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ON OSTROWSKI-TYPE INEQUALITIES FOR FUNCTIONS WHOSE

DERIVATIVES ARE m-CONVEX AND (α,m)-CONVEX FUNCTIONS

WITH APPLICATIONS

M. A. LATIF, M. W. ALOMARI AND S. HUSSAIN

Abstract. In this paper we establish variant inequalities of Ostrowski’s type for functions
whose derivatives in absolute value are m-convex and (α,m)-convex. Applications to
some special means are obtained.

1. Introduction

Let f : I ⊆R→R be a differentiable mapping on I ◦, the interior of the interval I , such that

f ′ ∈ L[a,b], where a,b ∈ I with a < b. If
∣

∣ f ′ (x)
∣

∣≤ K , then the following inequality,

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤ K (b −a)







1

4
+

(

x − a+b
2

)2

(b −a)2







holds. This result is known in the literature as the Ostrowski inequality. For recent results and

generalizations concerning Ostrowski’s inequality see [1] – [3], [11, 12, 14, 15] and the refer-

ences therein.

Recently in [1], Alomari et. al., have established some new inequalities for class of func-

tions whose derivatives in absolute value are s-convex in the second sense by using the fol-

lowing lemma (see [7]):

Lemma 1 ([7]). Let f : I ⊆R→R be a differentiable mapping on I ◦ where a,b ∈ I with a < b. If

f ′ ∈ L[a,b], then the following equality holds:

f (x)−
1

b −a

∫b

a
f (u)du

=
(x −a)2

b −a

∫1

0
t f ′ (t x + (1− t ) a)d t −

(b −x)2

b −a

∫1

0
t f ′ (t x + (1− t )b)d t

for each x ∈ [a,b].
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Let [0,b], where b is greater than 0, be an interval of the real line R, and let K (b) denote

the class of all functions f : [0,b] → R which are continuous and nonnegative on [0,b] and

such that f (0) = 0. A function f is said to be convex on [0,b] if

f (t x + (1− t )y)≤ t f (x)+ (1− t ) f (y)

holds for all x, y ∈ [0,b] and t ∈ [0,1] . Let K C (b) denote the class of all functions f ∈K (b)

convex on [0,b], and let K F (b) be the class of all functions f ∈K (b) convex in mean on [0,b],

that is, the class of all functions f ∈K (b) for which F ∈K C (b), where the mean function F of

the function f ∈K (b) is defined by

F (x) =

{

1
x

∫x
0 f (t )d t , x ∈ (0,b]

0, x = 0

Let K S (b) denote the class of all functions f ∈K (b) which are starshaped with respect to

the origin on [0,b], that is, the class of all functions f with the property that

f (t x) ≤ t f (x)

holds for all x ∈ [0,b] and t ∈ [0,1] . In [4], Bruckner and Ostrow, among others, proved that

KC (b)⊂ KF (b)⊂ KS(b).

In [18] G. Toader, (see also [5, Definition 1.1, Page 2]) defined m-convexity: another in-

termediate between the usual convexity and starshaped convexity.

Definition 1. The function f : [0,b] →R, b > 0, is said to be m-convex, where m ∈ [0,1] , if we

have

f (t x +m(1− t )y)≤ t f (x)+m(1− t ) f (y)

for all x, y ∈ [0,b] and t ∈ [0,1] . We say that f is m-concave if − f is m-convex.

Denote by K m(b) the class of all m-convex functions on [0,b] for which f (0) ≤ 0. Obvi-

ously, for m = 1, m-convexity is the standard convexity of functions on [0,b] , and for m = 0

the concept of starshaped functions. The following lemmas hold (see [18] see also [5, Lemma

A & Lemma B, Page 2]).

Lemma 2. If f is in the class Km(b) , then it is starshaped.

Lemma 3. If f is in the class Km(b) and 0 < n <m ≤ 1, then f is in the class Kn(b).
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From Lemma 2 and Lemma 3 it follows that

K1(b)⊂ Km(b) ⊂ K0(b)

whenever m ∈ (0,1) . Note that in the class K 1(b) are only convex functions f : [0,b] → R for

which f (0) ≤ 0, that is, K 1(b) is a proper subclass of the class of convex functions on [0,b].

