DIFFERENTIALS IN CERTAIN CLASSES OF GRAPHS

P. ROUSHINI LEELY PUSHPAM AND D. YOKESH

Abstract

Let $X \subset V$ be a set of vertices in a graph $G=(V, E)$. The boundary $B(X)$ of X is defined to be the set of vertices in $V-X$ dominated by vertices in X, that is, $B(X)=(V-X) \cap N(X)$. The differential $\partial(X)$ of X equals the value $\partial(X)=|B(X)|-|X|$. The differential of a graph G is defined as $\partial(G)=$ $\max \{\partial(X) \mid X \subset V\}$. It is easy to see that for any graph G having vertices of maximum degree $\Delta(G), \partial(G) \geq \Delta(G)-1$. In this paper we characterize the classes of unicyclic graphs, split graphs, grid graphs, k-regular graphs, for $k \leq 4$, and bipartite graphs for which $\partial(G)=\Delta(G)-1$. We also determine the value of $\partial(T)$ for any complete binary tree T.

1. Introduction

Let $G=(V, E)$ be a graph. For graph theoretic terminology not given here, refer to Harary [2]. For a vertex $v \in V$, the open neighborhood of v is the set $N(v)=\{u \in V \mid u v \in$ $E\}$ and the closed neighborhood is the set $N[v]=N(v) \cup\{v\}$. For a set $S \subseteq V$, its open neighborhood is $N(S)=\cup_{v \in S} N(u)$ and the closed neighborhood is $N[S]=N(S) \cup S$.

The boundary $B(S)$ of a set S is defined to be the set of vertices in $V-S$ dominated by vertices in S, that is $B(X)=(V-S) \cap N(S)$. The differential $\partial(S)$ of S equals the value $\partial(S)=|B(S)|-|S|$. The differential of a graph of G is defined as $\partial(G)=$ $\max \{\partial(S) \mid S \subset V\}$. As reported in [4], the differential of a set was first defined by Hedetniemi [3], and later studied by Mashburn et al. [4] and Goddard and Henning [1]. The minimum differential of an independent set was also studied by Zhang [6].

It is easy to see that for any graph G having vertices of maximum degree $\Delta(G)$, $\partial(G) \geq \Delta(G)-1$. We say that a graph G is a $(\Delta-1)$-differential graph if $\partial(G)=\Delta(G)-1$. In this paper we characterize the classes of unicyclic graphs, split graphs, grid graphs, k-regular graphs, for $k \leq 4$, and bipartite graphs that are $(\Delta-1)$-differential. We also determine the value of $\partial(T)$ for any complete binary tree T.

[^0]
2. Properties of $(\Delta-1)$-differential graphs

In this section we determine several properties of $(\Delta-1)$-differential graphs that can be used to characterize the five classes of $(\Delta-1)$-differential graphs in the next section.

Theorem 1. Let $G=(V, E)$ be a connected $(\Delta-1)$-differential graph, let $v \in V$ be a vertex of maximum degree, that is, $|N(v)|=\Delta(G)$, and let H be the subgraph of G induced by $V-N[v]$. Then the following properties hold:
(i) Each connected component of H is either a K_{1} or a K_{2}.
(ii) Each vertex $u \in N(v)$ has at most two neighbors in H.
(iii) If S is the set of all vertices in $N(v)$ having two neighbors in H, and no two members of S have a common neighbor in H, then $|S| \leq \Delta-2$.
(iv) The diameter of G is at most 6 .

Proof. Since the theorem clearly holds when $\Delta(G)=1$, we assume that $\Delta(G) \geq 2$.
(i) Let v be a vertex of maximum degree, i.e., $|N(v)|=\Delta(G)$, and assume that $D=\{v\}$ is a ∂-set. Let x be a vertex in H, the subgraph of G induced by the vertices in $V-N[v]$. If x has more than one neighbor in H then $\partial(D \cup\{x\})>\partial(D)$, contradicting our assumption that D is a ∂-set. Hence, each component of H has maximum degree at most 1 , and therefore each component H is either a K_{1} or a K_{2}.
(ii) If any vertex $u \in N(v)$ has three or more neighbors in H then $\partial(D \cup\{u\})>\partial(D)$, again contradicting our assumption that D is a ∂-set.
(iii) Let $S \subseteq N(v)$ be the set of neighbors of v, each of which has two neighbors in H and no two vertices in S have a common neighbor in H. In this case, if $|S|=\Delta(G)$ then $\partial(S)>\partial(D)$, again contradicting our assumption that D is a ∂-set.
(iv) Since G is connected, and since by (a) each connected component of H is either a K_{1} or a K_{2}, it follows that every vertex in H is within distance at most 2 to a vertex in $N(v)$, and therefore is within distance at most 3 to the vertex v of maximum degree $\Delta(G)$. Therefore, every pair of vertices in G are within distance 6 of each other and $\operatorname{diam}(G) \leq 6$.

