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ON THE INTRINSIC DESZCZ SYMMETRIES AND

THE EXTRINSIC CHEN CHARACTER OF WINTGEN IDEAL

SUBMANIFOLDS

S. DECU, M. PETROVIĆ–TORGAŠEV, A. ŠEBEKOVIĆ AND L. VERSTRAELEN

Abstract. In this paper it is shown that all Wintgen ideal submanifolds in ambient

real space forms are Chen submanifolds. It is also shown that the Wintgen ideal

submanifolds of dimension > 3 in real space forms do intrinsically enjoy some

curvature symmetries in the sense of Deszcz of their Riemann–Christoffel curvature

tensor, of their Ricci curvature tensor and of their Weyl conformal curvature tensor.

1. Wintgen ideal submanifolds

Let Mn be an n−dimensional Riemannian submanifold of an (n + m)–dimen-
sional real space form M̃n+m(c) of curvature c, (n ≥ 2, m ≥ 1). Let g and ∇, and,

respectively, g̃ and ∇̃, denote the Riemannian metrics and the corresponding Levi–Civita

connections of Mn and of M̃n+m(c). The formulae of Gauss and Weingarten are then
given by

∇̃XY = ∇XY + h(X, Y ) (1)

and
∇̃Xξ = −AξX + ∇⊥

Xξ, (2)

whereby h, Aξ and ∇⊥ denote the second fundamental form, the shape operator or Wein-

garten map with respect to ξ and the normal connection of Mn in M̃n+m(c), respectively,
(X, Y , etc. stand for tangent vector fields and ξ etc. for normal vector fields on Mn in

M̃n+m(c)). From (1) and (2) it follows that

g̃(h(X, Y ), ξ) = g(Aξ(X), Y ), (3)
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such that, for any orthonormal local normal frame {ξα} on Mn in M̃n+m(c), (α, β, . . . ∈
{1, 2, . . . , m}):

h(X, Y ) =
∑

α

g(Aα(X), Y )ξα, (4)

whereby Aα = Aξα
. The mean curvature vector field

−→
H of Mn in M̃n+m(c) is defined

as
−→
H = 1

n
tr h = 1

n

∑n
i=1 h(Ei, Ei), for any orthonormal local tangent frame {Ei} on

Mn, (i, j, . . . ∈ {1, 2, . . . , n}), and its length H = ‖
−→
H‖ is the mean curvature of Mn in

M̃n+m(c).
Let R denote the (0, 4) Riemann–Christoffel curvature tensor of (Mn, g). Then,

according to the equation of Gauss,

R(X, Y, Z, W ) = g̃(h(Y, Z), h(X, W )) − g̃(h(X, Z), h(Y, W ))

+c {g(Y, Z) g(X, W ) − g(X, Z) g(Y, W )}. (5)

Denoting by τ the scalar curvature function of (Mn, g), we have

τ(p) :=
∑

i<j

K(p, Ei(p) ∧ Ej(p)), (6)

whereby K(p, Ei(p) ∧ Ej(p)) denotes the sectional curvature of (Mn, g) at a point p of
Mn for the plane section π = Ei(p)∧Ej(p) in TpM

n. By Kinf we will further denote the
function Kinf : M → R : p 7→ Kinf (p) := the minimal value of all sectional curvatures

of M at p.
The normalised scalar curvature ρ of the Riemannian manifold Mn is defined to be

ρ =
2

n(n − 1)

∑

i<j

R(Ei, Ej , Ej , Ei). (7)

By the equation of Ricci, the normal curvature tensor R⊥ of M in M̃ is given as

follows:
R⊥(X, Y ; ξ, η) := g̃(R⊥(X, Y )ξ, η) = g([Aξ, Aη]X, Y ), (8)

whereby R⊥(X, Y ) := ∇⊥
X∇⊥

Y −∇⊥
Y ∇⊥

X −∇⊥
[X,Y ] and [Aξ, Aη] := AξAη − AηAξ.

The normalised scalar normal curvature ρ⊥ of M in M̃ is then defined to be

ρ⊥ =
2

n(n − 1)
{
∑

i<j

∑

α<β

[R⊥(Ei, Ej ; ξα, ξβ)]2}
1

2 . (9)

We remark that ρ⊥ = 0 if and only if the normal connection is flat, which, as follows
from (8) and as already observed by Cartan [2], is equivalent to the simultaneous diago-

nalisability of all shape operators Aξ of Mn in M̃n+m.
For surfaces M2 in E3, the Euler inequality K ≤ H2, whereby K is the intrinsic

Gauss curvature of M2 and H2 is the extrinsic squared mean curvature of M2 in E3, at
once follows from the fact that K = k1k2 and H = 1