It is interesting to point out that for any m ∈ (0,1) there are continuous and differentiable

functions which are m-convex, but which are not convex in the standard sense (see [19]). The

notion of m-convexity was further generalized by [13] in the following definition (see also [5,

Definition 1.2, Page 3]).

Definition 2. The function f : [0,b] → R, b > 0, is said to be (α,m)-convex, where (α,m) ∈

[0,1]2 , if we have

f (t x +m(1− t )y)≤ tα f (x)+m(1− tα) f (y)

for all x, y ∈ [0,b] and t ∈ [0,1].

Denote by Kα
m(b) the class of all (α,m)-convex functions on [0,b] for which f (0) ≤ 0. It

can be easily seen that for (α,m) ∈ {(0,0), (α,0), (1,0), (1,m), (1,1), (α,1)} one obtains the fol-

lowing classes of functions: increasing, α-starshaped, starshaped, m-convex, convex and

α-convex functions respectively. Note that in the class K 1
1(b) are only convex functions f :

[0,b] → R for which f (0) ≤ 0, that is K 1
1(b) is a proper subclass of the class of all convex func-

tions on [0,b]. For further results on inequalities related to m-convex and (α,m)-convex func-

tions we refer the readers [5].

2. Ostrowski’s type inequalities for m-convex functions

In this section we establish Ostrowski type inequalities by using Lemma 1 for m-convex

functions, we begin with the following result:

Theorem 1. Let f : I ⊆ [0,∞) → R be a differentiable function on I such that f
′

∈ L1([a,b]) ,

where 0 ≤ a < b < ∞. If
∣

∣

∣ f
′
∣

∣

∣ is m-convex on [a,b] for some fixed m ∈ (0,1] and
∣

∣

∣ f
′

(x)
∣

∣

∣ ≤ K ,

x ∈ [a,b], then
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤ min{M1(x), M2(x)} , (2.1)

where

M1(x) =
K

3

[

(x −a)2 + (b −x)2

b −a

]

+
m

6





(x −a)2
∣

∣

∣ f
′ ( a

m

)

∣

∣

∣+ (b −x)2
∣

∣

∣ f
′
(

b
m

)∣

∣

∣

b −a





and

M2(x)=

(

K

6
+

m

3

∣

∣

∣ f
′
( x

m

)∣

∣

∣

)[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b] .
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Proof. By Lemma 1, we have
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
(x −a)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣d t

+
(b −x)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣d t . (2.2)

Since
∣

∣

∣ f
′
∣

∣

∣ is m-convex on [a,b] for some fixed m ∈ (0,1], for any t ∈ [0,1], we have

∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣ =

∣

∣

∣ f
′
(

t x +m(1− t )
a

m

)∣

∣

∣≤ t
∣

∣

∣ f
′

(x)
∣

∣

∣+m(1− t )
∣

∣

∣ f
′
( a

m

)∣

∣

∣ (2.3)

and
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣ =

∣

∣

∣

∣

f
′

(

t x +m(1− t )
b

m

)∣

∣

∣

∣

≤ t
∣

∣

∣ f
′

(x)
∣

∣

∣+m(1− t )

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

. (2.4)

Using (2.3) and (2.4) in (2.2), we get that

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
K

3

[

(x −a)2 + (b −x)2

b −a

]

+
m

6





(x −a)2
∣

∣

∣ f
′ ( a

m

)

∣

∣

∣+ (b −x)2
∣

∣

∣ f
′
(

b
m

)∣

∣

∣

b −a



 ,

(2.5)

for all x ∈ [a,b].

Analogously we obtain
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤

(

K

6
+

m

3

∣

∣

∣ f
′
( x

m

)∣

∣

∣

)[

(x −a)2 + (b −x)2

b −a

]

(2.6)

for all [a,b].

From (2.5) and (2.6), we get (2.1), and the proof is completed. ���

Remark 1. For m = 1, the m-convexity is the standard convexity, therefore (2.1) naturally

reduces to (1.1).