3. Characterizations of five classes of $(\Delta-1)$-differential graphs

In this section we characterize the classes of unicyclic graphs, split graphs, grid graphs, k-regular graphs, for $k \leq 4$, and bipartite graphs that are ($\Delta-1$)-differential graphs.

3.1. Unicylic graphs

Definition 2. A graph G with $|V|=n$ is a unicyclic graph if it is connected and $|E|=n$; or equivalently, if it is connected and contains exactly one cycle.

In this section we provide a characterization of the unicyclic graphs that are ($\Delta-1$)differential graphs. In order to do this we need the family \mathcal{T} of rooted trees and theorem as defined and proved by Mashburn et al. [4].

For a rooted tree T, let T_{u} denote the subtree of T rooted at vertex u. Let P_{n} denote the path on n vertices.

The family \mathcal{T} consists of all trees T rooted at a vertex v of maximum degree having the following properties:
(i) each vertex $u \in N(v)$ has $\operatorname{deg}(u) \leq 3$,
(ii) the connected components of $T-N[v]$ are K_{1} 's and K_{2} 's, and
(iii) either $N(v)$ contains at least two vertices u for which $T_{u} \in\left\{K_{1}, K_{2}\right\}$ or $N(v)$ contains exactly one leaf and no vertex of $N(v)$ has degree three.

Theorem 3.([4]) A tree T is a ($\Delta-1$)-differential tree if and only if $T \in \mathcal{T}$.
Theorem 4. A unicyclic graph G with cycle C_{n} is a $(\Delta-1)$-differential graph if and only if
(i) $3 \leq n \leq 5$, and
(ii) there exists an edge $e \in C_{n}$ and a vertex of maximum degree in G that is not incident to e such that $G-e \in \mathcal{T}$.

Proof. Let G be a $(\Delta-1)$-differential unicyclic graph having a vertex $v \in V$ of degree $\Delta(G)$. If $v \in V\left(C_{n}\right)$, then by Theorem $1(\mathrm{i}), 3 \leq n \leq 5$. If $v \notin V\left(C_{n}\right)$ we claim that $n=3$. By Theorem 1(ii), each component of the subgraph H induced by the vertices in $V-N[v]$ is a K_{1} or a K_{2}. Hence, v is adjacent to at least one vertex of C_{n} and $n=3$. Since G is a $(\Delta-1)$-differential unicyclic graph, $D=\{v\}$ is a ∂-set. Let e be an edge in C_{n} such that there is a vertex of maximum degree not incident to e. Then $G-e$ is a tree and $\partial(G-e)=(\Delta-1)$. Hence, by Theorem 3, $G-e \in \mathcal{T}$.

Conversely, let G satisfy the given conditions. Let e be an edge in C_{n} such that $G-e \in \mathcal{T}$, where there is a vertex v of maximum degree not incident to e. Since $G-e \in \mathcal{T}$, by Theorem $3, \partial(G-e)=\Delta(G-e)-1$ and $D=\{v\}$ is a ∂-set of $G-e$. Hence, by the choice of e the differential of G does not increase. Therefore, G is a ($\Delta-1$)-differential graph.

3.2. Split graphs

In this section we provide a characterization of the class of $(\Delta-1)$-differential split graphs.

Definition 5. A graph $G=(V, E)$ is called a split graph if the vertex set has a bipartition $V=V_{1} \cup V_{2}$, where V_{1} is an independent set (no two vertices in V_{1} are adjacent) and the subgraph $G\left[V_{2}\right]$ induced by V_{2} is a complete graph (every pair of vertices are adjacent).

