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3—CONNECTEDNESS IN L—-TOPOLOGICAL SPACES

BO CHEN

Abstract. In this paper, a new kind of connectivity called f—connectedness in L—topo-
logical spaces is introduced by means of f—closed L—sets. Some fundamental properties
of f—connectedness are obtained. Especially, the famous K.Fan’s Theorem can be ex-
tended to L—topological spaces for f—connectedness.

1. Introduction

As well known, connectivity occupies very important place in topology. Many authors
have presented different kinds of connectivity in fuzzy setting([2], [6], [11], [13], [14]). In [3],
Balasubramanian introduced the concepts of f—open sets in L—topological spaces. Con-
sequently, Balasubramanian ([3],[4]) and Hanafy([8]) further developed different important
topological concepts such as separation and compactness by means of fuzzy f—open L—set
and fuzzy f—closed L—set.

In this paper, we shall introduce the concept of f—connectedness in L— topological spaces
by means of f—open L—sets. f—connectedness preserves many nice properties of connect-
edness in general topological spaces. Meanwhile, the famous K.Fan’s Theorem can be gener-
alized to L—topological spaces for f—connectedness.

2. Preliminaries

Throughout this paper, (L,V, A,) will denote a completely distributive De Morgan al-
gebra. For a nonempty set X, LX denotes the set of all L—fuzzy sets (L—sets for short) on X.
The smallest element and the largest element in L are denoted by 0 and 1 respectively.

A non-null element a in L is called \/ —irreducible element if a < b/ ¢ implies a < b or
a < c. The set of all \/ —irreducible elements in L is denoted by M*(L). It is clear that M* (LX) =
{Xela € M*(L)}.
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An L—topological space is a pair (L%, 5), where § is a subfamily of LX which contains 0 1
and is closed for any suprema and infima. ¢ is called an L—topology on X. Every member of
0 is called an open L—set and its quasicomplementation is called a closed L—set.

Definition 2.1.([3]) Let (L%, 5) be an L—topological space, A € L. Then A is said to be a
(1) B-opensetif A<cl(int(cl(A))).
(2) B-closed setif A=int(cl(int(A))).

BO(LX) and BC(LX) will always denote the family of all 8-open sets and B-closed sets respec-
tively.

Obviously, A € BO(LX) if and only if A" € BC(LX).
Definition 2.2.([3]) Let (L*X,5) be an L—topological space, A,B € LX. Let Bint(A) = V{B €

LX|B < A,B € BO(LN)}, Bcl(A) = N{B € L¥|A < B,B € BC(LX)}. Then Bint(A) and Bcl(A) are
called the f—interior and —closure of A respectively.

By Definition 2.1 and Definition 2.2, the following proposition is clear.

Proposition 2.1. Let (LX,8) be an L—topological space, A€ LX. Then

(1) AisaB-open setifandonlyif A= Bint(A).

(2) Aisa p-closed setifand only if A= Bcl(A).

(3) Bel(A) = (Bint(A)), int(A) = (Bel(A) .

Definition 2.3.([8]) Let (L%, ), (LY, u) be two L—topological spaces. A mapping f : (LX,5) —
(LY, ) is called

(1) B-continuous if f~1(A) € BOLX) for each A€ p.

(2) MpB—continuous if f~1(A) € BO(LX) for each A€ BO(LY).

Definition 2.4.([10],[15]) Let (L%, 5) be an L—topological space, A, B € LX. Then A, B are said
to be separated if c/(A) AB=BAcl(A) =0.

Definition 2.5.([10],[15]) Let (L%, ) be an L—topological space, A € LX. Ais called connected
if A can not be represented as a union of two non-null separated L—sets. (LX,§) is said to be
a connected L—topological space if A =1 is connected.

3. B—connectivity

Definition 3.1. Let (L*,5) be an L—topological space, A, B € LX. Then A, B are said to be
pB—separated if Bcl(A) AB=BA\Bcl(A)=0.
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By Definition 3.1, the following proposition is obvious.

Proposition 3.1. Let (L%, 5) be an L—topological space, A, B € LX. If A, B are —separated and
C<A,D < B, thenC, D are B—separated.

Definition 3.2. Let (L%, §) be an L—topological space, A € LX. Ais called f—connected if A can
not be represented as a union of two non-null f—separated L—sets. If A =1 is f—connected,
we call (LX,8) a f—connected L—topological space.

Remark. It is obvious that a f—connected L—set must be connected, but the converse is not
true as the following example.