The corresponding version for powers of the absolute value of the first derivative is in-

corporated in the following result:

Theorem 2. Let f : I ⊂ [0,∞) →R be a differentiable mapping on I ◦ where a,b ∈ I with 0 ≤ a <

b <∞. If
∣

∣

∣ f
′
∣

∣

∣

q
is m-convex on [a,b] for some fixed m ∈ (0,1], p, q, 1

p
+ 1

q
= 1 and

∣

∣

∣ f
′

(x)
∣

∣

∣ ≤ K ,

x ∈ [a,b], then
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤ min{N1(x), N2(x)} , (2.7)

where

N1(x) =
1

(

p +1
) 1

p

[

(x −a)2

b −a

(

K q

2
+

m

2

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q

+
(b −x)2

b −a

(

K q

2
+

m

2

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q)
1
q

]

and

N2(x) =
1

(

p +1
) 1

p

(

K q

2
+

m

2

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b] .
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Proof. Suppose p > 1. From Lemma 1 and using Hölder inequality, we have
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
(x −a)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣d t +
(b −x)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣d t

≤
(x −a)2

b −a

(∫1

0
t p d t

)
1
p
(∫1

0

∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t

)
1
q

+
(b −x)2

b −a

(
∫1

0
t p d t

)
1
p
(
∫1

0

∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t

)
1
q

. (2.8)

Since
∣

∣

∣ f
′
∣

∣

∣

q
is m-convex on [a,b] for some fixed m ∈ (0,1] and

∣

∣

∣ f
′

(x)
∣

∣

∣≤ K , x ∈ [a,b], we get that

∫1

0

∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t ≤

K q

2
+

m

2

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q

and
∫1

0

∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t ≤

K q

2
+

m

2

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q

.

Therefore (2.8) reduces to
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
1

(

p +1
) 1

p

[

(

K q

2
+

m

2

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q (x −a)2

b −a
+

(

K q

2
+

m

2

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q )
1
q (b −x)2

b −a

]

. (2.9)

Analogously we also have

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
1

(

p +1
) 1

p

(

K q

2
+

m

2

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x −a)2 + (b −x)2

b −a

]

. (2.10)

From (2.9) and (2.10), we get (2.7), which completes the proof. ���

Theorem 3. Let f : I ⊂ [0,∞) →R be a differentiable mapping on I ◦ where a,b ∈ I with 0 ≤ a <

b <∞. If
∣

∣

∣ f
′
∣

∣

∣

q
is m-convex on [a,b] for some fixed m ∈ (0,1], q ≥ 1 and

∣

∣

∣ f
′

(x)
∣

∣

∣ ≤ K , x ∈ [a,b],

then
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤min {S1(x),S2(x)} , (2.11)

where

S1(x) =

(

1

2

)1− 1
q

[

(

K q

3
+

m

6

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q (x −a)2

b −a
+

(

K q

3
+

m

6

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q)
1
q (b −x)2

b −a

]

and

S2(x)=

(

1

2

)1− 1
q
(

K q

6
+

m

3

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b] .
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Proof. Suppose q ≥ 1. From Lemma 1 and using power mean inequality, we have
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
(x −a)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣d t +
(b −x)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣d t

≤
(x −a)2

b −a

(
∫1

0
t d t

)1− 1
q
(
∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t

)
1
q

+
(b −x)2

b −a

(∫1

0
t d t

)1− 1
q
(∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t

)
1
q

. (2.12)

Since
∣

∣

∣ f
′
∣

∣

∣

q
is m-convex on [a,b], for some fixed m ∈ (0,1] and

∣

∣

∣ f
′

(x)
∣

∣

∣ ≤ K , x ∈ [a,b], we get

that
∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t ≤

K q

3
+

m

6

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q

and
∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t ≤

K q

3
+

m

6

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q

.

Therefore (2.8) reduces to
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤

(

1

2

)1− 1
q

[

(

K q

3
+

m

6

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q (x −a)2

b −a
+

(

K q

3
+

m

6

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q)
1
q (b −x)2

b −a

]

. (2.13)

Analogously we also have

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤

(

1

2

)1− 1
q
(

K q

6
+

m

3

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x −a)2 + (b −x)2

b −a

]

. (2.14)

The inequalities (2.13) and (2.14) give (2.10), which completes the proof. ���

Remark 2. For any p > 1,
(

1+p
) 1

p < 2, therefore (2.10) gives better result than (2.7) for any

m ∈ (0,1) and any K > 0. This also reveals that the approach via power mean inequality gives

better result than that of the results obtained via Hölder inequality.