Theorem 6. A split graph G with bipartition $\left(V_{1}, V_{2}\right)$ is a $(\Delta-1)$-differential graph if and only if there exist $v \in V_{2}$ with maximum degree $\Delta(G)$ such that the following conditions hold.
(i) Each $u \in V_{2}-\{v\}$ has at most two neighbours in $V_{1}-N(v)$.
(ii) If S is the subset of $V_{2}-\{v\}$ such that each vertex in S has exactly two neighbours in $V_{1}-N(v)$ and no two members of S have a common neighbour in $V_{1}-N(v)$ then S does not dominate $N(v)-\{x\}, x \in V_{1}$.

Proof. Let G be a $(\Delta-1)$-differential split graph having a vertex $v \in V_{2}$ of degree $\Delta(G)$.
Since the theorem clearly holds when $\Delta(G)=1$, we assume that $\Delta(G) \geq 2$.
Suppose there exist a vertex $u \in V_{2}-\{v\}$ which has more than two neighbours in $V_{1}-N(v)$, then $\partial\{u, v\} \geq \Delta-1+3-2=\Delta>\Delta(G)-1=\partial(G)$, which is a contradiction. Hence each vertex in $V_{2}-\{v\}$ has at most two neighbours in $V_{1}-N(v)$. Let S be a subset of $V_{2}-\{v\}$ satisfying condition (ii). Suppose S dominates $N(v)-\{x\}$, then $\partial(S)=2|S|+\Delta-1-|S|-|S|+1=\Delta>\Delta(G)-1=\partial(G)$, which is a contradiction. Hence condition (ii) holds.

Conversely let G satisfy the given conditions. Now $\partial(G) \geq \partial(\{v\})=\Delta(G)-1$. Now to prove $\partial(G) \leq \Delta(G)-1$. Let D be a ∂-set, assume $v \in D$. Clearly adding another vertex to D does not increase the differential of G. Hence $D=\{v\}$ and $\partial(G)=\Delta(G)-1$. If $v \notin D$, adding a vertex of V_{1} to D does not increase the differential of G.

If $D=V_{2}-\{v\}$, then
$\partial(G) \leq \partial(D) \leq 2\left(\left|V_{2}\right|-1\right)+\Delta-\left(\left|V_{2}\right|-1\right)-2-\left(\left|V_{2}\right|-1\right) \leq \Delta-2 \leq \Delta-1$.
Hence $\partial(G)=\Delta(G)-1$.

3.3. Grid graphs

In this section we determine all $(\Delta-1)$-differential grid graphs.
Definition 7. The Cartesian product $G \square H$ of a graph $G=(V, E)$ and a graph $H=$ (W, F) is the graph with vertex set equal to the Cartesian product $V \square W$ and two vertices (u, v) and (w, x) are adjacent in the Cartesian product graph if and only if either $u=w$ and v is adjacent to x in H, or u is adjacent to w in G and $v=x$.

Definition 8. The m by n grid graph $G_{m, n}$ is the Cartesian product of two paths P_{m} and $P_{n}, G_{m, n}=P_{m} \square P_{n}$.

Theorem 9. $G_{m, n}$ is a ($\Delta-1$)-differential graph if and only if $2 \leq m, n \leq 3$.
Proof. The proof follows directly from Theorem 1(i).

3.4. k-regular graphs, for $k \leq 4$

Definition 10. A graph $G=(V, E)$ is called k-regular if every vertex $v \in V$ has degree k, that is $|N(v)|=k$.

In this section we study an important property of a regular graph G, which is $(\Delta-$ $1)$-differential, that can be used to characterize k-regular graphs, which are $(\Delta-1)$ differential, when $1 \leq k \leq 4$.

Theorem 11. A k-regular graph G is a $(\Delta-1)$-differential graph, then $k+1 \leq p \leq k+3$ where p is the number of vertices in the graph.

Proof. Let G be a $(\Delta-1)$-differential k-regular graph. Let $v \in V$ and $H=V-N[v]$. We claim that H has at most two vertices.

Suppose not, then there exist at least 3 vertices x, y, z in H. In view of Theorem 1(i) following cases arise.
(i) $\{x, y, z\}$ is independent.
(ii) $x y \in E(G)$ and $y z \notin E(G)$.
(iii) $x y \in E(G)$ and $y z \in E(G)$.

In case (i), $N(x)=N(y)=N(z)=N(v)$ which implies that each vertex in $N(v)$ has three neighbors in H, which is a contradiction.

