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DIFFERENTIALS IN CERTAIN CLASSES OF GRAPHS

P. ROUSHINI LEELY PUSHPAM AND D. YOKESH

Abstract. Let X C V be a set of vertices in a graph G = (V, E). The boundary
B(X) of X is defined to be the set of vertices in V' — X dominated by vertices
in X, that is, B(X) = (V — X) N N(X). The differential 9(X) of X equals the
value 9(X) = |B(X)| — |X|. The differential of a graph G is defined as 9(G) =
maz{0(X)|X C V}. It is easy to see that for any graph G having vertices of
maximum degree A(G), 9(G) > A(G) — 1. In this paper we characterize the classes
of unicyclic graphs, split graphs, grid graphs, k-regular graphs, for £ < 4, and
bipartite graphs for which 9(G) = A(G) — 1. We also determine the value of 9(T)
for any complete binary tree T

1. Introduction

Let G = (V, E) be a graph. For graph theoretic terminology not given here, refer to
Harary [2]. For a vertex v € V, the open neighborhood of v is the set N(v) = {u € V]uv €
E} and the closed neighborhood is the set N[v] = N(v)U{v}. For aset S C V, its open
neighborhood is N(S) = UyesN(u) and the closed neighborhood is N[S] = N(S)U S.

The boundary B(S) of a set S is defined to be the set of vertices in V' — S dominated
by vertices in S, that is B(X) = (V — S) N N(S). The differential 0(S) of S equals
the value 0(S) = |B(S)| — |S|. The differential of a graph of G is defined as 9(G) =
max{d(S)|S C V}. As reported in [4], the differential of a set was first defined by
Hedetniemi [3], and later studied by Mashburn et al. [4] and Goddard and Henning [1].
The minimum differential of an independent set was also studied by Zhang [6].

It is easy to see that for any graph G having vertices of maximum degree A(G),
d(G) > A(G)—1. We say that a graph G is a (A—1)-differential graph if 0(G) = A(G)—1.
In this paper we characterize the classes of unicyclic graphs, split graphs, grid graphs,
k-regular graphs, for k < 4, and bipartite graphs that are (A — 1)-differential. We also
determine the value of 9(T') for any complete binary tree T'.
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2. Properties of (A — 1)-differential graphs

In this section we determine several properties of (A — 1)-differential graphs that can
be used to characterize the five classes of (A — 1)-differential graphs in the next section.

Theorem 1. Let G = (V,E) be a connected (A — 1)-differential graph, let v € V be
a vertex of mazimum degree, that is, |IN(v)| = A(G), and let H be the subgraph of G
induced by V- — N[v]. Then the following properties hold:

(i) Each connected component of H is either a K1 or a Ks.
(ii) Fach vertex u € N(v) has at most two neighbors in H.

(iil) If S is the set of all vertices in N (v) having two neighbors in H, and no two members
of S have a common neighbor in H, then |S| < A —2.
(iv) The diameter of G is at most 6.

Proof. Since the theorem clearly holds when A(G) = 1, we assume that A(G) > 2.

(i) Let v be a vertex of maximum degree, i.e., |N(v)| = A(G), and assume that D = {v}
is a 0-set. Let = be a vertex in H, the subgraph of G induced by the vertices
in V — Nv]. If z has more than one neighbor in H then 0(D U {z}) > 9(D),
contradicting our assumption that D is a J-set. Hence, each component of H has
maximum degree at most 1, and therefore each component H is either a K7 or a
KQ.

(ii) If any vertex u € N(v) has three or more neighbors in H then 9(D U {u}) > 9(D),
again contradicting our assumption that D is a 0-set.

(iii) Let S C N(v) be the set of neighbors of v, each of which has two neighbors in H
and no two vertices in S have a common neighbor in H. In this case, if |S| = A(G)
then 9(S) > 9(D), again contradicting our assumption that D is a 0-set.

(iv) Since G is connected, and since by (a) each connected component of H is either a
K or a Ko, it follows that every vertex in H is within distance at most 2 to a vertex
in N(v), and therefore is within distance at most 3 to the vertex v of maximum

degree A(G). Therefore, every pair of vertices in G are within distance 6 of each
other and diam(G) < 6.

3. Characterizations of five classes of (A — 1)-differential graphs

In this section we characterize the classes of unicyclic graphs, split graphs, grid graphs,
k-regular graphs, for k < 4, and bipartite graphs that are (A — 1)-differential graphs.