2 (k1 + k2) whereby k1 and k2 denote
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the principal curvatures of M2 in E3. And, obviously, K = H2 everywhere on M2 if

and only if the surface M2 is totally umbilical in E3, i.e. k1 = k2 at all points of M2, or

still, by a theorem of Meusnier, if and only if M2 is a part of a plane E2 or of a round

sphere S2 in E3. In the late 19 seventies, Wintgen proved that the Gauss curvature K

and the squared mean curvature H2 and the normal curvature K⊥ of any surface M2 in

E4 always satisfy the inequality

K ≤ H2 − K⊥, (10)

and that actually the equality holds if and only if the curvature ellipse of M2 in E4

is a circle [24]. We recall that the ellipse of curvature at a point p of M is defined

as Ep = {h(X, X)|X ∈ TpM, ‖X‖ = 1}. This Wintgen inequality between the most

important intrinsic and extrinsic scalar valued curvatures of surfaces M2 in E4 was

shown to hold more generally for all surfaces M2 in arbitrary dimensional space forms

M̃2+m(c), inclusive the above characterisation of the equality case, by Rouxel in 1981

[18] and by Guadalupe and Rodriguez in 1983 [11]. After these extensions of Wintgen

inequality (10), in 1999 De Smet, Dillen, Vrancken and one of the authors [6] proved the

Wintgen inequality ρ ≤ H2 − ρ⊥ + c for all submanifolds Mn of codimension 2 in all

real space forms M̃n+2(c) and characterised the equality as follows in terms of the shape

operators.

Theorem A. For any submanifold Mn of arbitrary dimension n and codimension 2 in

a real space form M̃n+2(c) of curvature c, at every point p of Mn:

ρ ≤ H2 − ρ⊥ + c, (11)

and equality holds if and only if there exist orthonormal bases of the tangent space TpM

and the normal space T⊥
p M with respect to which the corresponding Weingarten maps

are given by

A1 =















λ µ 0 . . . 0

µ λ 0 . . . 0
0 0 λ . . . 0
...

...
...

...

0 0 0 . . . λ















, A2 =















µ 0 0 . . . 0

0 −µ 0 . . . 0
0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 0















,

for some λ, µ ∈ R.

We remark that, in the case of trivial normal connection, (11) reduces to Chen’s inequality

ρ ≤ H2 + c established in [3]. The Wintgen inequality (11) was conjectured to hold for

all submanifolds Mn in all real space forms M̃n+m(c) in the same paper [6], and this is

called ”the DDVV conjecture” or ”the conjecture on Wintgen’s inequality”. Recently,

Choi and Lu [5] proved that this conjecture is true for all 3-dimensional submanifolds

of arbitrary dimensional real space forms M̃3+m(c), (m ≥ 2), and very recently, and
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independently, Lu [16] and Ge and Tang [10], settled this conjecture in general. From

[10] we recall the final result in this respect.

Theorem B. For any submanifold Mn of arbitrary dimension n, n ≥ 2, and with

arbitrary codimension m, m ≥ 2 in a real space form M̃n+m(c) of curvature c, at every

point p of Mn:

ρ ≤ H2 − ρ⊥ + c, (12)

and equality holds if and only if there exist orthonormal bases of the tangent space TpM

and the normal space T⊥
p M with respect to which the corresponding Weingarten maps

are given by

A1 =















λ µ 0 . . . 0

µ λ 0 . . . 0

0 0 λ . . . 0
...

...
...

...

0 0 0 . . . λ















, A2 =















µ 0 0 . . . 0

0 −µ 0 . . . 0

0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 0















,

for some λ, µ ∈ R, and all other shape operators do vanish identically.

Submanifolds satisfying the equality in the Wintgen inequality (12) are called Wintgen

ideal submanifolds. A justification for the terminology ”Wintgen ideal submanifolds” Mn

in M̃n+m(c) for those submanifolds Mn in M̃n+m(c) for which ρ = H2 − ρ⊥ + c holds

at all points p of Mn, is as follows: for all possible isometric immersions of Mn in space

forms M̃n+m(c), the value of the intrinsic scalar curvature ρ of M puts a lower bound

to all possible values of the extrinsic curvature H2 − ρ⊥ + c that M in any case can

not avoid to ”undergo” as a submanifold in M̃ . And, from this point of view, M is

called a Wintgen ideal submanifold, when it actually is able to achieve a realisation in M̃

such that this extrinsic curvature indeed everywhere assumes its theoretically smallest

possible value as given by its intrinsic normalised scalar curvature.