In case (ii), both x and y are adjacent to $k-1$ vertices in $N(v)$. By Theorem 1(ii), each vertex in $N(v)$ has at most two neighbors in H. Hence $\operatorname{deg}(z)<k$, which is a contradiction.

Case (iii) can be similarly dealt with. Hence H has at most two vertices. Therefore $k+1 \leq p \leq k+3$.

Theorem 12. A k-regular graph G where $k=1,2$ is a $(\Delta-1)$-differential graph if and only if G is isomorphic to K_{2} or $C_{n}, 3 \leq n \leq 5$.

Proof. If G is isomorphic to either K_{2} or $C_{n}, 3 \leq n \leq 5$ then clearly $\partial(G)=\Delta(G)-1$. Conversely, let G be a $(\Delta-1)$-differential graph, which is k-regular, $k=1,2$. If G is 1-regular, then clearly G is isomorphic to K_{2}. Suppose G is 2-regular, then by Theorem 1 (i), G is isomorphic to $C_{n}, 3 \leq n \leq 5$.

Theorem 13. A 3-regular graph G is a $(\Delta-1)$-differential graph if and only if G is isomorphic to K_{4} or $K_{3,3}$ or $C_{3} \times K_{2}$.

Proof. Let G be a $(\Delta-1)$-differential 3-regular graph. By Theorem 11, $4 \leq p \leq 6$, where p is the number of vertices in G. Since the number of vertices of odd degree in any graph is even, $p=4$ or $p=6$. Let $v \in V$ and $v_{i}, i=1,2,3$ be the neighbors of v. When $p=4$, clearly G is isomorphic to K_{4}.
When $p=6$, let $x, y \in V-N(v)$. If x, y are not adjacent then clearly $N(x)=N(y)$ and $N(v)$ is independent. Therefore G is isomorphic to $K_{3,3}$.

If x and y are adjacent then exactly one member say v_{1} of $N(v)$ is adjacent to both x and y, and the other two members v_{2}, v_{3} of $N(v)$ are adjacent to x and y respectively. Further v_{2} and v_{3} are adjacent. Hence G is isomorphic to $C_{3} \times K_{2}$.

Conversely suppose G is isomorphic to K_{4} or $K_{3,3}$ or $C_{3} \times K_{2}$ then clearly $\partial(G)=$ $\Delta(G)-1$.

Figure 1:

Theorem 14. A 4-regular graph is a $(\Delta-1)$-differential graph if and only if G is isomorphic to $G_{i}, 1 \leq i \leq 4$ as given in Figure 1.

Proof. Let G be a $(\Delta-1)$-differential 4-regular graph. By Theorem 11, $5 \leq p \leq 7$. When $p=5, G$ is isomorphic to K_{5}.

When $p=6$, let $x \in V-N(v)$ where $v \in V$. Let $N(v)=\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$. Clearly x is adjacent to each $v_{i}, 1 \leq i \leq 4$ and the subgraph induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a cycle of length 4. Hence G is isomorphic to G_{2}.

When $p=7$, let $x, y \in V-N(v)$. If x and y are not adjacent, then x and y are adjacent to each v_{i} and the subgraph induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is $2 k_{2}$. Therefore G is isomorphic to G_{3}. If x and y are adjacent then exactly two members of $N(v)$ say v_{1} and v_{2} are adjacent to x and y, and the other two members v_{3} and v_{4} of $N(v)$ are such that x and y are adjacent to v_{3} and v_{4} respectively. Further the subgraph induced by $\left\{v_{1}, v_{2}, v_{3}, v_{4}\right\}$ is a P_{4}, such that v_{1} and v_{2} are the ends of P_{4}. Hence G is isomorphic to G_{4}.

Conversely, suppose G is isomorphic to $G_{i}, 1 \leq i \leq 4$, then clearly G is a $(\Delta-1)$ differential graph.

4. Bipartite graphs

Definition 15. A graph $G=(V, E)$ is called bipartite if the vertex set can be partitioned into two independent sets.

Finally we provide a characterization of the class of ($\Delta-1$)-differential bipartite graphs. For this purpose we prove the following lemma.