3.1. Unicylic graphs

Definition 2. A graph G with |V| = n is a unicyclic graph if it is connected and |E| = n;
or equivalently, if it is connected and contains exactly one cycle.
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In this section we provide a characterization of the unicyclic graphs that are (A — 1)-
differential graphs. In order to do this we need the family 7 of rooted trees and theorem
as defined and proved by Mashburn et al. [4].

For a rooted tree T, let T,, denote the subtree of T rooted at vertex u. Let P, denote
the path on n vertices.

The family 7 consists of all trees T" rooted at a vertex v of maximum degree having
the following properties:

(i) each vertex u € N(v) has deg(u) < 3,
(ii) the connected components of T'— Nv] are K;’s and K»’s, and

(iil) either N(v) contains at least two vertices u for which T,, € {Kj, K2} or N(v)
contains exactly one leaf and no vertex of N(v) has degree three.

Theorem 3.([4]) A tree T is a (A — 1)-differential tree if and only if T € T.

Theorem 4. A unicyclic graph G with cycle Cy, is a (A — 1)-differential graph if and
only if
(i) 3<n <5, and
(ii) there exists an edge e € C, and a vertex of mazimum degree in G that is not
incident to e such that G —e € T.

Proof. Let G be a (A — 1)-differential unicyclic graph having a vertex v € V of degree
A(G). If v € V(C,,), then by Theorem 1(i), 3 < n < 5. If v ¢ V(C),) we claim that
n = 3. By Theorem 1(ii), each component of the subgraph H induced by the vertices in
V — Nv] is a K or a K5. Hence, v is adjacent to at least one vertex of C,, and n = 3.
Since G is a (A — 1)-differential unicyclic graph, D = {v} is a 0-set. Let e be an edge
in C,, such that there is a vertex of maximum degree not incident to e. Then G — e is a
tree and 9(G — e) = (A — 1). Hence, by Theorem 3, G —e € 7.

Conversely, let G satisfy the given conditions. Let e be an edge in C),, such that
G — e € T, where there is a vertex v of maximum degree not incident to e. Since
G —e € T, by Theorem 3, (G —e) = A(G —e) — 1 and D = {v} is a J-set of G —e.
Hence, by the choice of e the differential of G' does not increase. Therefore, G is a
(A — 1)-differential graph.

3.2. Split graphs

In this section we provide a characterization of the class of (A — 1)-differential split
graphs.

Definition 5. A graph G = (V, E) is called a split graph if the vertex set has a bipar-
tition V' = V4 U Vh, where V7 is an independent set (no two vertices in V4 are adjacent)
and the subgraph G[V3] induced by V, is a complete graph (every pair of vertices are
adjacent).
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Theorem 6. A split graph G with bipartition (V1,Va2) is a (A — 1)-differential graph
if and only if there exist v € Va with maximum degree A(G) such that the following
conditions hold.

(1) Each u € Vo — {v} has at most two neighbours in Vi — N (v).

(ii) If S is the subset of Vo — {v} such that each vertex in S has exactly two neighbours
in Vi — N(v) and no two members of S have a common neighbour in Vi — N (v)
then S does not dominate N(v) — {z}, x € V4.

Proof. Let G be a (A —1)-differential split graph having a vertex v € V5 of degree A(G).
Since the theorem clearly holds when A(G) = 1, we assume that A(G) > 2.
Suppose there exist a vertex u € Vo — {v} which has more than two neighbours in

Vi—N(v), then 0{u,v} > A=143—-2=A > A(G)—1 = J(G), which is a contradiction.

Hence each vertex in V2 — {v} has at most two neighbours in V4 — N(v). Let S be a

subset of Vo — {v} satisfying condition (ii). Suppose S dominates N(v) — {x}, then

A(S)=2|S|+A—-1—|S|—=1S]+1=A>A(G) —1=09(G), which is a contradiction.

Hence condition (ii) holds.

Conversely let G satisfy the given conditions. Now 9(G) > 0({v}) = A(G) — 1. Now
to prove 9(G) < A(G) — 1. Let D be a 0-set, assume v € D. Clearly adding another
vertex to D does not increase the differential of G. Hence D = {v} and 9(G) = A(G) —1.
If v ¢ D, adding a vertex of Vi to D does not increase the differential of G.

If D=V, —{v}, then
0(G) < 0(D) < 2(Val — 1)+ A— (Val = 1)~ 2 — (Ve - ) SA—2< A 1.

Hence 9(G) = A(G) — 1.

