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EXISTENCE OF SOLUTIONS FOR NEUTRAL FUNCTIONAL

INTEGRODIFFERENTIAL EQUATIONS

R. MURUGESU AND S. SUGUNA

Abstract. In this paper, by using fractional power of operators and Sadovskii’s

fixed point theorem, we study the existence of mild and strong solutions of nonlin-

ear neutral functional integrodifferential equations. The results we obtained are a

generalization and continuation of the recent results on this issue.

1. Introduction

In this paper, we study the existence of solutions for nonlinear neutral functional
integrodifferential equations. More precisely, we consider the following Cauchy problem:

d

dt
[x(t) + F (t, x(t), x(b1(t)), . . . , x(bm(t))] + Ax(t)

= G(t, x(t), x(a1(t)), . . . , x(an(t))) + K(t, x(t),

∫ t

0

k(t, s, x(s))ds), 0 ≤ t ≤ a

x(0) = x0 (1)

where −A generates an analytic semigroup, and F , G, K, and k are given functions to

be specified later. The Cauchy problem was considered by Byszewski [4] and the impor-
tance of local conditions in different fields has been discussed in [4] and the references
therein. In the past several years theorems about existence, uniqueness and stability

of differential and functional differential abstract evolution Cauchy problem have been
studied by Byszewski and Lakshmikantham [7], Byszewski and Akca [6], Byszewski [4, 5],
Balachandran and Chandrasekaran [1], Balachandran and Murugesu [2, 3] Ntouyas and
Tsamatos [11] and Lin and Liu [9].

In this paper, we extend this problem to neutral functional integrodifferential equa-
tions and discuss the existence results of solutions for (1) by using Sadovskii’s fixed point
theorem [13]. The result obtained is a generalization and a continuation of some results

reported in [1, 2, 3, 4, 5, 6, 7, 9, 11]. Particularly in paper [6], when discussing the
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existence of a classical solution the authors required the condition that the mild solu-

tion x(b(·)) is Lipschitz continuous. But this condition is very difficult to verify and

so is almost impossible to apply. To take away this unsatisfactory condition, we di-

rectly construct the bounded closed convex set B = {x ∈ E : ‖x‖ ≤ k, ‖x(t) − x(s)‖ ≤

L∗‖t− s‖, t, s ∈ [0, a]} and then prove that the operator P has a fixed poinht on this set.

In addition, our result can also be regarded as an extension of the corresponding results

on classical Cauchy problem in [8, 12].

2. Preliminaries

Let −A be the infinitesimal generator of a compact analytic semigroup of uniformly

bounded linear operators T (t) defined in the Banach space X . Let 0 ∈ ρ(A), then define

the fractionl power Aα, for 0 ≤ α ≤ 1, as a closed linear operator on its domain D(Aα)

which is dense in X . Further D(A) is a Banach space under the norm

‖x‖α = ‖Aαx‖, x ∈ D(Aα)

which we denote by Xα. Then for each 0 < α ≤ 1, Xα → Xβ for 0 < β < α ≤ 1 and the

imbedding is compact whenever the resolvent operator of A is compact. We assume that

(a) there is a M ≥ 1 such that ‖T (t)‖ ≤ M , for all 0 ≤ t ≤ a;

(b) for any a > 0, there exists a positive constant Cα such that

‖AαT (t)‖ ≤
Cα

tα
, 0 < t ≤ a (2)

For our convenience let us take F (0, x(0), x(b1(0)), . . . , x(bm(0)) = 0. Let M0 = ‖A−β‖

assume the following conditions:

(H1) F : [0, a]×Xm+1 → X is a continuous functions and there exists a β ∈ (0, 1) and

L, L1 > 0 such that the function AβF satisfies the Lipschitz condition:

‖AβF (s1, x0, x1, . . . , xm) − AβF (s2, x̄0, x̄1, . . . , x̄m)

