Available online at http://journals.math.tku.edu.tw/index.php/TJM

β -CONNECTEDNESS IN *L*-TOPOLOGICAL SPACES

BO CHEN

Abstract. In this paper, a new kind of connectivity called β -connectedness in *L*-topological spaces is introduced by means of β -closed *L*-sets. Some fundamental properties of β -connectedness are obtained. Especially, the famous K.Fan's Theorem can be extended to *L*-topological spaces for β -connectedness.

1. Introduction

As well known, connectivity occupies very important place in topology. Many authors have presented different kinds of connectivity in fuzzy setting([2], [6], [11], [13], [14]). In [3], Balasubramanian introduced the concepts of β -open sets in *L*-topological spaces. Consequently, Balasubramanian ([3],[4]) and Hanafy([8]) further developed different important topological concepts such as separation and compactness by means of fuzzy β -open *L*-set and fuzzy β -closed *L*-set.

In this paper, we shall introduce the concept of β -connectedness in *L*- topological spaces by means of β -open *L*-sets. β -connectedness preserves many nice properties of connectedness in general topological spaces. Meanwhile, the famous K.Fan's Theorem can be generalized to *L*-topological spaces for β -connectedness.

2. Preliminaries

Throughout this paper, $(L, \lor, \land, ')$ will denote a completely distributive *De Morgan* algebra. For a nonempty set *X*, L^X denotes the set of all *L*-fuzzy sets (*L*-sets for short) on *X*. The smallest element and the largest element in L^X are denoted by $\underline{0}$ and $\underline{1}$ respectively.

A non-null element *a* in *L* is called $\lor -i$ rreducible element if $a \le b \lor c$ implies $a \le b$ or $a \le c$. The set of all $\lor -i$ rreducible elements in *L* is denoted by $M^*(L)$. It is clear that $M^*(L^X) = \{x_\alpha | \alpha \in M^*(L)\}$.

Received November 29, 2010.

²⁰⁰⁰ Mathematics Subject Classification. 54A40, 54D35.

Key words and phrases. β -open *L*-set, β -closed *L*-set, β -separated, β -connectedness, *L*-topological space.

BO CHEN

An *L*-topological space is a pair (L^X, δ) , where δ is a subfamily of L^X which contains $\underline{0} \underline{1}$ and is closed for any suprema and infima. δ is called an *L*-topology on *X*. Every member of δ is called an open *L*-set and its quasicomplementation is called a closed *L*-set.

Definition 2.1.([3]) Let (L^X, δ) be an *L*-topological space, $A \in L^X$. Then *A* is said to be a

(1) β -open set if $A \le cl(int(cl(A)))$.

(2) β -closed set if $A \ge int(cl(int(A)))$.

 $\beta O(L^X)$ and $\beta C(L^X)$ will always denote the family of all β -open sets and β -closed sets respectively.

Obviously, $A \in \beta O(L^X)$ if and only if $A' \in \beta C(L^X)$.

Definition 2.2.([3]) Let (L^X, δ) be an *L*-topological space, $A, B \in L^X$. Let $\beta int(A) = \bigvee \{B \in L^X | B \leq A, B \in \beta O(L^X)\}$, $\beta cl(A) = \bigwedge \{B \in L^X | A \leq B, B \in \beta C(L^X)\}$. Then $\beta int(A)$ and $\beta cl(A)$ are called the β -interior and β -closure of *A* respectively.

By Definition 2.1 and Definition 2.2, the following proposition is clear.

Proposition 2.1. Let (L^X, δ) be an L-topological space, $A \in L^X$. Then

- (1) A is a β -open set if and only if $A = \beta int(A)$.
- (2) A is a β -closed set if and only if $A = \beta cl(A)$.
- (3) $\beta cl(A') = (\beta int(A))', \beta int(A') = (\beta cl(A))'.$

Definition 2.3.([8]) Let (L^X, δ) , (L^Y, μ) be two *L*-topological spaces. A mapping $f : (L^X, \delta) \rightarrow (L^Y, \mu)$ is called

- (1) β -continuous if $f^{-1}(A) \in \beta O(L^X)$ for each $A \in \mu$.
- (2) $M\beta$ -continuous if $f^{-1}(A) \in \beta O(L^X)$ for each $A \in \beta O(L^X)$.

