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OSCILLATION AND NONOSCILLATION OF NONLINEAR

NEUTRAL DELAY DIFFERENCE EQUATIONS

E. THANDAPANI AND P. MOHAN KUMAR

Abstract. In this paper, the authors establish some sufficient conditions for oscillation and

nonoscillation of the second order nonlinear neutral delay difference equation

∆
2
(xn − pnxn−k) + qnf(xn−ℓ) = 0, n ≥ n0

where {pn} and {qn} are non-negative sequences with 0 < pn ≤ 1, and k and ℓ are positive

integers.

1. Introduction

Consider the second order nonlinear neutral delay difference equation

∆2(xn − pnxn−k) + qnf(xn−ℓ) = 0, n ≥ n0 ∈ N (1)

where N = {0, 1, 2, . . .} and ∆ is the forward difference operator defined by ∆xn =
xn+1 − xn, subject to the following conditions:
(c1) {pn} and {qn} are non-negative real sequences with {qn} not identically zero for

infinitely many values of n;
(c2) f : R → R is continuous and nondecreasing such that uf(u) > 0 for u 6= 0;
(c3) there is a positive constant p such that 0 < pn ≤ p < 1, and k and ℓ are positive

integers.
For any real sequence {φn} defined in n0−θ ≤ n ≤ n0 where θ = max{k, ℓ}, equation

(1) has a solution {xn} defined for n ≥ n0 and satisfying the initial condition xn = φn for

n0 − θ ≤ n ≤ n0. A solution {xn} of equation (1) is oscillatory if it is neither eventually
positive nor eventually negative, and nonoscillatory otherwise.

In several recent papers [3, 4, 7−20], the oscillatory and nonoscillatory behavior of
solutions of equation (1) has been studied when {pn} is a non-positive real sequence.
However in [14], the authors consider the case {pn} is non-negative and attempted to
extend the known results in [1] on delay difference equation to neutral difference equation

with pn ≡ p ∈ (0, 1). In fact the authors [14] proved the following two theorems:
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Theorem A. Assume that 0 < p < 1, {qn} is a nonnegative real sequence and

f : R → R is continuous and nondecreasing with uf(u) > 0 for u 6= 0. If

0 <

∫ ∞

ε

dx

f(x)
,

∫ −ε

−∞

dx

f(x)
< ∞ for all ε > 0 (2)

then every solution of the equation

∆2(xn − pxn−k) + qnf(xn−ℓ) = 0, n ≥ n0 (3)

is oscillatory if and only if
∞
∑

n=n0

nqn = ∞. (4)

Theorem B. Assume that 0 < p < 1, {qn} is a nonegative real sequence and f :

R → R is continuous and nondecreasing with uf(u) > 0 for u 6= 0. If

0 <

∫ ε

0

dx

f(x)
,

∫ 0

−ε

dx

f(x)
< ∞ for all ε > 0 (5)

and

f(uv) ≥ f(u)f(v) if uv > 0 and |v| ≥ M (6)

for some constant M > 0, then every solution of equation (3) is oscillatory if and only if

∞
∑

n=n0

f(n)qn = ∞. (7)

In the following we give an example which illustrates the sufficient part of Theorem

A is false.

Let k, ℓ≥1, 0<p<1, α>1. Choose λ>− 1
k

log p and set qn = (peλk−1)(e−λ−1)2e(α−1)λn

eλℓk .

It is easy to see that {xn} = {e−λn} is a positive solution of the equation

∆2(xn − pxn−k) + qn|xn−ℓ|
α−1xn−ℓ = 0, n ≥ n0 (8)

even if (4) is satisfied. The error occurred in the proof is due to their false assertion

that if {xn} is eventually positive solution of equation (3) then zn = xn − pxn−k is also

eventually positive. The same false assertion was also used in the proof of Theorem B
and therefore the sufficient part of Theorem B may not be true. Therefore, so far there

are hardly any results on the oscillatory behavior of solutions of equation (1) with {pn}

is nonnegative.