≤ L(|s1 − s2| + max
i=0,...,m

‖xi − x̄i‖)

for any 0 ≤ s1, s2 ≤ a , xi, x̄i ∈ X , i = 0, 1, . . . , m and the inequality

‖AβF (t, x0, x1, . . . , xm)‖ ≤ L1(max{‖xi‖ : i = 0, 1, . . . , m} + 1) (3)

holds for any (t, x0, x1, . . . , xm) ∈ [0, a]× Xm+1

(H2) The function G : [0, a] × Xn+1 → X satisfies the following conditions:

(i) For each t ∈ [0, a], the function G(t, ·) : ×Xn+1 → X is continuous and for

each (x0, x1, . . . , xn) ∈ Xn+1 the function G(·, x0, x1, . . . , xn) : [0, a] → X is

strongly measurable.
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(ii) For each positive number k ∈ N , there is a positive function gk ∈ L1([0, a])
such that

sup
‖x0‖,...,‖xn‖≤k

‖G(t, x0, x1, . . . , xn)‖ ≤ gk(t)

and

lim
k→∞

1

k

∫ a

0

gk(s)ds = γ < ∞

(H3) The function K : [0, a] × X × X → X satisfies the following conditions:

(i) For each t ∈ [0, a], the function K(t, ·, ·) : X×X → X and for each x, y ∈ X ,
K(·, x, y) : [0, a] → X is strongly measurable.

(ii) For each positive number r ∈ N , there exists a positive function qr ∈
L1([0, a]) such that

sup
‖x‖≤r

‖K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ‖ ≤ qr(s)

and

lim
r→∞

1

r

∫ a

0

qr(s)ds = γ1 < ∞

(H4) ai, bj ∈ C([0, a]; [0, a]), i = 1, · · · , n, j = 1, · · · , m. g ∈ C(E; X), here and here-
after E = C([0, a]; X) and g is completely continuous.

3. Existence of mild solution

Definition 3.1. A continuous function x(·) : [0, a] → X is said to be a mild solution
of the Cauchy problem (1), if the function AT (t − s)F (s, x(s), x(b1(s)), . . . , x(bm(s))),
s ∈ [0, a) is integrable on [0, a) and the integral equation

x(t) = T (t)[x0] − F (t, x(t), x(b1(t)), . . . , x(bm(t)))

+

∫ t

0

AT (t − s)F (s, x(s), x(b1(s)), . . . , x(bm(s)))ds

+

∫ t

0

T (t− s)G(s, x(s), x(a1(s)), . . . , x(am(s)))ds

+

∫ t

0

T (t− s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds (4)

Theorem 3.1. If assumptions (H1)−(H3) are sastified and x0 ∈ X, then the Cauchy

problem (1) has a mild solution provided that

L0 := L[M0 +
1

β
C1−βaβ] < 1 (5)
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and

(γ + γ1)M + M0L1 +
1

β
C1−βaβL1 < 1 (6)

where M0 = ‖A−β‖.

Proof. For the sake of brevity, we rewrite that

(t, x(t), x(b1(t)), . . . , x(bm(t))) = (t, v(t))

and

(t, x(t), x(a1(t)), . . . , x(an(t))) = (t, u(t))

Define the operator P on E by the formula

(Px)(t) = T (t)[x0] − F (t, v(t))

+

∫ t

0

AT (t − s)F (s, v(s))ds

+

∫ t

0

T (t − s)G(s, u(s))ds

+

∫ t

0

T (t − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds, 0 ≤ t ≤ a.

For each positive integer k, let

Bk = {x ∈ E : ‖x(t)‖ ≤ k, 0 ≤ t ≤ a}

Then for each k, Bk is clearly a bounded closed convex set in E. Since by (2) and (3) the

following relation holds:

‖AT (t− s)F (s, v(s))‖ ≤ ‖A1−βT (t − s)AβF (s, v(s))‖

≤
C1−β

(t − s)1−β
L1(k + 1)

then from Bocher’s theorem [10] it follows that AT (t − s)F (s, v(s)) is integrable on