Definition 2.4.([10],[15]) Let (L^X, δ) be an *L*-topological space, $A, B \in L^X$. Then *A*, *B* are said to be separated if $cl(A) \land B = B \land cl(A) = \underline{0}$.

Definition 2.5.([10],[15]) Let (L^X, δ) be an *L*-topological space, $A \in L^X$. *A* is called connected if *A* can not be represented as a union of two non-null separated *L*-sets. (L^X, δ) is said to be a connected *L*-topological space if $A = \underline{1}$ is connected.

3. β -connectivity

Definition 3.1. Let (L^X, δ) be an *L*-topological space, $A, B \in L^X$. Then A, B are said to be β -separated if $\beta cl(A) \land B = B \land \beta cl(A) = 0$.

By Definition 3.1, the following proposition is obvious.

Proposition 3.1. Let (L^X, δ) be an *L*-topological space, $A, B \in L^X$. If A, B are β -separated and $C \leq A, D \leq B$, then C, D are β -separated.

Definition 3.2. Let (L^X, δ) be an *L*-topological space, $A \in L^X$. *A* is called β -connected if *A* can not be represented as a union of two non-null β -separated *L*-sets. If $A = \underline{1}$ is β -connected, we call (L^X, δ) a β -connected *L*-topological space.

Remark. It is obvious that a β -connected *L*-set must be connected, but the converse is not true as the following example.

Example 3.1. Let $X = \{x, y\}, L = \{0, a, b, 1\}$, where $0' = 1, 1' = 0, a' = a, b' = b, 0 < a < 1, 0 < b < 1, a \land b = \underline{0}, a \lor b = \underline{1}, a \text{ and } b$ are incomparable. Take $A, B, C, D \in L^X$ as

$$A(x) = 1, \quad A(y) = 0;$$

 $B(x) = a, \quad B(y) = b;$
 $C(x) = a, \quad C(y) = 0;$
 $D(x) = 0, \quad D(y) = b.$

Let (L^X, δ) be an *L*-topological space where $\delta = \{\underline{0}, A, \underline{1}\}$. Then *B* is a connected *L*-set. In fact, *B* can only be expressed as the union of disjoint non-null *L*-sets *C* and *D*, i.e., $A = C \lor D, C \land D = \underline{0}, C \neq \underline{0}, D \neq \underline{0}$. By simple computation we can see that $cl(C) = \underline{1}$ and so $cl(C) \land D \neq \underline{0}$, i.e., *C* and *D* are not separated. Then *B* is connected. On the other hand, *C* and *D* are β -closed *L*-sets, i.e., $\beta cl(C) = C$ and $\beta cl(D) = D$ following from

$$C \ge int(cl(int(C))) = \underline{0}, D \ge int(cl(int(D))) = \underline{0}.$$

Hence $\beta cl(C) \wedge D = C \wedge \beta cl(D) = 0$, i.e., *C* and *D* are β -separated. Thus, *B* is not β -connected.

Theorem 3.1. Let (L^X, δ) be an L-topological space, $A \in L^X$. Then the following statements are equivalent:

- (1) A is β -connected.
- (2) If C, D are β -separated in (L^X, δ) and $A \leq C \lor D$, then $A \land C = \underline{0}$ or $A \land D = \underline{0}$.
- (3) If C, D are β -separated in (L^X, δ) and $A \leq C \lor D$, then $A \leq C$ or $A \leq D$.

Proof. (1) \Rightarrow (2) If *C*, *D* are β -separated in (L^X, δ) and $A \leq C \lor D$, then $A \land C$ and $A \land D$ are β -separated by Proposition 3.1. From $A = A \land (C \lor D) = (A \land C) \lor (A \land D)$ and *A* is β -connected, one of $A \land C$ and $A \land D$ is equal to $\underline{0}$.