Lemma 16. A bipartite graph with bipartition (X, Y) is a $(\Delta-1)$-differential graphs, then the following holds.
(i) Every vertex in $N(v)$ is of degree at most 3 and every vertex in $Y-N(v)$ is of degree 1.
(ii) Every vertex in $X-\{v\}$ has at most one neighbor in $Y-N(v)$.

Figure 2:

Proof. Let v be a vertex of maximum degree $\Delta(G)$. If there exist a vertex $y \in N(v)$ of degree more than three, there $\partial(\{v, y\}) \geq \Delta(G)+3-2-1=\Delta(G) \geq \Delta(G)-1=\partial(G)$, which is a contradiction. Hence every member in $N(v)$ is of degree at most three.

If there exists a vertex $w \in Y-N(v)$ of degree more than 1 , then $\partial\{v, w\} \geq \Delta+2-2=$ $\Delta(G) \geq \Delta(G)-1=\partial(G)$, which is a contradiction. Hence every vertex in $Y-N(v)$ is of degree 1 .

If there exists a vertex $x \in X-\{u\}$ which has more than one neighbor in $Y-N(v)$ then $\partial\{x, v\} \geq \Delta+2-2=\Delta(G)>\Delta(G)-1=\partial(G)$, which is a contradiction. Hence each vertex in $X-\{v\}$ has at most one neighbor in $Y-N(v)$.
Definition 17. Let G be a bipartite graph with bipartition (X, Y). Let v be a vertex in X of maximum degree $\Delta(G)$. A vertex $x \in N(v)$ with $\operatorname{deg}(x)=3$ and $N(x)-\{v\}=$ $\left\{w_{1}, w_{2}\right\}$ is said to be a special vertex if either w_{1} or w_{2} has a neighbor z in $N(v)$, then z has a neighbor in $X-\left\{v, w_{1}, w_{2}\right\}$ which is a support. In Figure $2, x$ is a special vertex.

Theorem 18. A bipartite graph with bipartition (X, Y) is a $(\Delta-1)$-differential graph if and only if there exist a vertex v say in X of maximum degree $\Delta(G)$ such that the following conditions hold:
(i) Every vertex in $N(v)$ is of degree at most three and every vertex in $Y-N(v)$ is of degree one.
(ii) Every vertex in $X-\{v\}$ has almost one neighbor in $Y-N(v)$.
(iii) If S_{1} is the set of all vertices in $N(v)$ which are adjacent to a support in $X-\{v\}$ and S_{2} is the set of all vertices in $N(v)-S_{1}$ which are of degree three, such that no two members of S_{2} have a common neighbor in $X-\{v\}$, then

$$
\text { when } S_{2}=\phi,\left|S_{1}\right| \leq \begin{cases}\Delta-2 & \text { if there exists a special vertex in } S_{1} \\ \Delta-1 & \text { otherwise }\end{cases}
$$

Further when $\left|S_{1}\right|=\Delta-1, v$ is a support. When $S_{2} \neq \phi$, then $\left|S_{1}\right|+\left|S_{2}\right| \leq \Delta(G)-2$.

Proof. Let G be a $(\Delta-1)$-differential bipartite graph. Let v be a vertex of maximum degree $\Delta(G)$. By Lemma 16, conditions (i) and (ii) hold.

Let S_{1} be the set of all vertices in $N(v)$ which are adjacent to a support $X-\{v\}$ and S_{2} be the set of all vertices in $N(v)-S_{1}$ which are of degree three, such that no two members of S_{2} have a common neighbor in $X-\{v\}$. Let A be the set of vertices in $X-\{v\}$ which are supports. If $S_{2}=\phi$ and there exists a special vertex in S_{1}, then we claim $\left|S_{1}\right| \leq \Delta-2$. Suppose not, then $\partial(A)=|A|+\left|S_{1}\right|+1-|A|=\left|S_{1}\right|+1 \geq$ $\Delta(G)-1+1=\Delta(G)>\Delta(G)-1=\partial(G)$, which is a contradiction.

If $S_{2}=\phi$ and if there exists no special vertex in S_{1}, then we claim $\left|S_{1}\right| \leq \Delta-1$. Suppose not, then $\partial(A)=|A|+\left|S_{1}\right|-|A|=\left|S_{1}\right| \geq \Delta(G)$, which is a contradiction.