In this paper, we study the oscillatory and nonoscillatory behavior of equation (1)

with 0 ≤ pn < 1 and the nonlinear function f is either supelinear or sublinear. In Section

2, we present a new sufficient condition for the oscillation of all solutions of equation (1)
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when f is superlinear and extend the necessary part of Theorem A to equation (1).

Section 3 contains similar results for equation (1) when f is sublinear. For basic results

on the oscillation theory of difference equations one can refer the recent monographs [1]

and [2].

2. Oscillation results for superlinear case

In this section we shall investigate the oscillatory behavior of solutions of equation (1)

when f is superlinear. The function f is said to be superlinear if there exists a constant

α > 0 such that

lim
x→0

inf
( |f(x)|

|x|α

)

> 0. (9)

We need the following lemma given in [12] to prove our main result of this section.

Lemma 1. Let {Qn} be a nonnegative real sequence, f : R → R be continuous with

uf(u) > 0 for u 6= 0, and δ be a positive integer. Assume that there exist β > 0 and

λ > 1
δ

log β such that lim
x→0

( |f(x)|
|x|β ) > 0 and lim

n→∞
inf[Qn exp(−eλn)] > 0 then the following

inequality

∆xn + Qnf(xn−δ) ≤ 0, n ≥ n0,

has no eventually positive solutions.

Theorem 2. With respect to the difference equation (1) assume that ℓ > k, and

condition (9) hold. If there exist a λ > log α
ℓ−k

such that

lim
n→∞

inf qn exp(−eλn) > 0 (10)

then every solution of equation (1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of equation (1). We may assume

without loss of generality that xn > 0 and 0 < pn < p for all n ≥ n0 for some integer

n0 ∈ N . Set

yn = xn − pnxn−k. (11)

Then it follows from equation (1) that ∆2yn ≤ 0 for all n ≥ n0 + θ. This implies that

{∆yn} is nonincreasing for all n ≥ n0 + θ. Hence, there are two possible cases that

∆yn > 0 for all n ≥ n0 + θ or ∆yn < 0 for all n ≥ n1 for some integer n1 ≥ n0. If the

later case holds, then there exits a constant c > 0 and an integer n2 ≥ n1 such that

xn − pnxn−k ≤ −c, n ≥ n2,

which implies that

xn ≤ −c + pxn−k, n ≥ n2. (12)
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From (12), we have

xn2+k ≤ −c + pxn2

xn2+2k ≤ −c + p(xn2+k) ≤ −c − pc + p2xn2

xn2+3k ≤ −c + p(xn2+2k) ≤ −c − pc − p2c + p3xn2

and hence it follows that

xn2+jk ≤ −

j−1
∑

i=0

cpi + pjxn2 ,

and so xn2+jk < 0 for large j, which contradicts the fact that xn > 0 for all n ≥ n0.
Hence

∆yn > 0 for all n ≥ n0 + θ. (13)

From (13), it follows that {yn} is increasing for all n ≥ n0 + θ and so there are two
possible cases:

(i) yn < 0 for n ≥ n0 + θ or
(ii) yn > 0 for n ≥ n3 for integer n3 ≥ n2.

If case (i) holds, that is, yn < 0 for all n ≥ n0 + θ then

xn−ℓ > −
1

p
yn+k−ℓ, n ≥ n0 + 2θ, (14)

and

∆2yn + qnf
(

−
1

p
yn+k−ℓ

)

≤ 0, n ≥ n0 + 2θ. (15)

Summing the inequality (15) from n ≥ n0 + 2θ to ∞, we find

−∆yn +

∞
∑

s=n

qsf
(

−
1

p
ys+k−ℓ

)

≤ 0, n ≥ n0 + 2θ. (16)

From the assumption λ > log α
ℓ−k

, we can choose an integer m such that 1 ≤ m ≤ ℓ−k and

αe−λ(ℓ−k−m) < 1. (17)

Note that −∆yn is decreasing for all n ≥ n0 + θ, it follows from (16) that

−∆yn +
(

n+m
∑

s=n

qs

)

f
(

−
1

p
yn+k−ℓ+m

)

≤ 0, n ≥ n0 + 2θ. (18)

Set

zn = −
1

p
∆yn, δ = ℓ − k − m, Qn =

1

p

n+m
∑

s=n

qs.

