(x + a+ b)

Γ(x+ a)Γ(x+ b)
(a, b > 0),

which can be represented in terms of Gauss’ hypergeometric series

2F1(a, b, c; z) =

∞
∑

n=0

(a)n(b)n

(c)n

zn

n!
,

where (a)n = Γ(a+ n)/Γ(a), namely,

Γ(x)Γ(x + a+ b)

Γ(x + a)Γ(x+ b)
=2 F1(−a,−b, x; 1), (x > −a− b).

They showed that the function p(x; a, b) is completely monotonic on (0,∞). This gener-
alized a proposition of K. B. Stolarsky [26], who obtained that p is decreasing in x.

In 1997, H. Alzer [2] proved that the function

φ(x) =

n
∏

i=1

Γ(x+ ai)

Γ(x+ bi)
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is completely monotonic on (0,∞) with 0 ≤ a1 ≤ · · · ≤ an, 0 ≤ b1 ≤ · · · ≤ bn, and
∑k

i=1 ai ≤
∑k

i=1 bi for k = 1, . . . , n. This extended Bustoz’s result.
Let us extend ai, bi to all real numbers. For ai and bi (i = 1, . . . , n) are positive real

numbers, define

Φ(x) =

n
∏

i=1

Γ(x− ai)

Γ(x− bi)
.

Then we obtain that Φ(x) is logarithmically completely monotonic in the following the-

orems.

Theorem 1. Let ai and bi be positive real numbers, m = max{ai, bi}(i = 1, . . . , n)
and ai ≥ bi. Then the function Φ(x) is logarithmically completely monotonic on (m,∞).

Theorem 2. Let ai and bi be real numbers such that 0 ≤ a1 ≤ · · · ≤ an, 0 ≤ b1 ≤
· · · ≤ bn, m = max{ai, bi}(i = 1, . . . , n) and

∑k
i=1 ai ≥

∑k
i=1 bi for k = 1, . . . , n. Then

the function Φ(x) is logarithmically completely monotonic on (m,∞).

Corollary 1. The function

P (x; a, b) =2 F1(a, b, x; 1) =
Γ(x)Γ(x − a− b)

Γ(x− a)Γ(x − b)
(a, b > 0)

is strictly logarithmically completely monotonic on (a+ b,∞).

In 1995, L. Maligranda et al. [21] concluded that the function

x→ Γ(x)n−1Γ
(

x+

n
∑

i=1

ai

)

/

n
∏

i=1

Γ(x+ ai)

(ai > 0; i = 1, . . . , n) is decreasing on (0,∞). Subsequently, Alzer extended this result

in [2, p.385], and obtained the necessary and sufficient condition of the statement that
the function is strictly completely monotonic. The following theorem provides a slight

extension of Alzer’ result.

Theorem 3. Let α be a real number, ai (i = 1, . . . , n;n ≥ 2) be positive real numbers

and m =
∑n

i=1 ai. The function

x→ Γ(x)αΓ
(

x−

n
∑

i=1

ai

)

/

n
∏

i=1

Γ(x− ai)

is strictly logarithmically completely monotonic on (m,∞) if and only if α = n− 1.

In [2], Alzer proved that the function Fr(x) = xr(e/x)xΓ(x) is decreasing on (0,∞) if

and only if r ≤ 1/2. Moreover, Alzer obtained that the function g(x)(f1(x)−c) is strictly
completely monotonic on (0,∞) if and only if c ≤ 1/2, where g(x) is a strictly completely

monotonic function and f1(x) = x(ln(x) − ψ(x)). This extended a result of E. Muldoon
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[23], who proved the complete monotonicity for the special case g(x) = 1/x. In 2006,

Alzer and Berg [4] established the completely monotonicity of function [xa(e/x)xΓ(x)]b

for a, b ∈ R and b 6= 0.

Motivated by the results above, we establish several functions involving gamma and

polygamma functions, and investigate their logarithmically completely monotonic prop-

erties in the following theorems.

Lemma 1.[[2, p.374]] Let α be a real number. The function

fα(x) = xα(ln(x) − ψ(x))

is strictly completely monotonic on (0,∞) if and only if α ≤ 1.

Theorem 4. Let r be real number. The function

Fr(x) = xr(e/x)xΓ(x)

is strictly logarithmically completely monotonic on (0,∞) if and only if r ≤ 1
2 ; The

function (Fr(x))
−1 is strictly logarithmically completely monotonic on (0,∞) for r ≥ 1.

Corollary 2. The function

Fr,α(x) =
[

xr(e/x)xΓ(x)
]α

is logarithmically completely monotonic on (0,∞) if and only if r ≤ 1
2 and α > 0.

Finally, we study the problem of characterizing Γ(x) by means of the logarithmically

completely monotonic functions related to Γ(x). From Theorem 4, we obtain the results

as follows.