(2) \Rightarrow (3) Suppose that $A \land C = \underline{0}$, then $A = A \land (C \lor D) = (A \land C) \lor (A \land D) = A \land D$. Therefore, $A \le D$. Similarly, if $A \land D = \underline{0}$, then $A \le C$.

(3) \Rightarrow (1) Suppose *C*, *D* are β -separated in (L^X, δ) and $A = C \lor D$. Then $A \le C$ or $A \le D$ by (3). If $A \le C$, then $D = D \land A \le D \land C \le D \land \beta c l(C) = \underline{0}$ since *C*, *D* are β -separated. Similarly, $A \le D$ implies $C = \underline{0}$. This shows that one of *C* and *D* equals to $\underline{0}$. So *A* can not be represented as a union of two non-null β -separated *L*-sets. Hence, *A* is β -connected.

Corollary 3.1. For each $e \in M^*(L^X)$, e is β -connected.

Theorem 3.2. Let (L^X, δ) be an *L*-topological space, $A \in L^X$. Then the following statements are equivalent:

- (1) A is β -connected.
- (2) There do not exist two β -closed L-sets C, D such that

$$C \bigwedge A \neq \underline{0}, D \bigwedge A \neq \underline{0}, A \leq C \bigvee D \text{ and } C \bigwedge D \bigwedge A = \underline{0}.$$

(3) There do not exist two β -closed L-sets C, D such that

$$A \not\leq C, A \not\leq D, A \leq C \bigvee D \text{ and } C \bigwedge D \bigwedge A = \underline{0}.$$

Proof. (1) \Rightarrow (2) Suppose that *A* is β -connected and there exist two β -closed *L*-subsets *C*, *D* such that

$$C \bigwedge A \neq \underline{0}, D \bigwedge A \neq \underline{0}, A \leq C \bigvee D \text{ and } C \bigwedge D \bigwedge A = \underline{0}.$$

Then $A = A \land (C \lor D) = (A \land C) \lor (A \land D)$. We will prove $A \land C$ and $A \land D$ are β -separated which shows that *A* is not β -connected. In fact, we can get the conclusion from

$$\beta c l(A \bigwedge C) \bigwedge (A \bigwedge D) \leq \beta c l(C) \bigwedge (A \bigwedge D) = C \bigwedge D \bigwedge A = \underline{0}$$

and

$$A \bigwedge C \bigwedge \beta c l(A \bigwedge D) \le A \bigwedge C \bigwedge \beta c l(D) = C \bigwedge D \bigwedge A = \underline{0}.$$

(2) \Rightarrow (3) Suppose that there exist two β -closed *L*-subsets *C*, *D* such that $A \not\leq C, A \not\leq D$, $A \leq C \lor D$ and $C \land D \land A = \underline{0}$. We can easily get that $C \land A \neq \underline{0}, D \land A \neq \underline{0}$ which is a contradiction.

(3) \Rightarrow (1) Suppose *A* is not β -connected. Then there exist two non-null β -separated *L*-subsets *E* and *F* such that $A = E \lor F$. Put $C = \beta cl(E), D = \beta cl(F)$, then *C* and *D* are two β -closed *L*-sets satisfying

$$A = E \bigvee F \le \beta c l(E) \bigvee \beta c l(F) = C \bigvee D$$

$$\begin{split} C \bigwedge D \bigwedge A &= \beta c l(E) \bigwedge \beta c l(F) \bigwedge A \\ &= \beta c l(E) \bigwedge \beta c l(F) \bigwedge (E \bigvee F) \\ &= (\beta c l(E) \bigwedge \beta c l(F) \bigwedge E) \bigvee (\beta c l(E) \bigwedge \beta c l(F) \bigwedge F) \\ &= (\beta c l(F) \bigwedge E) \bigvee (F \bigwedge \beta c l(E)) \\ &= \underline{0} \bigvee \underline{0} \\ &= \underline{0}. \end{split}$$

Then $C \land D \land A = \underline{0}$. Moreover we have that $A \not\leq C$ and $A \not\leq D$. In fact, if $A \leq C$, then $D \land A = D \land (A \land C) = \underline{0}$. So, $F = F \land A \leq \beta c l(F) \land A = D \land A = \underline{0}$ which is a contradiction. Similarly, we can get $A \not\leq D$. But the above results contradict (3).