Then (18) can be written as

∆zn + Qnf(zn−δ) ≤ 0, n ≥ n0 + 2θ. (19)
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This shows that (19) has an eventually positive solution {zn}. On the other hand, by
(10),

lim
n→∞

inf[Qn exp(−eλn)] ≥
(m + 1)

p
lim

n→∞
inf

[(

min
n≤s≤n+m

qs

)

exp(−eλn)
]

> 0. (20)

In view of (17) and (20), Lemma 1 implies that the inequality (19) has no eventually
positive solutions. This contradiction shows that case (i) is impossible.

If case (ii) holds, that is , yn > 0 for all n ≥ n3, then it follows from equation (1) that

∆2yn + qnf(yn−ℓ) ≤ 0, n ≥ n3 + θ. (21)

Summing (21) from n4 = n3 + θ to n and then taking n → ∞, we find

∞
∑

n=n4

qnf(yn−ℓ) ≤ ∆yn4 . (22)

Since f(yn) is nondecreasing for all n ≥ n4, it follows from (22) that

f(yn3)
∞
∑

s=n

qs ≤ ∆yn4 < ∞,

which contradicts (10) and so case (ii) is also impossible. This completes the proof of
the theorem.

In the following theorem, we extend the necessary part of Theorem A to equation (1)
without assuming that f is non-decreasing or satisfies Lipschitz condition on the given
interval as in [14].

Theorem 3. With respcet to the difference equation (1) assume that

∞
∑

n=n0

(n + 1)qn < ∞. (23)

Then equation (1) has a bounded nonoscillatory solution.

Proof. Set M = max{f(x) : 2
3 (1 − p) ≤ x ≤ 4

3}. By (23), we can choose an integer
N > n0 sufficiently large such that M

∑∞
n=N (n + 1)qn < 1−p

3 . Let B be the set of all
real sequences x = {xn}

∞
n=N with the norm ‖x‖ = sup

n≥N

|xn| < ∞. Then B is a Banach

space. We define a closed, bounded and convex subset S of B as follows:

S =

{

x = {xn} ∈ B :
2(1 − p)

3
≤ xn ≤

4

3
, n ≥ N

}

.

Define two maps T1 and T2 : S → B as follows:

T1xn =

{

1 − p + pnxn−k, n ≥ N + θ

T1xN+θ, N ≤ n ≤ N + θ
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T2xn =











−
∞
∑

s=n

(s − n + 1)qsf(xs−ℓ), n ≥ N + θ

T2xN+θ, N ≤ n ≤ N + θ.

First we show that for any x, y ∈ S, T1x + T2y ∈ S. Infact, for every x, y ∈ S and

n ≥ N + θ, we have

T1xn + T2yn ≤ 1 − p −
4

3
p +

1 − p

3
=

4

3

and

T1xn + T2yn ≥ 1 − p −
1 − p

3
=

2(1 − p)

3
.

Hence
2(1 − p)

3
≤ T1xn + T2yn ≤

4

3
for all n ≥ N.

Thus, we have proved that T1x + T2y ∈ S for any x, y ∈ S.

Next we shall show that T1 is a contraction mapping on S. Indeed for any x, y ∈ S

and n ≥ N + θ, we have

|T1xn − T1yn| ≤ pn|xn−k − yn−k| ≤ p‖x − y‖.

This implies that

‖T1x − T1y‖ ≤ p‖x − y‖.

Since p ∈ (0, 1), we conclude that T1 is a contraction mapping on S.