[0, a], so P is well defined on Bk. We claim that there exists a positive integer k such

that PBk ⊆ Bk. If it is not true, then for each positive integer k, there is a function

xk(·) ∈ Bk, but Pxk /∈ Bk, that is ‖Pxk(t)‖ > k for some t(k) ∈ [0, a], where t(k) denotes

t is dependent of k. However, on the other hand, we have

k < ‖Pxk(t)‖

= ‖T (t)[x0] − F (t, vk(t)) +

∫ t

0

AT (t − s)F (s, vk(s))ds

+

∫ t

0

T (t− s)G(s, uk(s))ds +

∫ t

0

T (t − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds‖
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≤ ‖T (t)[x0]‖ − ‖A−βAβF (t, vk(t))‖ + ‖

∫ t

0

A1−βT (t − s)AβF (s, vk(s))ds‖

+‖

∫ t

0

T (t − s)G(s, uk(s))ds‖ + ‖

∫ t

0

T (t − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds‖

≤ M [‖x0‖] + M0L1(k + 1) +

∫ t

0

C1−β

(t − s)1−β
L1(k + 1)ds

+M

∫ a

0

gk(s)ds + M

∫ a

0

qr(s)ds

Dividing on both sides by k and taking the lower limit as k → +∞, we get

(γ + γ1)M + M0L1 +
1

β
C1−βaβL1 ≥ 1.

This contradicts (6). Hence for some positive integer k, PBk ⊆ Bk.
Next we will show that the operator P has a fixed point on Bk, which implies Eq. (1)

has a mild solution. To this end, we decompose P as P = P1 + P2, where the operators
P1, P2 are defined on Bk, respectively, by

(P1x)(t) = −F (t, v(t)) +

∫ t

0

AT (t − s)F (s, v(s))ds

and

(P2x)(t) = T (t)[x0] +

∫ t

0

T (t − s)G(s, u(s))ds

+

∫ t

0

T (t− s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds

for 0 ≤ t ≤ a, and we will verify that P1 is a contraction while P2 is a compact operator.
To prove that P1 is a contraction, we take x1, x2 ∈ Bk. Then for each t ∈ [0, a] and

by condition (H1) and (5), we have

‖(P1x1)(t) − (P1x2)(t)‖

≤ ‖F (t, v1(t)) − F (t, v2(t))‖ + ‖

∫ t

0

AT (t − s)[F (s, v1(s)) − F (s, v2(s))]ds‖

≤ M0L sup
0≤s≤a

‖x1(s) − x2(s)‖ +

∫ t

0

C1−β

(t − s)1−β
Lds sup

0≤s≤a

‖x1(s) − x2(s)‖

≤ L[(M0 +
1

β
C1−βaβ ] sup

0≤s≤a

‖x1(s) − x2(s)‖

= L0 sup
0≤s≤a

‖x1(s) − x2(s)‖

Thus
‖Px1 − Px2‖ = L0‖x1 − x2‖

So by assumption 0 < L0 < 1, we see that P1 is a contraction.
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To prove that P2 is compact, firstly we prove that P2 is continuous on Bk. Let

{xn} ⊆ Bk with xn → x in Bk, then by (H2)(i), we have

G(s, un(s)) → G(s, u(s)), n → ∞.

K(t, xn(t),

∫ t

0

k(t, s, xn(s))ds) → K(t, x(t),

∫ t

0

k(t, s, x(s))ds) as n → ∞

Since

‖G(s, un(s)) − G(s, u(s))‖ ≤ 2gk(s),

‖K(t, xn(t),

∫ t

0

k(t, s, xn(s))ds) − K(t, x(t),

∫ t

0

k(t, s, x(s))ds)‖ ≤ 2qr(s),

by the dominated convergence theorem, we have

‖P2xn − P2x‖ = sup
0≤t≤a

‖T (t) +

∫ t

0

T (t − s)[G(s, un(s)) − G(s, u(s))]ds

+

∫ t

0

T (t − s)[K(s, xn(s),

∫ s

0

k(s, τ, x(τ))dτ)

−K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds‖

→ 0 as n → ∞

i.e. P2 is continuous.