Corollary 3.2. Let (L^X, δ) be an *L*-topological space. Then the following statements are equivalent:

- (1) (L^X, δ) is β -connected.
- (2) If C, D are β -open L-sets such that $C \lor D = \underline{1}$ and $C \land D = \underline{0}$, then $C = \underline{0}$ or $D = \underline{0}$.

(3) If C, D are β -closed L-sets such that $C \lor D = \underline{1}$ and $C \land D = \underline{0}$, then $C = \underline{0}$ or $D = \underline{0}$.

Theorem 3.3. Let (L^X, δ) be an L-topological space, $A \in L^X$. Then A is β -connected if and only if for any pair of non-null \bigvee -irreducible elements a, b in A, there exists a β -connected L-set B such that $a, b \leq B \leq A$.

Proof. The necessity is obvious if we take B = A.

Conversely, suppose that *A* is not β -connected, then there exist two β -closed *L*-sets *C*, *D* such that

$$A \not\leq C, A \not\leq D, A \leq C \bigvee D$$
 and $C \bigwedge D \bigwedge A = \underline{0}$.

Take two non-null \bigvee –irreducible elements a, b in A such that $a \not\leq C$ and $b \not\leq D$. Then for each L–set B such that $a, b \leq B \leq A$, we get that

$$B \not\leq C, B \not\leq D, B \leq C \bigvee D$$
 and $C \bigwedge D \bigwedge B = \underline{0}$.

This shows that *B* is not β -connected by Theorem 3.2 which is a contradiction.

Theorem 3.4. Let (L^X, δ) be an *L*-topological space, $A \in L^X$ is β -connected. If $A \leq B \leq \beta cl(A)$, then *B* is β -connected.

BO CHEN

Proof. Suppose there exist $C, D \in L^X$ such that $B = C \lor D$ and $\beta cl(C) \land D = C \land \beta cl(D) = \underline{0}$. Put $E = A \land C, F = A \land D$. Then $A = E \lor F$ and E, F are β - separated by Proposition 3.1. It follows that $E = \underline{0}$ or $F = \underline{0}$ for A is β -connected. If $E = \underline{0}$, then $A = F = A \land D \le D$. Therefore, $C = C \land \beta cl(A) \le C \land \beta cl(D) = \underline{0}$, i.e., $C = \underline{0}$. Analogously, $F = \underline{0}$ will imply $D = \underline{0}$. This shows that A is not β -connected in L^X .

Corollary 3.3. Let (L^X, δ) be an L-topological space. If $A \in L^X$ is β -connected, then so is $\beta cl(A)$.

Theorem 3.5. Let (L^X, δ) be an L-topological space, $\{A_t\}_{t \in T}$ be a family of β -connected L-sets. If there exists $s \in T$ such that A_s and A_t are not β -separated for each $t \neq s$, then $A = \bigvee_{t \in T} A_t$ is β -connected.

Proof. Suppose $A = \bigvee_{t \in T} A_t$ is not β -connected. Then there exist $C, D \in L^X$ such that $A = C \lor D$ and $\beta cl(C) \land D = C \land \beta cl(D) = \underline{0}$. Let $C_t = A_t \land C$ and $D_t = A_t \land D$ for each $t \in T$. Then $A_t = C_t \lor D_t$ and $\beta cl(C_t) \land D_t = C_t \land \beta cl(D_t) = \underline{0}$ for each $t \in T$. Since A_t is β -connected, $C_t = \underline{0}$ or $D_t = \underline{0}$, therefore, $A_t = C_t \leq C$ or $A_t = D_t \leq D$. Especially, $A_s = C_s \leq C$ or $A_s = D_s \leq D$. Without loss of generality, we may assume that $A_s = C_s \leq C$. Then for each $t \neq s, A_t \leq C$. In fact, if $A_t \notin C$, then $A_t \leq D$ and

$$A_t \bigwedge \beta c l(A_s) = A_t \bigwedge \beta c l(C_s) \le D \bigwedge \beta c l(C) = \underline{0},$$

$$\beta c l(A_t) \bigwedge A_s = \beta c l(A_t) \bigwedge C_s \leq \beta c l(D) \bigwedge C = \underline{0}$$