Corollary 1. Under the assumptions of Theorem 2 and Theorem 3, For m = 1, we get the fol-

lowing results:

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
K

(

p +1
) 1

p

[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b], (2.15)

and
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
K

2

[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b] . (2.16)
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Proof. It is a direct consequence of Theorem 2 and Theorem 3. ���

Remark 3. In all the above inequalities one can obtain midpoint inequalities by setting x =

a+b
2 and we omit the details for the interested readers.

3. Ostrowski’s type inequalities for (α,m)-convex functions

We start with the following result:

Theorem 4. Let f : I ⊂ [0,∞) →R be a differentiable mapping on I ◦ where a,b ∈ I with 0 ≤ a <

b <∞. If
∣

∣

∣ f
′
∣

∣

∣ is (α,m)-convex on [a,b] for some fixed α, m ∈ (0,1] and
∣

∣

∣ f
′

(x)
∣

∣

∣ ≤ K , x ∈ [a,b],

then
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤ min
{

M ′
1(x), M ′

2(x)
}

, (3.1)

where

M
′

1(x) =
K

α+2

[

(x −a)2 + (b −x)2

b −a

]

+
mα

2(α+2)





(x −a)2
∣

∣

∣ f
′ ( a

m

)

∣

∣

∣+ (b −x)2
∣

∣

∣ f
′
(

b
m

)∣

∣

∣

b −a





and

M
′

2(x) =
1

α+2

(

αK

2
+m

∣

∣

∣ f
′
( x

m

)∣

∣

∣

)[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b] .

Proof. By Lemma 1, we have

∣

∣

∣

∣

f (x)−
1

b−a

∫b

a
f (u)du

∣

∣

∣

∣

≤
(x−a)2

b−a

∫1

0
t
∣

∣

∣ f
′

(t x + (1−t )a)
∣

∣

∣d t+
(b−x)2

b−a

∫1

0
t
∣

∣

∣ f
′

(t x + (1−t )b)
∣

∣

∣d t .

(3.2)

Since
∣

∣

∣ f
′
∣

∣

∣ is (α,m)-convex on [a,b] for some fixed α, m ∈ (0,1], for any t ∈ [0,1], we have

∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣ =

∣

∣

∣ f
′
(

t x +m(1− t )
a

m

)∣

∣

∣≤ tα
∣

∣

∣ f
′

(x)
∣

∣

∣+m(1− tα)
∣

∣

∣ f
′
( a

m

)∣

∣

∣ (3.3)

and
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣ =

∣

∣

∣

∣

f
′

(

t x +m(1− t )
b

m

)∣

∣

∣

∣

≤ tα
∣

∣

∣ f
′

(x)
∣

∣

∣+m(1− tα)

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

. (3.4)

Using (3.3) and (3.4) in (3.2), we get that

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
K

α+2

[

(x −a)2 + (b −x)2

b −a

]

+
mα

2(α+2)





(x −a)2
∣

∣

∣ f
′ ( a

m

)

∣

∣

∣+ (b −x)2
∣

∣

∣ f
′
(

b
m

)∣

∣

∣

b −a



 . (3.5)

for all x ∈ [a,b].
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Analogously we obtain

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
1

α+2

(

αK

2
+m

∣

∣

∣ f
′
( x

m

)∣

∣

∣

)[

(x −a)2 + (b −x)2

b −a

]

, (3.6)

for all x ∈ [a,b], so that, from (3.5) and (3.6), we get (3.1), which completes the proof. ���

The corresponding version for powers of the absolute value of the first derivative is in-

corporated in the following result:

Theorem 5. Let f : I ⊂ [0,∞) → R be a differentiable mapping on I ◦ where a,b ∈ I with 0 ≤

a < b <∞. If
∣

∣

∣ f
′
∣

∣

∣

q
is (α,m)-convex on [a,b] for some fixed α, m ∈ (0,1], p, q, 1

p +
1
q = 1 and

∣

∣

∣ f
′

(x)
∣

∣

∣≤K , x ∈ [a,b], then

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤ min
{

N
′

1(x), N
′

2(x)
}

(3.7)

where

N
′

1(x) =
1

(

p +1
) 1

p

[

(

K q

α+1
+

mα

α+1

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q (x −a)2

b −a
+

(

K q

α+1
+

mα

α+1

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q)
1
q (b −x)2

b −a

]

and

N
′

2(x) =
1

(

p +1
) 1

p

(

αK q

α+1
+

m

α+1

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b] .

Proof. Suppose p > 1. From Lemma 1 and using Hölder inequality, we have

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
(x −a)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣d t +
(b −x)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣d t

≤
(x −a)2

b −a

(
∫1

0
t p d t

)
1
p
(
∫1

0

∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t

)
1
q

+
(b −x)2

b −a

(∫1

0
t p d t

)
1
p
(∫1

0

∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t

)
1
q

. (3.8)

Since
∣

∣

∣ f
′
∣

∣

∣

q
is (α,m)-convex on [a,b] for some fixed α, m ∈ (0,1] and

∣

∣

∣ f
′

(x)
∣

∣

∣≤ K , x ∈ [a,b], we

get that

∫1

0

∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t ≤

K q

α+1
+

mα

α+1

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
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and
∫1

0

∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t ≤

K q

α+1
+

mα

α+1

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q

.

Therefore (3.8) reduces to

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
1

(

p+1
) 1

p

[

(

K q

α+1
+

mα

α+1

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q (x−a)2

b−a
+

(

K q

α+1
+

mα

α+1

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q)
1
q (b−x)2

b−a

]

. (3.9)

Analogously we also have

∣

∣

∣

∣

f (x)−
1

b−a

∫b

a
f (u)du

∣

∣

∣

∣

≤
1

(

p+1
) 1

p

(

αK q

α+1
+

m

α+1

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x−a)2+(b−x)2

b−a

]

. (3.10)

The inequalities (3.9) and (3.10) give (3.7), and thus the proof is established. ���

Another approach yields to the following result.

Theorem 6. Let f : I ⊂ [0,∞) → R be a differentiable mapping on I ◦ where a,b ∈ I with 0 ≤

a < b <∞. If
∣

∣

∣ f
′
∣

∣

∣

q
is (α,m)-convex on [a,b] for some fixed α, m ∈ (0,1], q ≥ 1 and

∣

∣

∣ f
′

(x)
∣

∣

∣ ≤ K ,

x ∈ [a,b], then
∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤ min
{

S
′

1(x),S
′

2(x)
}

, (3.11)

where

S
′

1(x) =

(

1

2

)1− 1
q

[

(

K q

α+2
+

mα

2(α+2)

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q (x −a)2

b −a
+

(

K q

α+2
+

mα

α+2

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q)
1
q (b −x)2

b −a

]

and

S
′

2(x) =

(

1

2

)1− 1
q
(

αK q

2(α+2)
+

m

α+2

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b] .

Proof. Suppose q ≥ 1. From Lemma 1 and using power mean inequality, we have

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤
(x −a)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣d t +
(b −x)2

b −a

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣d t

≤
(x −a)2

b −a

(∫1

0
t d t

)1− 1
q
(∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t

)
1
q

+
(b −x)2

b −a

(∫1

0
t d t

)1− 1
q
(∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t

)
1
q

. (3.12)
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Since
∣

∣

∣ f
′
∣

∣

∣

q
is (α,m)-convex on [a,b] for some fixed α, m ∈ (0,1] and

∣

∣

∣ f
′

(x)
∣

∣

∣≤ K , x ∈ [a,b], we

get that

∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )a)
∣

∣

∣

q
d t ≤

K q

α+2
+

mα

2(α+2)

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q

and
∫1

0
t
∣

∣

∣ f
′

(t x + (1− t )b)
∣

∣

∣

q
d t ≤

K q

α+2
+

mα

2(α+2)

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q

.