Next, we prove that {P2x : x ∈ Bk} is a family of equicontinuous functions. To see
this we fix t1 > 0 and let t2 > t1 and ǫ > 0 be enough small. Then

‖(P2x)(t2) − (P2x)(t1)‖

≤ ‖T (t2) − T (t1)‖‖x0‖

+

∫ t1−ǫ

0

‖T (t2 − s) − T (t1 − s)‖‖G(s, u(s))‖ds

+

∫ t1

t1−ǫ

‖T (t2 − s) − T (t1 − s)‖‖G(s, u(s))‖ds

+

∫ t2

t1

‖T (t2 − s)‖‖G(s, u(s))‖ds

+

∫ t1−ǫ

0

‖T (t2 − s) − T (t1 − s)‖‖K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)‖ds

+

∫ t1

t1−ǫ

‖T (t2 − s) − T (t1 − s)‖‖K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)‖ds
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+

∫ t2

t1

‖T (t2 − s)‖‖K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)‖ds

Noting that ‖G(s, u(s)‖ ≤ gk(s) and gk(s) ∈ L1, we see that ‖(P2x)(t2)−(P2x)(t1)‖ tends

to zero independently of x ∈ Bk as t2 − t1 → 0 since the compactness of T (t)(t > 0)
implies the continuity of T (t)(t > 0) in t in the uniform operators topology. We can

prove that the functions P2x, x ∈ Bk are equicontinuous at t = 0. Hence P2 maps Bk

into a family of equicontinuous functions.

It remains to prove that V (t) = {(P2x)(t) : x ∈ Bk} is relatively compact in X . V (0)
is relatively compact in X . Let 0 < t ≤ a be fixed and 0 < ǫ < t. For x ∈ Bk, we define

(P2,ǫx)(t) = T (t)[x0] +

∫ t−ǫ

0

T (t − s)G(s, u(s))ds

+

∫ t−ǫ

0

T (t − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds

= T (t)[x0] + T (ǫ)

∫ t−ǫ

0

T (t − ǫ − s)G(s, u(s))ds

+T (ǫ)

∫ t−ǫ

0

T (t− ǫ − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds

Then from the compactness of T (ǫ)(ǫ > 0), we obtain Vǫ(t) = {(P2,ǫx)(t) : x ∈ Bk} is
relatively compact in X for every ǫ, 0 < ǫ < t. Moreover, for every x ∈ Bk, we have

‖(P2x)(t) − (P2,ǫx)(t)‖ =

∫ t

t−ǫ

‖T (t − s)G(s, u(s))‖ds

+

∫ t

t−ǫ

‖T (t− s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]‖ds

≤ M

∫ t

t−ǫ

gk(s)ds + M

∫ t

t−ǫ

qr(s)ds

Therefore, there are relatively compact sets arbitrarily close to the set V (t). Hence the
set V (t) is also relatively compact in X .

Thus, by Arzela-Ascoli theorem, P2 is a compact operator. Those arguments enable
us to conclude that P = P1 +P2 is a condensing map Bk, and by the fixed point theorem

of Sadovskii there exists a fixed point x(·) for P on Bk. Therefore, the Cauchy problem
(1) has a mild solution, and the proof is completed.

4. Existence of strong solution

Definition 4.1. A function x(·) : [0, a] → X is said to be a strong solution of the local

Cauchy problem (1), if:

(1) x is continuous on [0, a] and differentiable a.e. on (0, a], x′ ∈ L1([0, a]; X);
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(2) x satisfies

d

dt
[x(t) + F (t, x(t), x(b1(t)), . . . , x(bm(t)))] + Ax(t) = G(t, x(t), x(a1(t)), . . . , x(an(t)))

+K(t, x(t),

∫ t

0

k(t, s, x(s))ds)

a.e. on (0, a], and

x(0) = x0.