2. Deszcz symmetries of Wintgen ideal submanifolds

For a Riemannian manifold (Mn, g), let R also denote the (1, 1) curvature operator

R(X, Y ) := ∇X∇Y −∇Y ∇X −∇[X,Y ], besides the (0, 4) curvature tensor, such that, by

definition

R(X, Y, Z, W ) = g(R(X, Y )Z, W ), (13)

By the action of the curvature operator R working as a derivation on the curvature tensor

R, the following (0, 6) tensor R · R is obtained:

(R · R)(X1, X2, X3, X4; X, Y ) := (R(X, Y ) · R)(X1, X2, X3, X4)

= −R(R(X, Y )X1, X2, X3, X4) − R(X1, R(X, Y )X2, X3, X4)

−R(X1, X2, R(X, Y )X3, X4) − R(X1, X2, X3, R(X, Y )X4). (14)



ON THE INTRINSIC DESZCZ SYMMETRIES AND THE EXTRINSIC CHEN CHARACTER 113

It was recently shown by one of the authors and Haesen [12], that this tensor R · R can

be geometrically interpreted as giving the second order measure of the change of the sec-

tional curvatures K(p, π) for tangent 2D–planes π at points p after the parallel transport

of π all around infinitesimal co–ordinate parallelograms in M cornered at p. Thus, ac-
cording to [12], the semi–symmetric or Szabó symmetric spaces ([20] [21]), i.e. the spaces

satisfying R · R = 0, are the Riemannian manifolds (Mn, g) for which all sectional cur-

vatures remain preserved after parallel transport of their planes around all infinitesimal

co–ordinate parallelograms in M . The locally symmetric or Cartan symmetric spaces, i.e.

the Riemannian manifolds (Mn, g) for which ∇R = 0, constitute a proper subclass of the
Szabó symmetric spaces. Deszcz symmetric spaces or pseudo–symmetric spaces ([7] [23])

are characterised by the fact that their (0, 6) curvature tensor R · R is proportional to

their (0, 6) Tachibana tensor Q(g, R) := − ∧g ·R, whereby the metrical endomorphism

∧g acts on the (0, 4) tensor R as a derivation, i.e. by the fact that

R · R = L Q(g, R), (15)

for some function L : Mn → R, (whenever Q(g, R) 6= 0). We recall that Q(g, R) ≡ 0

characterises the real space forms.

From [12] we further mention the following. Two 2-planes π and π̄, spanned by vectors
−→u ,−→v and −→x ,−→y respectively, at a same point p of M , are said to be curvature dependent

if Q(g, R)(−→u ,−→v ,−→v ,−→u ;−→x ,−→y ) 6= 0, which condition is independent of the choices of bases

for π and π̄. For such planes, the double sectional curvature or the sectional curvature

of Deszcz or the Riemann curvature of Deszcz L(p, π, π̄) is defined as the real number
given by

L(p, π, π̄) :=
(R · R)(−→u ,−→v ,−→v ,−→u ;−→x ,−→y )

Q(g, R)(−→u ,−→v ,−→v ,−→u ;−→x ,−→y )
, (16)

(which is independent of the choices of bases for π and π̄); it is a scalar valued Rie-

mannian invariant. The knowledge of the tensor R · R is equivalent to the knowledge

of the sectional curvatures L(p, π, π̄) of Deszcz. And just like the geometrical interpre-

tation of the sectional curvatures K(p, π) of Riemann in terms of the parallelogramöıds

of Levi-Civita [15], also the sectional curvatures L(p, π, π̄) of Deszcz can be interpreted
in these terms (in this respect, we refer to [13] where in particular such interpretations

are obtained for the sectional curvatures as well as for the Ricci and conformal Weyl

curvatures of Deszcz in terms of the squaröıds of Levi–Civita). Finally the Deszcz sym-

metric spaces are characterised by the isotropy of the curvatures L(p, π, π̄), i.e. by the
property that at every point p of M the scalars L(p, π, π̄) are the same for all possible

pairs of curvature dependent tangent planes π and π̄ at p. In the present situation how-

ever there is no lemma of Schur, which then would further force this real valued function

L : M → R automatically to be constant; therefore, Kowalski and Sekizawa called the
pseudo–symmetric spaces for which the double sectional curvature L is indeed a constant,

independent of the planes π and π̄ as well as of the points p of M , the pseudo-symmetric

spaces of constant type L [14]. For instance, the standard models of the Thurston ge-

ometries [22] are the 3D–prototypes of the Deszcz–symmetric spaces with constant L [1].
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And similar studies concerning, in particular, the (0, 4) Weyl conformal curvature tensor

C and the (0, 2) Ricci tensor S have been carried through in the mean time, (characteris-
ing the corresponding ”Deszcz–symmetries” in terms of the isotropy of the corresponding
scalar curvature functions which depend on two planes and on a plane and a direction,
respectively). For a recent general exposition on conditions of Deszcz symmetry we refer
to [8].