This shows that A_s and A_t are β -separated for each $t \neq s$ which is a contradiction. So $\bigvee_{t \in T} A_t \leq C$ and $D = D \land (\bigvee_{t \in T} A_t) \leq D \land C = \underline{0}$. We get that $A = \bigvee_{t \in T} A_t$ is β -connected.

Corollary 3.4. Let (L^X, δ) be an L-topological space, $\{A_t\}_{t \in T}$ be a family of β -connected L-sets. If $\bigwedge_{t \in T} A_t \neq \underline{0}$, then $A = \bigvee_{t \in T} A_t$ is β -connected.

Definition 3.3. Let (L^X, δ) be an *L*-topological space, $A \in L^X$. *A* is called a β -connected component of (L^X, δ) if *A* is a maximal β -connected *L*-set, i.e., A = B for each β -connected *L*-set *B* in (L^X, δ) such that $A \leq B$.

Theorem 3.6. Let (L^X, δ) be an *L*-topological space, then

- (1) Every element $e \in M^*(L^X)$ is contained in a β -connected component of (L^X, δ) .
- (2) The join of all the β -connected components of (L^X, δ) equals to <u>1</u>.

- (3) The intersection of different β -connected components of (L^X, δ) is empty.
- (4) Each β -connected component of (L^X, δ) is a β -closed L-set.

Proof. (1) For each $e \in M^*(L^X)$, define $\mathscr{A} = \{A(e) \in L^X | A(e) \text{ is } \beta - \text{connected such that } e \le A(e)\}$. Then $\mathscr{A} \neq \emptyset$ by Corollary 3.1. Let $A = \bigvee \mathscr{A}$, then *A* is β -connected. Clearly, *A* is a β -connected component.

(2) The proof follows from (1) and the fact that $\bigvee M^*(L^X) = \underline{1}$.

(3) Suppose *A* and *B* are different β -connected components and $A \land B \neq \emptyset$. Then $A \lor B$ is β -connected by Corollary 3.4 which is a contradiction.

(4) Suppose *A* is a β -connected component of (L^X, δ) , then $\beta cl(A)$ is β -connected and $A \leq \beta cl(A)$. Therefore, $A = \beta cl(A)$ by Definition 3.3, that is, *A* is β -closed.

Theorem 3.7. Let $(L^X, \delta), (L^Y, \mu)$ be two *L*-topological spaces and $f : L^X \to L^Y$ be an $M\beta$ continuous order homomorphism. If *A* is β -connected in (L^X, δ) , then f(A) is β -connected in (L^Y, μ) .

Proof. Suppose f(A) is not β -connected. Then there are two β -closed L-sets $C, D \in L^Y$ such that

$$f(A) \not\leq C, f(A) \not\leq D, f(A) \leq C \bigvee D \text{ and } C \bigwedge D \bigwedge f(A) = \underline{0}.$$

So,

$$A \not\leq f^{-1}(C), A \not\leq f^{-1}(D), A \leq f^{-1}(C \bigvee D) = f^{-1}(C) \bigvee f^{-1}(D)$$

and

$$f^{-1}(C) \bigwedge f^{-1}(D) \bigwedge A \leq f^{-1}(C) \bigwedge f^{-1}(D) \bigwedge f^{-1}(f(A))$$
$$= f^{-1}(C \bigwedge D \bigwedge f(A))$$
$$= \underline{0}.$$

Since *f* is $M\beta$ -continuous, $f^{-1}(C)$ and $f^{-1}(D)$ are two β - closed *L*-sets in (L^X, δ) . This shows that *A* is not β -connected which is a contradiction. Therefore f(A) is β -connected in (L^Y, μ) .