If $\left|S_{1}\right|=\Delta-1$, then we claim that v is a support. Suppose not, then $\partial(\{A, w\})=$ $|A|+\left|S_{1}\right|+2-|A|-1=\left|S_{1}\right|+1=\Delta$, where w is the vertex of degree one adjacent to v. Hence $\partial(\{A, w\})>\partial(G)$, which is a contradiction.

If $S_{2} \neq \phi$, then we claim $\left|S_{1}\right|+\left|S_{2}\right| \leq \Delta-2$. Suppose not, then

$$
\begin{aligned}
\partial\left(A \cup S_{2}\right) & =|A|+\left|S_{1}\right|+2\left|S_{2}\right|+1-|A|-\left|S_{2}\right| \\
& =\left|S_{1}\right|+\left|S_{2}\right|+1 \\
& \geq \Delta-1+1 \\
& =\Delta \geq \Delta(G)-1=\partial(G)
\end{aligned}
$$

which is a contradiction. Hence $\left|S_{1}\right|+\left|S_{2}\right| \leq \partial(G)$.
Conversely if G satisfy the given conditions then $\partial(G) \geq \partial(\{v\})=\Delta(G)-1$. To show that $\partial(G) \leq \Delta(G)-1$, let D be a ∂-set. Assume first that $v \in D$. Since conditions (i) and (ii) hold, adding another vertex to D does not increase the differential of G. Hence we assume that $D=\{v\}$ and $\partial(G)=\Delta(G)-1$. Suppose $v \notin D$. Let S_{1} and S_{2} be as given in the theorem. Let A be the set of all vertices in $X-\{v\}$ which are supports. Let $S_{2}=\phi$. If there exist a special vertex in S_{1}, then there exist at least two vertices x, y such that $x, y \notin S_{1}$. Now $\partial(G) \leq \partial(A)=\left|S_{1}\right|+|A|+1-|A|=\left|S_{1}\right|+1 \leq \Delta-1$. Further adding x or y to A does not increase the differential of G. Suppose there does not exist a special vertex in S_{1}, then $\partial(G) \leq \partial(A)=\left|S_{1}\right|+|A|-|A| \leq \Delta-1$. Let $S_{2} \neq \phi$, then $\partial(G) \leq \partial\left(A \cup S_{2}\right)=\left|S_{1}\right|+|A|+2\left|S_{2}\right|+1-|A|-\left|S_{2}\right|=\left|S_{1}\right|+\left|S_{2}\right|+1 \leq \Delta-2+1=\Delta-1$. Hence $\partial(G) \leq \Delta(G)-1$.

5. The differential $\partial(T)$ of a complete binary tree T

Finally we calculate the value of $\partial(G)$ for a complete binary tree.
Theorem 19. Let G be a complete binary the consisting of k levels, then

$$
\partial(G)= \begin{cases}3 \sum_{i=0}^{\left[\frac{k-1}{3}\right]} \frac{2^{k-2}}{8^{i}} & k=3 n \text { or } 3 n+2 \\ 3 \sum_{i=0}^{\left[\frac{k-1}{3}\right]-1} \frac{2^{k-2}}{8^{i}}+1 & k=3 n+1\end{cases}
$$

Proof. Let G be a complete binary tree. Let S_{i} be the set of all vertices in level i and $\left|S_{i}\right|=n_{i}$, then $n_{i}=2^{i}$.

Since $n_{k}>n_{k-1}>n_{k-2}>\cdots>n_{0}$, clearly $S_{k-1} \cup S_{k-4} \cup \cdots \cup S_{0}$ is a ∂-set if $k=3 n$. If $k=3 n$,

$$
\begin{aligned}
\partial(G) & =\left[\left(2^{k}+2^{k-2}+2^{k-3}+2^{k-5}+\cdots\right)-\left(2^{k-1}+2^{k-4}+2^{k-7}+\cdots\right)\right]-1 \\
& =\left[2^{3 n}\left(1+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\frac{1}{2^{5}}+\cdots\right)-2^{3 n}\left(\frac{1}{2}+\frac{1}{2^{4}}+\frac{1}{2^{7}}+\cdots\right)\right]-1 \\
& =\left[2^{3 n}\left(1+\frac{1}{2}+\frac{1}{2^{2}}+\frac{1}{2^{3}}+\cdots\right)-2^{3 n} \frac{2}{2}\left(\frac{1}{2^{3}}+\frac{1}{2^{6}}+\frac{1}{2^{9}}+\cdots\right)\right]-1 \\
& =8^{n}\left[\frac{2 \cdot 8^{n}-1}{8^{n}}-\frac{8}{7}\left(\frac{8^{n}-1}{8^{n}}\right)\right]-1=\frac{6}{7}\left(8^{n}-1\right)
\end{aligned}
$$