Example 3.1. Let X = {x, y},L = {0, a, b, 1}, where 0 = 1,1’ = O,a/ = a,b’ =bh0<a<l0<b<
1, aAb=0,a\/ b=1,aand b are incomparable.Take A, B,C,D € LX as

Ax)=1, A(Q)=0;
B(x)=a, B(y)=b;
Cx)=a, C()=0;
D(x)=0, D(y)=bh.

Let (LX,5) be an L—topological space where § = {0, A,1}. Then B is a connected L—set. In
fact, B can only be expressed as the union of disjoint non-null L-sets C and D, i.e., A =
CVD,CAD=0,C+#0,D #0. By simple computation we can see that c/(C) =1 and so c/(C) A
D #0, i.e., C and D are not separated. Then B is connected. On the other hand, C and D are
B—closed L—sets, i.e., fcl(C) = C and Bcl(D) = D following from

C=zint(cl(int(C)=0,D=int(cl(int(D))) =0.

Hence Bcl(C)AND = CABcl(D) =0, i.e., Cand D are f—separated. Thus, B isnot f—connected.

Theorem 3.1. Let (LX,8) be an L—topological space, A € LX. Then the following statements are
equivalent:

(1) A is p—connected.

(2) IfC,D are B—separated in (L*,8) and A< C\/ D, then ANC=0or AND=0.

(3) IfC,D are B—separated in (LX,8) and A< C\/ D, then A< C or A< D.

Proof. (1) = (2) If C,D are f—separated in (LX,86) and A < CV/ D, then AAC and AAD are
B—separated by Proposition 3.1. From A= AA(CV D) = (AAC)V(AA D) and Ais f—connected,
one of AACand AA D is equal to 0.
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(2) = (3) Supposethat AAC=0,then A= AA(CVD)=(AANC)V (AAND) = AAD. There-
fore, A< D. Similarly, if AAD =0, then A<C.

(3) = (1) Suppose C, D are f—separated in (LX,5) and A= C\ D. Then A< Cor A< Dby
3).IfA<C,then D=DAA<DAC < DABcl(C)=0since C,D are f—separated. Similarly,
A = D implies C = 0. This shows that one of C and D equals to 0. So A can not be represented
as a union of two non-null S—separated L—sets. Hence, A is f—connected. O

Corollary 3.1. For each e € M* (LX), e is B—connected.

Theorem 3.2. Let (L%, 5) be an L—topological space, A € LX. Then the following statements are
equivalent:

(1) A is B—connected.

(2) There do not exist two B—closed L—sets C, D such that
CNA#0,DN\A#0,A<C\/DandC/\D/\ A=0.
(3) There do not exist two B—closed L—sets C, D such that

AZC,A£D,A<C\/DandC/\D/\ A=0.

Proof. (1) = (2) Suppose that A is f—connected and there exist two f—closed L—subsets C, D
such that

CANA#0,DNA#0,A<C\/DandCAD/\ A=0.
Then A= AN(CVD) = (AANC)V(AAD). We will prove AAC and AA D are f—separated
which shows that A is not f—connected. In fact, we can get the conclusion from

Bcl(ANC) NAAD) < pel(C) NAAD)=CADA\A=0

and

ANCAPcl(AND)<s ANCN\PclD)=CADN\A=0.

(2) = (3) Suppose that there exist two S—closed L—subsets C,D such that A £ C, A £
D,A<CVDand CADAA=0.We can easily get that CA\ A # 0,D/\ A # 0 which is a contra-
diction.

(3) = (1) Suppose A is not f—connected. Then there exist two non-null S—separated
L—subsets E and F such that A= E\/ F. Put C = Bcl(E),D = Bcl(F), then C and D are two
B—closed L—sets satisfying

A=E\/F=<Bcl(E)\/Bcl(F)=C\/D
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and

CAD/\A=BclE) \Bcl(F) \A
= Bcl(E) \ Bcl(F) \(E\/ F)
= (Bel(B) \ Bel(F) AE)\/ (Bel(E) \ Bel(F) \ F)
= (Bcl(F) AB)\/(F \ Bcl(E))

Then CA DA A =0. Moreover we have that A £ Cand A £ D. Infact,if A< C,then DAA=
DAAANC)=0.So, F=FA\A< Bcl(F)NA= DA\ A=0which is a contradiction. Similarly, we
can get A £ D. But the above results contradict (3). U

Corollary 3.2. Let (LX,5) be an L—topological space. Then the following statements are equiv-
alent:

(1) (LX,6) is B—connected.

(2) IfC,D are p—open L—sets such thatC\/ D=1 and CAD =0, thenC=0o0rD =0.