Theorem 4.1. Let X be a reflexive Banach space. Suppose conditions (H1) and (H3)

are satisfied with F ([0, a] × Xm+1) ⊂ D(A), and the function AF (0, ·) : Xm+1 → D(A)

maps bounded sets into bounded sets. Additionally, the following conditions hold:

(H4) G(·, ·) is Lipschitz, i.e. there exists a constant L3 > 0, such that

‖G(s, x0, . . . , xn) − G(s̄, x̄0, . . . , x̄n)‖ ≤ L3[|s − s̄| + max
i=0,...,n

‖xi, x̄i‖]

for any (s, x0, . . . , xn), (s̄, x̄0, . . . , x̄n) ∈ [0, a]×Xn+1. Moreover, there is an L4 > 0

such that

‖G(t, x0, . . . , xn)‖ ≤ L4(max{‖xi‖ : i = 0, . . . , n} + 1)

for any (t, x0, . . . , xn) ∈ [0, a] × Xn+1;

(H5) There exist constants L5,L6 > 0, such that

‖K(t1, x1, y1) − K(t2, x2, y2)‖ ≤ L5|t1 − t2| + L6(‖x1 − x2‖ + ‖y1 − y2‖)

and

‖k(t, s, x) − k(τ, s, x)‖ ≤ L7|t − τ |

for any t, τ ∈ [0, a] and x ∈ X .

(H6) There are constants 0 < l1, l2 ≤ 1, such that

‖bi(s) − bi(s̄)‖ ≤ l1|s − s̄|,

‖aj(s) − aj(s̄)‖ ≤ l2|s − s̄|,

for s,s̄ ∈ [0, a], i = 1, . . . , m and j = 1, . . . , n;

(H7) xo ∈ D(A) and
∫ t

0
k(t, τ, x(τ))dτ ≤ L8.

(H8)

M∗ = [(M0 +
1

β
aβC1−β)L + M(aL3 + aL6 + aL7(a + 1)] < 1 (7)
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Then the Cauchy problem (1) has a strong solution on [0, a].

Proof. Let P be the operator defined in the proof of Theorem 3.1. Consider the set

B = {x ∈ E : ‖x‖ ≤ k, ‖x(t) − x(s)‖ ≤ L∗|t − s|, t, s ∈ [0, a]}

for some positive constant k and L∗ large enough. It is cleat that B is a convex, closed
and nonempty set. We shall prove that P has a fixed point on B. Obviously, from the
proof of Theorem 3.1. it is sufficient to show that for any x ∈ B,

‖(Px)(t2) − (Px)(t1)‖ ≤ L∗|t2 − t1|, t2, t1 ∈ [0, a].

In fact,

‖(Px)(t2) − (Px)(t1)‖

≤ ‖[T (t2) − T (t1)][x0]‖ + ‖F (t2, v(t2)) − F (t1, v(t1))‖

+‖

∫ t2

0

AT (t2 − s)F (s, v(s)) −

∫ t1

0

AT (t1 − s)F (s, v(s))‖

+‖

∫ t2

0

T (t2 − s)G(s, u(s)) −

∫ t1

0

T (t1 − s)G(s, u(s))ds‖

+‖

∫ t2

0

T (t2 − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds

−

∫ t1

0

T (t1 − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds‖

≤ ‖[T (t2) − T (t1)][x0]‖ + ‖A−β[AβF (t2, v(t2))‖

−AβF (t1, v(t1))] + ‖

∫ t1

0

A1−βT (t1 − s)[AβF (s + t2 − t1, v(s + t2 − t1))

−AβF (s, v(s)]ds +

∫ t2−t1

0

A1−βT (t2 − s)AβF (s, v(s))ds‖

+‖

∫ t1

0

T (t1 − s)[G(s + t2 − t1, u(s + t2 − t1)) − G(s, u(s))]ds‖

+‖

∫ t2−t1

0

T (t2 − s)G(s, u(s))ds‖ + ‖

∫ t1

0

T (t1 − s)[K(s + t2 − t1, x(s + t2 − t1),

∫ s+t2−t1

0

k(s, τ, x(τ))dτ) − K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds‖

+‖

∫ t2−t1

0

T (t2 − s)[K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)]ds‖

Then, from conditions (H1), (H4), (H5), (H1) the boundedness of AF (0, ·) it yields that