It was shown in [17] that Wintgen ideal submanifolds Mn of dimension n > 3 and with
codimension 2 in real space forms M̃n+2(c) of curvature c intrinsically enjoy some cur-

vature symmetries in the sense of Deszcz, i.e. the Deszcz symmetries of their Riemann–
Christoffel curvature tensor R, of their Ricci curvature tensor S and of their conformal
curvature tensor of Weyl C. Such Wintgen ideal submanifolds Mn of M̃n+2(c) are Deszcz

symmetric if and only if Mn is totally umbilical in M̃n+2(c), in which case L = 0, or Mn

is minimal in M̃n+2(c), in which case L = c. Moreover, it was proved in [9] that the
Deszcz symmetry, or, equivalently, the property to be quasi–Einstein, for 3D–Wintgen

ideal submanifolds M3 in M̃3+m(c), can be characterised in terms of the intrinsic min-
imal values of the Ricci curvatures of M and of the extrinsic notions of the umbilicity,
the minimality and the pseudo–umbilicity of such M3 in M̃3+m(c). Therefore, concern-
ing the study of Deszcz symmetries of Wintgen ideal submanifolds only the situation of
dimension n > 3 in case of arbitrary codimension m remains to be considered. But, in
view of Theorems A and B, the proofs given in [17] obviously also hold for the general
codimensions, so that accordingly we can announce the following general results.

Theorem 1. A Wintgen ideal submanifold Mn of a real space form M̃n+m(c), (n >

3, m ≥ 2) is Deszcz symmetric, if and only if Mn is totally umbilical in M̃n+m(c), in

which case L = 0, or Mn is minimal in M̃n+m(c), in which case L = c.

Theorem 2. A Wintgen ideal submanifold Mn of M̃n+m(c), (n > 3, m ≥ 2), is Deszcz

Ricci–symmetric, i.e. satisfies R · S = LS Q(g, S) for some function LS : Mn → R, if

and only if Mn is Deszcz symmetric.

Theorem 3. Every Wintgen ideal submanifold Mn of M̃n+m(c), (n > 3, m ≥ 2), is

a Riemannian manifold with pseudo–symmetric conformal Weyl tensor, i.e. satisfies

C · C = LC Q(g, C) for some function LC : Mn → R.

Proposition 4. A Wintgen ideal submanifold Mn of M̃n+m(c), (n > 3, m ≥ 2) is

minimal if and only if the pseudo–symmetry function of its Weyl conformal curvature

tensor is given by

LC =
n − 3

(n − 1)(n − 2)
(c − Kinf ).

3. Chen submanifolds

For submanifolds Mn of M̃n+m the notion of allied vector field of a given normal
vector field of Mn is defined in [4] and, accordingly, for any submanifold Mn in M̃n+m,
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for a local orthonormal frame {ξ1 =
−→
H

‖
−→
H‖

, ξ2, . . . , ξm} whereby
−→
H is the mean curvature

vector field of Mn in M̃n+m,

a(
−→
H ) =

1

n

m
∑

β=2

tr(A1 Aβ)ξβ , (17)

is the allied vector field of
−→
H or allied mean curvature vector field of Mn in M̃n+m. A

submanifold Mn is called an A–submanifold or a Chen submanifold if the allied mean

curvature vector field of Mn identically vanishes, a(
−→
H ) ≡

−→
0 . By a result of B. Rouxel

[19], a submanifold Mn of M̃n+m is a Chen submanifold if and only if the mean curvature

vector at any point p of M ,
−→
H (p), is an axis of symmetry of the (m − 2)–nd polar

of its Kommerell hyperquadric curvature image in the normal space T⊥
p M . Minimal

submanifolds, pseudo–umbilical submanifolds and hypersurfaces are Chen submanifolds

in a trivial way.

For Wintgen ideal submanifolds Mn in real space forms M̃n+m(c), from the specific

forms of the shape operators of these submanifolds given in Theorem B, we have

A1 A2 =















λµ −µ2 0 . . . 0
µ2 −λµ 0 . . . 0

0 0 0 . . . 0
...

...
...

...

0 0 0 . . . 0















, A1 Aγ = 0, (γ ∈ {3, . . . , m}),

such that their allied mean curvature vector field a(
−→
H ) clearly always is identically zero.

This yields the following.

Theorem 5. Every Wintgen ideal submanifold Mn of arbitrary dimension n ≥ 2 and

codimension m ≥ 2 in a real space form M̃n+m(c), is a Chen submanifold of M̃n+m(c).
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[20] Z. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y ) ·R = 0. I. The local
version, J. Diff. Geom. 17 (1982), 531–582.
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