(3) IfC,D are B—closed L—sets such thatC\/D=1and CAD =0, thenC=0or D =0.

Theorem 3.3. Let (LX,5) be an L—topological space, A€ LX. Then A is B—connected if and only
if for any pair of non-null\/ —irreducible elements a, b in A, there exists a 3—connected L—set
B such thata,b < B < A.

Proof. The necessity is obvious if we take B = A.

Conversely, suppose that A is not f—connected, then there exist two f—closed L—sets
C, D such that
A2C,AZD,A<C\/DandC/A\D/\A=0.

Take two non-null \/ —irreducible elements a, b in A such that a £ C and b £ D. Then for each
L—set B such that a,b < B < A, we get that

BZC,BZD,B=<C\/DandC/AD/\B=0.

This shows that B is not f—connected by Theorem 3.2 which is a contradiction. U

Theorem 3.4. Let (L*,5) be an L—topological space, A€ LX is B—connected. If A< B < Bcl(A),
then B is B—connected.
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Proof. Suppose there exist C,D € LX such that B = C\/ D and Bcl(C)AD = CA\Bcl(D) = 0.
Put E= AANC,F = AAD. Then A= EVF and E, F are f— separated by Proposition 3.1. It
follows that E =0 or F =0 for Ais f—connected. If E=0, then A= F = AAD < D. Therefore,
C=CAPBcl(A) = CAPBcl(D)=0,i.e., C=0. Analogously, F = 0 will imply D = 0. This shows
that A is not f—connected in LX.

Corollary 3.3. Let (L%,5) be an L—topological space. If A € L*X is B—connected, then so is
Bel(A).

Theorem 3.5. Let (L%, ) be an L—topological space, {A;} e T be a family of B— connected L sets.

If there exists s € T such that As and A, are not f—separated for each t # s, then A= \/ A, is
teT

B—connected.

Proof. Suppose A= \/ A, isnot f—connected. Then there exist C,D € L suchthat A=C\ D
teT
and Bcl(C)AND = CABcl(D) =0.Let C; = A;AC and D; = A; A\ D for each t € T. Then A; =

C/\V D;and Bcl(COAND;=C;\Bcl(D;) =0foreach t € T. Since A, is f—connected, C; =0 or
D; =0, therefore, A; =C; < Cor A; = D; < D. Especially, A; = C; < C or A; = D; < D. Without
loss of generality, we may assume that A = C; < C. Then for each ¢ # s, A; < C. In fact, if
A; £C,then A, <D and

Ar \ Bel(As) = Ay \ Bel(Cs) = D\ Bel(C) =0,

Bel(A) N\ As = Bel(A) \ Cs < Bel(D) AC =0.

This shows that A; and A; are f—separated for each ¢ # s which is a contradiction. So VV A; <
€T
CandD=DA(V A) <DAC=0.Wegetthat A= \/ A;is f—connected.
€T €T

Corollary 3.4. Let (L%, 5) be an L—topological space, {A;} e T be a family of B—connected L—sets.

If N At #0, then A= \/ A, is f—connected.
teT teT

Definition 3.3. Let (LX,5) be an L-topological space, A € LX. A is called a f—connected
component of (L, ) if A is a maximal f—connected L—set, i.e., A = B for each f—connected
L—set B in (L%, 8) such that A< B.

Theorem 3.6. Let (L%, 5) be an L—topological space, then

(1) Everyelementee M*(LX) is contained in a f—connected component of (L%, 5).

(2) The join of all the B—connected components of (L*,8) equals to 1.
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(3) The intersection of different f—connected components of (LX,8) is empty.

(4) Each B—connected component of (LX,0) is a B—closed L—set.

Proof. (1) For each e € M* (LX), define «f = {A(e) € LX|A(e) is B—connected such that e <
A(e)}. Then o # @ by Corollary 3.1. Let A=\, then A is f—connected. Clearly, A is a
B—connected component.

(2) The proof follows from (1) and the fact that \/ M* (LX) = 1.

(3) Suppose A and B are different f—connected components and AA B # @. Then A\ B

is B—connected by Corollary 3.4 which is a contradiction.

(4) Suppose A is a f—connected component of (LX, ), then Bcl(A) is f—connected and
A < Bcl(A). Therefore, A= fcl(A) by Definition 3.3, thatis, Ais f—closed. O

Theorem 3.7. Let (LX,6), (LY, ) be two L—topological spaces and f : LX — LY be an M-
continuous order homomorphism. If A is B—connected in (L%, 8), then f(A) is B—connected in
(LY, .