Now we show that T2 is completely continuous. First we will show that T2 is con-

tinuous. Let x(i) = {x
(i)
n } ∈ S be such that x

(i)
n → xn as i → ∞. Because S is closed

x = {xn} ∈ S. For n ≥ N + θ, we have

|T2x
(i)
n − T2xn| ≤

∞
∑

s=N+θ

(s − n + 1)qs

∣

∣

∣
f
(

x
(i)
s−ℓ

)

− f(xs−ℓ)
∣

∣

∣
.

Since

qs(s − n + 1)
∣

∣

∣
f
(

x
(i)
s−ℓ

)

− f(xs−ℓ)
∣

∣

∣
≤ 2M(s + 1)qs

and |f(x
(i)
s−ℓ) − f(xs−ℓ)| → 0 as i → ∞, in view of (23), and applying the Lebesgue

dominated convergence theorem, we conclude that lim
i→∞

‖T2x
(i) − T2x‖ = 0. This means

that T2 is continuous.

Next, we shall show that T2S is relatively compact. For any given ε > 0, by (23)

there exists an integer N1 ≥ N + θ such that

M

∞
∑

s=N1

(s + 1)qs <
ε

2
.
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Then for any x = {xn} ∈ S and j, n ≥ N1,

|T2xj − T2xn| ≤

∞
∑

s=j

(s − j + 1)qs|f(xs−ℓ)| +

∞
∑

s=n

(s − n + 1)qs|f(xs−ℓ)|

≤ M

∞
∑

s=j

(s + 1)qs + M

∞
∑

s=n

(s + 1)qs

≤
ε

2
+

ε

2
= ε.

This means that T2S is uniformly Cauchy. Hence by [5], T2S is relatively compact. By
Krasonselskii fixed point theorem [6], there is a x = {xn} ∈ S such that T1x + T2x = x.
Clearly x = {xn} is a bounded positive solution of equation (1). This completes the
proof.

3. Oscillation results for sublinear case

In this section we establish conditions for the oscillation and non oscillation of equa-
tion (1) when the nonlinear function f is sublinear. The function f is said to be sublinear
if f satisfies condition (5).

Theorem 4. With respect to the difference equation (1) assume ℓ > k and condition

(5) hold. If
∞
∑

n=n0

qn = ∞, (24)

then every solution of equation (1) is oscillatory.

Proof. Let {xn} be a nonoscillatory solution of (1). We may assme without loss of
generality that xn > 0 and 0 < pn ≤ p for all n ≥ N for some integer N > n0. Set yn

in (11). Using the same argument as in the proof of Theorem 2, one can consider two
possible cases:

(i) ∆2yn ≤ 0, ∆yn > 0, yn < 0 for n ≥ n1 ≥ N + θ

(ii) ∆2yn ≤ 0, ∆yn > 0, yn > 0 for n ≥ n2 ≥ N + θ.
If case (i) holds, then

xn−ℓ > −
1

p
yn+k−ℓ, n ≥ n1.

Substituting this into equation (1) and using the nondecreasing nature of f(x), we obtain

∆2yn + qnf
(

−
1

p
yn+k−ℓ

)

≤ 0, n ≥ n1.

Summing the last inequality from n ≥ n1 to ∞, we find

−∆yn +
∞
∑

s=n

qsf
(

−
1

p
ys+k−ℓ

)

≤ 0. (25)
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Since −yn in decreasing for n ≥ n1, we have from (25)

−∆yn +
(

n+ℓ−k
∑

s=n

qs

)

f
(

−
1

p
yn

)

≤ 0. (26)

Set zn = − 1
p
yn. Then (26) can be written as

∆zn +
1

p

(

n+ℓ−k
∑

s=n

qs

)

f(zn) ≤ 0, n ≥ n1.

From the last inequality, it follows that

∆zn

f(zn)
+

1

p

(

n+ℓ−k
∑

s=n

qs

)

≤ 0, n ≥ n1. (27)

Summing (27) from n1 to N and using sublinear condition (5), we have

1

p

N
∑

s=n1

(

s+ℓ−k
∑

t=s

qt

)

≤

N
∑

s=n1

−∆zs

f(zs)

≤

N
∑

s=n1

∫ zs

zs−1

du

f(u)
≤

∫ zn3

0

du

f(u)
.