Corollary 3.5. Let $(L^X, \delta), (L^Y, \mu)$ be two *L*-topological spaces and $f : L^X \to L^Y$ be an onto $M\beta$ -continuous order homomorphism. If (L^X, δ) is a β -connected *L*-topological space, then so is (L^Y, μ) .

BO CHEN

Now, we will extend the K. Fan's Theorem to *L*-topological space for β -connectedness.

Definition 3.4. Let (L^X, δ) be an *L*-topological space and $e \in M^*(L^X)$. Then $P \in \beta C(L^X)$ is called β -closed remote neighborhood of *e* if $e \not\leq P$. The set of all β -closed remote neighborhood of *e* will be denoted by $\beta \eta(e)$.

Theorem 3.8. Let (L^X, δ) be an L-topological space and $A \in L^X$. Then A is β -connected if and only if for each pair a, b in $M^*(A)$ and each β -closed remote neighborhood mapping P: $M^*(A) \rightarrow \bigcup \{\beta\eta(e) | e \in M^*(A)\}$ where $P(e) \in \beta\eta(e)$ for each $e \in M^*(A)$, there exists finite number of points $e_1 = a, e_2, ..., e_n = b$ in $M^*(A)$ such that $A \not\leq P(e_i) \lor P(e_{i+1}), i = 1, 2, ..., n - 1$.

Proof. Sufficiency. Suppose that *A* is not β -connected. Then there exist two non-null β -separated *L*-sets *B*, *C* such that $A = B \lor C$. Define the mapping $P : M^*(A) \to \bigcup \{\beta \eta(e) | e \in M^*(A)\}$ as the following:

$$P(e) = \begin{cases} \beta c l(C), \text{ if } e \leq B, \\ \beta c l(B), \text{ if } e \leq C. \end{cases}$$

We have $e \not\leq P(e)$ since $\beta cl(B) \land C = B \land \beta cl(C) = \underline{0}$. For P(e) is a β -closed L-set, $P(e) \in \beta \eta(e)$ for each $e \in M^*(A)$. Take the points $a, b \in M^*(A)$ such that $a \leq B, b \leq C$. Since for arbitrary finite points $e_1 = a, e_2, \dots, e_n = b$ there is only one of $e_i \leq B$ and $e_i \leq C$ hold, we have $P(e_i) = \beta cl(B)$ or $P(e_i) = \beta cl(C)$. But $P(e_1) = \beta cl(C)$ and $P(e_n) = \beta cl(B)$, hence there exists $j(1 \leq j \leq n-1)$ such that $P(e_j) = \beta cl(C)$ and $P(e_{j+1}) = \beta cl(B)$. This shows that $A = B \lor C \leq P(e_j) \lor P(e_{j+1})$ which is a contradiction.

Necessity. Suppose that condition of theorem is not true, i.e., there are two points $a, b \in M^*(A)$ and a β -closed remote neighborhood mapping $P: M^*(A) \to \bigcup \{\beta\eta(e) | e \in M^*(A)\}$ such that $A \not\leq P(e_i) \lor P(e_{i+1}), (i = 1, 2, ..., n - 1)$ is not true for arbitrary finite points $e_1, ..., e_n \in M^*(A)$. For the sake of convenience, we follow the agreement that a and b are β - linked if there exist finite points $e_1 = a, e_2, ..., e_n = b$ in $M^*(A)$ such that $A \not\leq P(e_i) \lor P(e_{i+1}), i = 1, 2, ..., n - 1$. Otherwise, a and b are not β - linked. Let

$$\Phi = \{e \in M^*(A) | a \text{ and } e \text{ are } \beta - \text{linked}\},\$$

 $\Psi = \{e \in M^*(A) | a \text{ and } e \text{ are not } \beta - \text{linked}\},\$

$$B = \bigvee \Phi, C = \bigvee \Psi$$

Obviously, *a* and *a* are β -linked for that $a \notin P(a)$ imply $A \notin P(a)$. So, $a \in \Phi, a \leq B$. By the hypothesis, *a* and *b* are not β -linked, then $b \in \Psi$ and $b \leq C$. Hence, $B \neq \underline{0}, C \neq \underline{0}$. Since for each $e \in M^*(A)$, $e \in \Phi$ or $e \in \Psi$, we have $A = B \lor C$. We will prove $\beta cl(B) \land C = B \land \beta cl(C) = \underline{0}$. Hence, *A* is not β -connected which is a contradiction.