Proof. Suppose f(A) is not f—connected. Then there are two f—closed L—sets C,D € LY such
that

fAAZC,f(AZD,f(A)<C\/Dand C/A\DA f(A) =0.

So,
AgfHO,A2 D), A eV D) = OV D)

and

FTONFTOINA< FTHONTTOINFHfA)
= fTCADN\f(A)
= g_

Since f is Mf—continuous, f~!(C) and f~!(D) are two - closed L-sets in (LX,5). This
shows that A is not f—connected which is a contradiction. Therefore f(A) is f—connected in
(LY, .

Corollary 3.5. Let (LX,5),(LY,u) be two L—topological spaces and f : LX — LY be an onto
M B—continuous order homomorphism. If (LX,8) is a f—connected L—topological space, then

sois (LY, ).
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Now, we will extend the K. Fan’s Theorem to L—topological space for f—connectedness.

Definition 3.4. Let (L%,5) be an L—topological space and e € M*(LX). Then P € BC(L¥) is
called f—closed remote neighborhood of e if e £ P. The set of all f—closed remote neighbor-
hood of e will be denoted by fn(e).

Theorem 3.8. Let (LX,5) be an L—topological space and A € LX. Then A is f—connected if
and only if for each pair a,b in M*(A) and each B—-closed remote neighborhood mapping P :
M*(A) — U{pn(e)le e M*(A)} where P(e) € fn(e) for each e € M* (A), there exists finite number
of pointse; = a,es,...,e, =b in M*(A) such that AZ P(e;)\V P(ej+1),i=1,2,...,n—1.

Proof. Sufficiency. Suppose that A is not —connected. Then there exist two non-null f—sep-
arated L—sets B, C such that A= B\/ C. Define the mapping P : M* (A) — U{Bn(e)le € M*(A)}
as the following:
1(0), ife<B,
Ple) = Bcl(C), ife
Bcl(B),ife<C.

We have e £ P(e) since fcl(B) AC =B A\Bcl(C)=0.For P(e) is a f—closed L—set, P(e) € fn(e)
for each e € M*(A). Take the points a,b € M*(A) such that a < B,b < C. Since for arbi-
trary finite points e; = a, e», -+, e, = b there is only one of e; < B and e; < C hold, we have
P(e;) = Bcl(B) or P(e;) = Bcl(C). But P(e;) = Bel(C) and P(e,) = Bcl(B), hence there exists
Jj(1 = j = n-1)such that P(e;) = fcl(C) and P(ej+1) = fcl(B). This shows that A= BV C <
P(ej)\/ P(ej+1) which is a contradiction.

Necessity. Suppose that condition of theorem is not true, i.e., there are two points a, b €
M*(A) and a f—closed remote neighborhood mapping P : M*(A) — U{fn(e)le € M*(A)} such
that A £ P(e;)V P(ej+1),(i = 1,2,...,n—1) is not true for arbitrary finite points ey,...,e, €
M*(A). For the sake of convenience, we follow the agreement that a and b are f— linked
if there exist finite points e; = a,ey,...,e, = b in M*(A) such that A £ P(e;)\/ P(ei+1),i =
1,2,...,n—1. Otherwise, a and b are not f— linked. Let

®={ee M"(A)|aand e are f—linked},

¥ ={ee M*(A)|a and e are not f—linked},

B=\/o,C=\/V.

Obviously, a and a are f—linked for that a £ P(a) imply A £ P(a). So, a € ®,a < B. By the
hypothesis, a and b are not — linked, then b € ¥ and b < C. Hence, B # 0,C # 0. Since for
eachee M*(A),ec ®oree ¥, we have A= B\/ C. We will prove fcl(B)AC = BABcl(C)=0.
Hence, A is not f—connected which is a contradiction.
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In fact, suppose Bcl(B) AC # 0 and take point d < Bcl(B) \C. By d < Bcl(B), we have

d £ P(d) and B £ P(d). So there is e € ® such that e £ P(d). Hence e £ P(d)\/ P(e) and
e< B < A. . Thus, AZ P(d)\ P(e). For e and a are — linked, then a and d are - linked. On
the other hand, by d < C, we have C £ P(d). There exists A € ¥ such that A £ P(d). Hence
A £ P(d)\VP(A) and A < C < A. Therefore, A £ P(d)\/ P(A). By d and a are f—linked, we have
a and A are B-linked. This contradicts that A € W. Thus, Bcl(B) AC = 0. Similarly, we can
prove BA Bcl(C) =0.

o~
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(16]
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