3.3. Grid graphs
In this section we determine all (A — 1)-differential grid graphs.

Definition 7. The Cartesian product GOH of a graph G = (V, E) and a graph H =
(W, F) is the graph with vertex set equal to the Cartesian product VOW and two vertices
(u,v) and (w, z) are adjacent in the Cartesian product graph if and only if either u = w
and v is adjacent to = in H, or v is adjacent to w in G and v = x.

Definition 8. The m by n grid graph G, , is the Cartesian product of two paths P,,
and P,, Gy, = P,0P,.

Theorem 9. G,, ., is a (A — 1)-differential graph if and only if 2 < m,n < 3.
Proof. The proof follows directly from Theorem 1(i).
3.4. k-regular graphs, for k < 4

Definition 10. A graph G = (V| E) is called k-regular if every vertex v € V has degree
k., that is [N (v)| = k.
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In this section we study an important property of a regular graph G, which is (A —
1)-differential, that can be used to characterize k-regular graphs, which are (A — 1)-
differential, when 1 < k < 4.

Theorem 11. A k-regular graph G is a (A —1)-differential graph, then k+1 <p < k+3
where p is the number of vertices in the graph.

Proof. Let G be a (A — 1)-differential k-regular graph. Let v € V and H =V — N|[v].
We claim that H has at most two vertices.

Suppose not, then there exist at least 3 vertices x,y, z in H. In view of Theorem 1(i)
following cases arise.

(i) {z,vy, 2} is independent.
(ii) zy € E(G) and yz ¢ E(G).
(i) zy € E(GQ) and yz € E(G).

In case (i), N(x) = N(y) = N(z) = N(v) which implies that each vertex in N(v) has
three neighbors in H, which is a contradiction.

In case (ii), both = and y are adjacent to k — 1 vertices in N(v). By Theorem 1(ii),
each vertex in N(v) has at most two neighbors in H. Hence deg(z) < k, which is a
contradiction.

Case (iii) can be similarly dealt with. Hence H has at most two vertices. Therefore
k+1<p<k+3.

Theorem 12. A k-regular graph G where k = 1,2 is a (A — 1)-differential graph if and
only if G is isomorphic to Ko or Cp, 3 <n < 5.

Proof. If G is isomorphic to either Ky or C,,, 3 <n <5 then clearly 9(G) = A(G) — 1.
Conversely, let G be a (A — 1)-differential graph, which is k-regular, k = 1,2. If G is
1-regular, then clearly G is isomorphic to Ks. Suppose G is 2-regular, then by Theorem
1(i), G is isomorphic to Cy, 3 < n < 5.

Theorem 13. A 3-regular graph G is a (A — 1)-differential graph if and only if G is
isomorphic to K4 or K33 or C3 X Ks.

Proof. Let G be a (A — 1)-differential 3-regular graph. By Theorem 11, 4 < p < 6,
where p is the number of vertices in G. Since the number of vertices of odd degree in
any graph is even, p =4 or p=6. Let v € V and v;, i = 1,2, 3 be the neighbors of v.
When p = 4, clearly G is isomorphic to Kj.
When p =6, let z,y € V — N(v). If z,y are not adjacent then clearly N(z) = N(y) and
N(v) is independent. Therefore G is isomorphic to K3 3.

If  and y are adjacent then exactly one member say v; of N(v) is adjacent to both
2 and y, and the other two members v, v3 of N(v) are adjacent to « and y respectively.
Further vy and v are adjacent. Hence G is isomorphic to C5 x Ks.

Conversely suppose G is isomorphic to K4 or K33 or C3 x Ky then clearly 9(G) =
A(GQ) — 1.
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Theorem 14. A 4-regular graph is a (A — 1)-differential graph if and only if G is
isomorphic to G;, 1 <i <4 as given in Figure 1.

Proof. Let G be a (A — 1)-differential 4-regular graph. By Theorem 11, 5 < p < 7.
When p = 5, G is isomorphic to K.

When p =6, let € V — N(v) where v € V. Let N(v) = {v1,v2,v3,v4}. Clearly x is
adjacent to each v;, 1 <4 < 4 and the subgraph induced by {v1, v, v3,v4} is a cycle of
length 4. Hence G is isomorphic to Ga.