Letting n → ∞, we obtain

∞ >

∞
∑

s=n1

(

s+ℓ−k
∑

t=s

qt

)

≥ (ℓ − k)

∞
∑

s=n1+ℓ−k

qs

which contradicts condition (24) and so case (i) is impossible.

If case (ii) holds, then xn ≥ yn for n ≥ n2. Substituting this into equation (1) and

using the fact thet f(u) is nondecreasing in u, we obtain

∆2yn + qnf(yn−ℓ) ≤ 0, n ≥ n2 + θ.

Summing the last inequality from n3 = n2 + θ to ∞, we find

∞
∑

n=n3

qnf(yn−ℓ) ≤ ∆yn3 . (28)

Since f is nondecreasing, it follows from (28) that

f(yn2)

∞
∑

n=n3

qn < ∆yn3 .
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which contradicts (23) and so case (ii) is also impossible. This completes the proof of

the theorem.

Theorem 5. With respect to the difference equation (1) assume that

∞
∑

n=n0

f(n)qn < ∞. (29)

holds. Then equation (1) has an eventually positive solution which tends to infinity as

n → ∞.

Proof. Choose an integer N0 > θ + k
1−p

sufficiently large such that

∞
∑

n=N0

f(n)qn <
1 − p

2
. (30)

Choose an integer m > 0 such taht mk ≥ θ and N0 > (m + 1)k. Set

a =
(1 − p)(N0 − mk)

N0 − mk − pN0−mk(N0 − mk − k)
.

Then

1 − p =
(1 − p)(N0 − mk)

N0 − mk
≤ a ≤

(1 − p)(N0 − mk)

(1 − p)(N0 − mk)
= 1.

Define the sequence {yn} as follows:

yn =



















an, N0 − (m + 1)k ≤ n ≤ N0 − mk

pnyn−k + (1 − p)n, N0 − mk ≤ n ≤ N0

pnyn−k + (1 − p)n +
n−1
∑

s=N0

(s − n + 1)qsf(ys−ℓ), n ≥ N0.

(31)
It is easy to see that

(1 − p)n ≤ yn < n (32)

for N0 − (m + 1)k ≤ n ≤ N0. In the sequel, we prove that

1

2
(1 − p)n < yn < n, n ≥ N0 − (m + 1)k. (33)

If (33) is not true, then there exists an integer n1 ≥ N0 such that

yn1 ≤
1

2
(1 − p)n1

and
1

2
(1 − p)n < yn < n, N0 − (m + 1)k ≤ n < n1 (34)
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or

yn1 ≥ n1 and
1

2
(1 − p)n < yn < n, N0 − (m + 1)k ≤ n < n1. (35)

If (34) holds, then from (30), (31) and (34), we have

yn1 = pn1yn1−k + (1 − p)n1 +

n1−1
∑

s=N0

(s − n1 + 1)qsf(ys−ℓ)

≥ (1 − p)N0 + (n1 − N0)
[

1 − p −

n1−1
∑

s=N0

qsf(ys−ℓ)
]

≥ (1 − p)N0 + (n1 − N0)
[

1 − p −
n−1
∑

s=N0

qsf(ys−ℓ)
]

> (1 − p)n0 + (n1 − N0)
[

1 − p −
1 − p

2

]

>
1

2
(1 − p)n1.

This contradiction implies that (34) is not true. If (35) holds then from (30), (31) and

(35) we have

yn1 = pn1yn1−k + (1 − p)n1 +

n1−1
∑

s=N0

(s − n1 + 1)qsf(ys−ℓ)

≥ p(n1 − k) + (1 − p)n1 = n1 − pk < n1.

This is also a contradiction and so (35) is not true. Therefore (33) holds. It is easy to

see that {yn} satisfies the equation

∆2(yn − pnyn−k) + qnf(yn−ℓ) = 0, n ≥ N0.

This shows that {yn} is a positive solution of equation (1) with the desired asymptotic

behavior. The proof is now complete.
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