Also $\partial(G)=3 \sum_{i=0}^{\left[\frac{3 n-1}{3}\right]} \frac{2^{3 n-2}}{8^{i}}=3 \sum_{i=0}^{n-1} \frac{2^{3 n-2}}{8^{i}}$

$$
\begin{aligned}
& =\frac{38^{n}}{4}\left[1+\frac{1}{8}+\frac{1}{8^{2}}+\cdots+\frac{1}{8^{n-1}}\right] \\
& =\frac{6}{7}\left(8^{n}-1\right)
\end{aligned}
$$

If $k=3 n+1$,

$$
\begin{aligned}
\partial(G) & =\left[2^{3 n+1}+2^{3 n-1}+2^{3 n-2}+\cdots\right]-\left[2^{3 n}+2^{3 n-3}+2^{3 n-6}+\cdots\right] \\
& =2^{3 n}\left[2+1+\frac{1}{2}+\frac{1}{2^{2}}+\cdots\right]-2(8)^{n}\left[1+\frac{1}{2^{3}}+\frac{1}{2^{6}}+\cdots\right] \\
& =\frac{12\left(8^{n}\right)-5}{7}
\end{aligned}
$$

Also $\partial(G)=\left[3 \sum_{i=0}^{\left[\frac{k-1}{3}\right]-1} \frac{2^{k-2}}{8^{i}}\right]+1$

$$
\begin{aligned}
& =\frac{3\left(8^{n}\right)}{2} \times \frac{8}{7}\left(\frac{8^{n}-1}{8^{n}}\right)+1 \\
& =\frac{12\left(8^{n}\right)-5}{7}
\end{aligned}
$$

If $k=3 n+2$,

$$
\partial(G)=\left(2^{3 n+2}+2^{3 n}+2^{3 n-1}+2^{3 n-3}+\cdots+2^{0}\right)
$$

$$
\begin{aligned}
& -\left(2^{3 n+1}+2^{3 n-2}+2^{3 n-5}+\cdots\right) \\
= & \left(2^{0}+2^{1}+2^{2}+\cdots+2^{3 n+2}\right)-2 \times 2\left(1+2^{3}+2^{6}+\cdots\right) \\
= & \left(\frac{2^{3 n+3}-1}{2-1}\right)-4\left(\frac{\left(2^{3}\right)^{n+1}-1}{2^{3}-1}\right) \\
= & \frac{3}{7}\left(8(8)^{n}-1\right)
\end{aligned}
$$

Also $\partial(G)=\left[3 \sum_{i=0}^{\left[\frac{k-1}{3}\right]} \frac{2^{3 n}}{8^{i}}\right]$

$$
=3\left(8^{n}\right)\left[1+\frac{1}{8}+\frac{1}{8^{2}}+\cdots+\frac{1}{8^{n}}\right]=\frac{3}{7}\left(8(8)^{n}-1\right)
$$

Hence the theorem is proved.

References

[1] W. Goddard and M. A. Henning, Generalized domination and independence in graphs, Congr. Numer., 123:161-171, 1997.
[2] F. Harary, Graph Theory, Addison Wesley, Reading Mass., 1972.
[3] S. T. Hedetniemi, Private communication.
[4] J. L. Mashburn, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and P. J. Slater, Differentials in graphs, Utilitas Math, 69(2006), 43-54.
[5] A. McRae and D. Parks, Private communication.
[6] C. Q. Zhang, Finding critical independent sets and critical vertex subsets are polynomial problems, SIAM J. Discrete Math., 3 (1990), k 431-438.

Department of Mathematics, D.B. Jain College, Chennai 600 097, Tamil Nadu, India.
E-mail: roushinip@yahoo.com
Department of Mathematics, SMK Fomra Institute of Technology, Chennai 603 103, Tamil Nadu, India.

[^0]: Corresponding author: P. Roushini Leely Pushpam.
 Received February 27, 2008; revised June 25, 2009.
 Key words and phrases. Boundary of a set of vertices, differential of a graph.