‖(Px)(t2) − (Px)(t1)‖

≤ M‖A[x0]‖|t2 − t1|
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+M0L[|t2 − t1| + L∗|t2 − t1|]

+
1

β
C1−βaβL[|t2 − t1| + L∗|t2 − t1|]

+
1

β
C1−βL1(k + 1)|tβ2 − tβ1 |

+aML3[|t2 − t1| + L∗|t2 − t1|]

+ML4(k + 1)|t2 − t1|

+aM [(L5|t2 − t1| + L6L
∗|t2 − t1|)

+aL7(|t2 − t1| + L∗|t2 − t1|)

+L7(|t2 − t1| + L∗|t2 − t1|)

+Mqr(s)

≤ {C∗ + [(M0 +
1

β
aβC1−β)L + M(aL3 + L6(a + 1) + L7(a + 2)]L∗}|t2 − t1|

where C∗ is a constant independent of L∗ and x ∈ B. So it follows from (7) that

‖(Px)(t2) − (Px)(t1)‖ ≤ L∗|t2 − t1| , t2, t1 ∈ [0, a], as long as L∗ is large enough (≥

C∗/(1− M∗)). Thus, P has a fixed point x which is a mild solution of Eq. (1). For this

x(·), let

f(t) = F (t, x(t), x(b1(t)), . . . , x(bm(t)))

o(t) = T (t)[x0 + F (0, x(0), x(b1(0)), . . . , x(bm(0)))]

p(t) =

∫ t

0

AT (t − s)F (s, x(s), x(b1(s)), . . . , x(bm(s)))ds

q(t) =

∫ t

0

T (t − s)G(s, x(s), x(a1(s)), . . . , x(an(s)))ds

r(t) =

∫ t

0

T (t − s)K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)ds

Then they are all Lipschitz continuous, respectively. Since x is Lipschitz continuous on

[0, a] and the space X is reflexive, we see that x(·) is a.e. differentiable on (0, a] and that

x′(·) ∈ L1([0, a]; X). The same argument shows that f ,p, q and r also have this property.

On the other hand, by the standard arguments we can obtain that p(t) ∈ D(A),

q(t) ∈ D(A), r(t) ∈ D(A) and

p′(t) = AF (t, x(t), x(b1(t)), . . . , x(bm(t)))

−A

∫ t

0

AT (t − s)F (s, x(s), x(b1(s)), . . . , x(bm(s)))ds,

q′(t) = G(t, x(t), x(a1(t)), . . . , x(an(t)))

−A

∫ t

0

T (t− s)G(s, x(s), x(a1(s)), . . . , x(an(s)))ds
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r′(t) = K(t, x(t),

∫ t

0

k(t, s, x(s))ds) − A

∫ t

0

T (t − s)K(s, x(s),

∫ s

0

k(s, τ, x(τ))dτ)ds

So we have that x′ satisfies a.e. that

d

dt
[x(t) + F (t, x(t), x(b1(t)), . . . , x(bm(t))]

=
d

dt
T (t)[x0 + F (0, x(0), x(b1(0)), . . . , x(bm(0))]

+p′(t) + q′(t) + r′(t)

= AT (t)[x0 + F (0, x(0), x(b1(0)), . . . , x(bm(0))]

+AF (t, x(t), x(b1(t)), . . . , x(bm(t))) − Ap(t)

+G(t, x(t), x(a1(t)), . . . , x(an(t))) − Aq(t)

+K(t, x(t),

∫ t

0

k(t, s, x(s))ds) − Ar(t)

= −Ax(t) + G(t, x(t), x(a1(t)), . . . , x(an(t)))

+K(t, x(t),

∫ t

0

k(t, s, x(s))ds)

This shows that x(·) is also a strong solution of the local Cauchy problem (1). Thus the

proof is completed.
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