In fact, suppose $\beta cl(B) \wedge C \neq \underline{0}$ and take point $d \leq \beta cl(B) \wedge C$. By $d \leq \beta cl(B)$, we have $d \notin P(d)$ and $B \notin P(d)$. So there is $e \in \Phi$ such that $e \notin P(d)$. Hence $e \notin P(d) \vee P(e)$ and $e \leq B \leq A$. Thus, $A \notin P(d) \vee P(e)$. For e and a are β -linked, then a and d are β -linked. On the other hand, by $d \leq C$, we have $C \notin P(d)$. There exists $\lambda \in \Psi$ such that $\lambda \notin P(d)$. Hence $\lambda \notin P(d) \vee P(\lambda)$ and $\lambda \leq C \leq A$. Therefore, $A \notin P(d) \vee P(\lambda)$. By d and a are β -linked, we have a and λ are β -linked. This contradicts that $\lambda \in \Psi$. Thus, $\beta cl(B) \wedge C = \underline{0}$. Similarly, we can prove $B \wedge \beta cl(C) = \underline{0}$.

References

- M. E. Abd, El-Monsef, S. N. El-Deeb and R. A. Mahmould, β-open sets and β-continous mappings, Bull. Fac. Sci,. Assiut Univ, 12 (1983), 77–90.
- S. Z. Bai and W. L. Wang, *I type of strong connectivity in L-fuzzy topological spaces*, Fuzzy Sets and Systems, 99 (1998), 357–362.
- [3] G. Balasubramanian, On fuzzy β-compact spaces and fuzzy β-extremlly disconnected spaces, Kybernetika, 33(1997), 271–277.
- [4] G. Balasubramanian, Fuzzy β -open sets and fuzzy β -separation axioms, Kybernetika, 35 (1999), 215–223.
- [5] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl., 24(1968), 182–190.
- B. Ghosh, Semicontinuous and semiclosed mappings and semi-connectedness in fuzzy setting, Fuzzy Sets and Systems, 35 (1990), 345–355.
- [7] G. Gierz, et al., A compendium of continuous Lattices, Springer Verlag, Berlin, 1980.
- [8] I. M. Hanafy, Fuzzy β -compactness and fuzzy β -closed spaces, Turk. J. Math., **28** (2004), 281–293.
- [9] S. G. Li, Connectedness in L- topological spaces, Fuzzy Sets and Systems, 116 (2000), 361–368.
- [10] Y. M. Liu and M. K. Luo, Fuzzy Topology, World Scientific, Singapore, 1997.
- [11] R. Lowen and L. S. Xu, Connectedness in FTS from different points of view, J. Fuzzy. Math., 7 (1999), 51-66.
- [12] S. Malakar, On fuzzy semi-irresolute and strongly irresolute functions, Fuzzy Sets and Systems, 45 (1992), 239–244.
- [13] F. G. Shi and C. Y. Zheng, Connectedness in fuzzy topological molecular lattices, Fuzzy Sets and Systems, 29(1989), 363–370.
- [14] N. Turnli and D. Coker, *On some types of fuzzy connectedness in fuzzy topological spaces*, Fuzzy Sets and Systems, **60**(1993), 97–102.
- [15] G. J. Wang, Theory of L-fuzzy topological spaces, Shaanxi Normal University Press, Xi'an, 1988.
- [16] G. J. Wang, Order homomorphisms on fuzzes, Fuzzy Sets and Systems, 12(1984), 281–288.

School of Mathematics and Statistics, Southwest University, Chongqing 400715, P.R.China.

E-mail: bobochen@swu.edu.cn