Theorem 5. If function x1/2(e/x)xf(x) is logarithmically completely monotonic on

(0,∞) and that f(xk) = Γ(xk) for each point xk in an increasing sequence {xk} ⊂ (0,∞)

for which
∑

(1/xk) diverges, then f(x) = Γ(x), 0 < x <∞.

Corollary 3. If function (f(x))−1 is logarithmically completely monotonic on (0,∞)

for n = 2, 3, . . . and that f(xk) = Γ(xk) for each point xk in an increasing sequence

{xk} ⊂ (0,∞) for which
∑

(1/xk) diverges, then f(x) = Γ(x), 0 < x <∞.

Remark 1. The function (Γ(x))−1 is logarithmically completely monotonic on (0,∞)

for n = 2, 3, . . ..

Moreover, the function Γ(x) can be characterized in the following way [5, p.14]:

f(x) = Γ(x) (0 < x <∞) if and only if

1. f(1) = 1, f(x+ 1) = xf(x), 0 < x <∞;

2. f(x) is defined and logarithmically convex for 0 < x <∞.
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Requirement (2) can be modified by logarithmically completely monotonicity properties.
The result is as follows.

Theorem 6. Suppose that

1. f(1) = 1, f(x+ 1) = xf(x), 0 < x <∞;

2. f(x) is logarithmically completely monotonic on (0,∞).

Then f(x) = Γ(x), 0 < x <∞.

2. Proofs of Theorems

Proof of Theorem 1. Taking logarithm and differentiation yields

(ln Φ(x))
′

=

n
∑

i=1

ψ(x− ai) −

n
∑

i=1

ψ(x− bi)

=

∫

∞

0

∑n
i=1 e

−(x−bi)t −
∑n

i=1 e
−(x−ai)t

1 − e−t
dt

=

∫

∞

0

∑n
i=1(e

bit − eait)

1 − e−t
e−xtdt (7)

Applying power series expansion of ex to (7), we get

(ln Φ(x))
′

=

∫

∞

0

∑n
i=1

(
∑

∞

k=1(b
k
i − ak

i ) tk

k!

)

1 − e−t
e−xtdt ≤ 0 (8)

By (3), we have

(−1)m(ln Φ(x))(m) = (−1)m
(

n
∑

i=1

ψ(m−1)(x− ai) −

n
∑

i=1

ψ(m−1)(x− bi)
)

=

∫

∞

0

∑n
i=1(e

ait − ebit)

1 − e−t
tm−1e−xtdt (9)

=

∫

∞

0

∑n
i=1

(
∑

∞

k=1(a
k
i − bki ) tk

k!

)

1 − e−t
tm−1e−xtdt

≥ 0

The proof is complete.

In order to prove Theorem 2 we need the following lemma [22, p.10].

Lemma 2. Let ai and bi (i = 1 . . . , n) be real numbers such that a1 ≤ · · · ≤ an,

b1 ≤ · · · ≤ bn, and
∑k

i=1 bi ≤
∑k

i=1 ai for k = 1, . . . , n. If the function f is increasing

and convex on R, then
n

∑

i=1

f(bi) ≤

n
∑

i=1

f(ai).
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Proof of Theorem 2. Since the function x → ext(t > 0) is increasing and convex

on R, we conclude from Lemma 2 that
∑n

i=1(e
ait − ebit) ≥ 0. Therefore (9) implies

(−1)m(ln Φ(x))(m) ≥ 0 (m = 1, 2, . . .)

for x > 0, and the function Φ(x) is logarithmically completely monotonic on (0,∞).

Proof of Corollary 1. With analogous proof method as Theorem 1, we get

(−1)n(lnP (x; a, b))(n)

= (−1)n
(

ψ(n−1)(x) + ψ(n−1)(x− a− b) − ψ(n−1)(x− a) − ψ(n−1)(x− b)

=

∫

∞

0

tn−1e−xt

1 − e−t

(

e(a+b)t + 1 − eat − ebt
)

dt

=

∫

∞

0

tn−1e−xt

1 − e−t

(

∞
∑

k=2

(

(a+ b)k − ak − bk
) tk

k!

)

dt > 0 (10)

Now we provide another method to prove Corollary 1.

For n ≥ 0, we have that

(lnP (x; a, b))(n+1) = ψ(n)(x) + ψ(n)(x− a− b) − ψ(n)(x− a) − ψ(n)(x− b)

= a

(

ψ(n)(x) − ψ(n)(x− a)

a
−
ψ(n)(x− b) − ψ(n)(x− b− a)

a

)

. (11)

By (4), y 7−→ ψ(n)(y) is strictly convex for odd n, the ratio

ψ(n)(x) − ψ(n)(x− a)

a
(12)

is increasing with y ∈ (a,∞). For even n, the function ψ(n)(x) is concave, and the

ratio (12) is decreasing. Thus, by (11) we conclude that the sign of (lnP (x; a, b))(n+1) is
(−1)n+1, for n ≥ 0 and x ∈ (a+ b,∞).