Therefore (3.12) reduces to

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤

(

1

2

)1− 1
q

[

(

K q

α+2
+

mα

2(α+2)

∣

∣

∣ f
′
( a

m

)∣

∣

∣

q
)

1
q (x −a)2

b −a

+

(

K q

α+2
+

mα

α+2

∣

∣

∣

∣

f
′

(

b

m

)∣

∣

∣

∣

q)
1
q (b −x)2

b −a

]

. (3.13)

Analogously we also have

∣

∣

∣

∣

f (x)−
1

b −a

∫b

a
f (u)du

∣

∣

∣

∣

≤

(

1

2

)1− 1
q
(

αK q

2(α+2)
+

m

α+2

∣

∣

∣ f
′
( x

m

)∣

∣

∣

q
)

1
q
[

(x −a)2 + (b −x)2

b −a

]

.

(3.14)

From (3.13) and (3.14), we obtain (3.11) and this completes the proof of the Theorem. ���

Remark 4. For any p > 1,
(

1+p
) 1

p < 2, therefore (3.11) gives better result than (3.7) for any α,

m ∈ (0,1] and any K > 0. This also reveals that the approach via power mean inequality gives

better result than that of obtain via Hölder inequality.

Remark 5. 1. In all the above inequalities one can obtain midpoint inequalities by setting

x =
a+b

2 and we omit the details for the interested readers.

2. For α= 1, we get the same inequalities as we obtained for m-convex functions, m ∈ (0,1].

4. Applications to special means

We shall consider the means for arbitrary real numbers α, β (α 6=β). We take

1. The arithmetic mean:

A =: A(α,β) =
α+β

2
, α,β≥ 0.

2. The geometric mean

G =: G(α,β) =
√

αβ, α,β≥ 0.

3. The Harmonic mean:

H = H (α,β) :=
2

1
α +

1
β

,α,β> 0.
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4. The identric mean:

I =: (α,β) =







1
e

(

bb

aa

) 1
b−a

, α 6=β

α, α=β
, α,β> 0.

5. The logarithmic mean:

L =: L(α,β) =

{

b−a
lnb−ln a , α 6=β

α, α=β
, α,β> 0.

6. The p-logarithmic mean:

Lp := Lp (α,β) =







(

βp+1−αp+1

(p+1)(β−α)

)
1

b−a
, α 6=β

α α=β
, p ∈R\{−1,0} , α,β> 0.

It is well known that Lp is monotonic nondecreasing over p ∈R, with L−1 = L and L0 := I .

In particular, we have the following inequality L ≤ A.

Now, using the results of Section 4, we give some applications to special means of real

numbers. In the following we obtain some error estimates for some special means.

Consider f : [a,b]→R, (0 < a < b), f (x) = xr , r ∈R\{−1,0}. Then

1

b −a

∫b

a
f (x) = Lr

r (a,b) .

Using the inequality (3.1), we get

∣

∣xr
−Lr

r (a,b)
∣

∣≤ min
{

M ′
1(x), M ′

2(x)
}

, x ∈ [a,b],

where

µr (a,b)=

{

r br−1, r ≥ 1

|r |ar−1, r ∈ (−∞,0)∪ (0,1) \{−1}
,

M
′

1(x) =
µr (a,b)

α+2

[

(x −a)2 + (b −x)2

b −a

]

+
mα

2(α+2)





(x −a)2
∣

∣

∣ f
′ ( a

m

)

∣

∣

∣+ (b −x)2
∣

∣

∣ f
′
(

b
m

)∣

∣

∣

b −a





and

M
′

2(x) =
1

α+2

(

αµr (a,b)

2
+m

∣

∣

∣ f
′
( x

m

)∣

∣

∣

)[

(x −a)2 + (b −x)2

b −a

]

, x ∈ [a,b].

For instance, if one chooses, x = A, G , H , I , L, then we deduce some inequalities for the

mentioned means, and we omit the details.
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[5] M. K. Bakula, M. E. Özdemir and J. Pečarić, Hadamard type inequalities for m-convex and (α,m)-convex
functions, J. Inequal. Pure & Appl. Math., 9(2008), Article 96. [ONLINE:htpp://jipam.vu.edu.au]
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