Proof of Theorem 3. Let

pα(x) = Γ(x)αΓ
(

x−

n
∑

i=1

ai

)

/ n
∏

i=1

Γ(x− ai).

It is obvious that pn−1(x) is strictly logarithmically completely monotonic on (m,∞)
from Theorem 2.

Next, we assume that pα(x) is strictly logarithmically completely monotonic on

(m,∞). Then, we get

∂

∂x
ln pα(x) = αψ(x) + ψ(x−m) −

n
∑

i=1

ψ(x− ai) ≤ 0. (13)
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This implies for all sufficiently large x:

α ≤

n
∑

i=1

ψ(x− ai)

ψ(x)
−
ψ(x−m)

ψ(x)
. (14)

Since pα is completely monotonic on (m,∞), we obtain

0 ≤ (pα(x))−2

[

pα(x)
∂2pα(x)

∂x2
−

(∂pα(x)

∂x

)2
]

= αψ
′

(x) + ψ
′

(x−m) −

n
∑

i=1

ψ
′

(x− ai).

Hence, we have for x > m:

n
∑

i=1

ψ
′

(x− ai)

ψ′(x)
−
ψ

′

(x−m)

ψ′(x)
≤ α. (15)

Since

lim
x→∞

ψ(x−A)/ψ(x) = lim
x→∞

ψ
′

(x−A)/ψ
′

(x) = 1 (A > 0),

we conclude from (14) and (15) that α = n− 1.

Proof of Theorem 4. Using Binet’s formula [14, p.18, (22)], we get

(

lnFr(x)
)
′

=
r

x
− lnx+ ψ(x)

=
r

x
− lnx+ lnx−

1

2x
+

∫

∞

0

(

1

2
+

1

t
−

1

1 − e−t

)

e−xtdt

=
r − 1/2

x
+

∫

∞

0

(

1

2
+

1

t
−

1

1 − e−t

)

e−xtdt

< 0. (16)

(16) follows from r ≤ 1
2 and the inequality

1

2
+

1

t
−

1

1 − e−t
=

2 − t− (2 + t)e−t

2t(1 − e−t)
< 0 (0 < t <∞). (17)

Indeed, let g(t) = 2 − t − (2 + t)e−t, we can get g
′′

(t) = −te−t < 0 and lim
t→0

g
′

(t) = 0.

This implies that g(t) is decreasing on (0,∞). Since lim
t→0

g(t) = 0, (17) holds.



320 AI-JUN LI AND CHAO-PING CHEN

Taking the nth derivative of lnFr(x), we obtain

(−1)n
(

lnFr(x)
)(n)

= (−1)n

[

(r − 1/2

x

)(n−1)

+

(
∫

∞

0

(1

2
+

1

t
−

1

1 − e−t

)

e−xtdt

)(n−1)
]

= −
(r − 1/2)(n− 1)!

xn
−

∫

∞

0

(

1

2
+

1

t
−

1

1 − e−t

)

tn−1e−xtdt

> 0 (r ≤
1

2
). (18)

Next, it is clear from (16) that

r < x(ln x− ψ(x)). (19)

By Lemma 1, we obtain that f1(x) = x(ln x − ψ(x)) is strictly decreasing on (0,∞).
Moreover,

lim
x→∞

f1(x) =
1

2
.

It follows from the representations

f1(x) = x lnx− xψ(x + 1) + 1

and

f1(x) =
1

2
+

1

12x
−

θ

120x3
(0 < θ < 1);

see [16, p.824]. Therefore, we conclude r ≤ 1
2 .

To prove the second part, a simple calculation shows that

(

ln(Fr(x))
−1

)
′

=

∫

∞

0

(

1

1 − e−t
−

1

t
− α

)

e−xtdt < 0

and

(−1)n
(

ln(Fr(x))
−1

)(n)
= −

∫

∞

0

(

1

1 − e−t
−

1

t
− α

)

tn−1e−xtdt > 0

for r ≥ 1. Since we write

f(t) =
1

1 − e−t
−

1

t
,

we have f(0+) = 1
2 , f(∞) = 1.

This completes the whole proof.

Proof of Theorem 5. It is shown by W. Feller [15, p.671] that two functions which
are completely monotonic on (0,∞) must be identical if they coincide at the points of
an increasing unbounded sequence {xk} where

∑

(1/xk) diverges.
Since the functions x1/2(e/x)xf(x) and x1/2(e/x)xΓ(x) are both (logarithmically)

completely monotonic on (0,∞), we get f(x) = Γ(x) easily.
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