When p = 7, let 2,y € V — N(v). If  and y are not adjacent, then x and y are
adjacent to each v; and the subgraph induced by {v1,va,vs,v4} is 2ks. Therefore G is
isomorphic to G. If z and y are adjacent then exactly two members of N(v) say vy
and v are adjacent to x and y, and the other two members vs and vy of N(v) are such
that x and y are adjacent to vs and v4 respectively. Further the subgraph induced by
{v1, v, v3,v4} is a Py, such that v; and vy are the ends of Py. Hence G is isomorphic to
Gy.

Conversely, suppose G is isomorphic to G;, 1 < i < 4, then clearly G is a (A — 1)-
differential graph.

4. Bipartite graphs

Definition 15. A graph G = (V| E) is called bipartite if the vertex set can be partitioned
into two independent sets.

Finally we provide a characterization of the class of (A — 1)-differential bipartite
graphs. For this purpose we prove the following lemma.

Lemma 16. A bipartite graph with bipartition (X,Y) is a (A — 1)-differential graphs,
then the following holds.

(i) Every vertex in N(v) is of degree at most 3 and every vertex in Y — N(v) is of
degree 1.

(ii) Fwvery vertex in X — {v} has at most one neighbor in Y — N (v).
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Proof. Let v be a vertex of maximum degree A(G). If there exist a vertex y € N(v) of
degree more than three, there d({v,y}) > A(G)+3—-2—-1=A(G) > A(G) —1 = I(G),
which is a contradiction. Hence every member in N(v) is of degree at most three.

If there exists a vertex w € Y — N (v) of degree more than 1, then 0{v, w} > A+2—-2 =
A(G) > A(G) — 1 = 9(G), which is a contradiction. Hence every vertex in Y — N(v) is
of degree 1.

If there exists a vertex © € X — {u} which has more than one neighbor in ¥ — N (v)
then {z,v} > A+2—-2=A(G) > A(G) — 1 = J(G), which is a contradiction. Hence
each vertex in X — {v} has at most one neighbor in Y — N(v).

Definition 17. Let G be a bipartite graph with bipartition (X,Y). Let v be a vertex
in X of maximum degree A(G). A vertex x € N(v) with deg(x) =3 and N(x) — {v} =
{w1,ws} is said to be a special vertex if either wy or ws has a neighbor z in N (v), then z
has a neighbor in X — {v, wy,ws} which is a support. In Figure 2, x is a special vertex.

Theorem 18. A bipartite graph with bipartition (X,Y) is a (A — 1)-differential graph
if and only if there exist a vertex v say in X of maximum degree A(G) such that the
following conditions hold:
(i) Ewvery vertex in N(v) is of degree at most three and every vertex in' Y — N(v) is of
degree one.

(ii) Fvery vertex in X — {v} has almost one neighbor in' Y — N (v).

(iil) If Sy is the set of all vertices in N(v) which are adjacent to a support in X — {v}
and Sy is the set of all vertices in N(v) — S1 which are of degree three, such that
no two members of So have a common neighbor in X — {v}, then

A — 2 if there exists a special vertex in S
when Sy = @, |S1] < { / P !

A —1 otherwise

Further when |S1| = A—1, v is a support. When Sz # ¢, then |S1|+]S2| < A(G)—-2.

Proof. Let G be a (A — 1)-differential bipartite graph. Let v be a vertex of maximum
degree A(G). By Lemma 16, conditions (i) and (ii) hold.
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Let S; be the set of all vertices in N(v) which are adjacent to a support X — {v}
and Sy be the set of all vertices in N(v) — S which are of degree three, such that no
two members of S; have a common neighbor in X — {v}. Let A be the set of vertices
in X — {v} which are supports. If So = ¢ and there exists a special vertex in Sp, then
we claim |Si| < A — 2. Suppose not, then 9(A) = |A] + [S1] +1— |A] = |S1|+1 >
A(G)—141=A(G) > A(G) — 1 = 9(G), which is a contradiction.

If So = ¢ and if there exists no special vertex in S, then we claim |S1| < A — 1.
Suppose not, then 9(A) = |A| + |S1| — |A| = |S1]| = A(G), which is a contradiction.

If |S1| = A — 1, then we claim that v is a support. Suppose not, then 9({A,w}) =
|A] +1S1]+2—|A| =1 =1S1| + 1 = A, where w is the vertex of degree one adjacent to
v. Hence 0({A,w}) > 9(G), which is a contradiction.

If Sy # ¢, then we claim |S1| + |S2] < A — 2. Suppose not, then

(AU Sy) = |A| + |S1| +2[S2| + 1 — |A| — |Ss]
=[S+ |52 +1
>A-1+1
=A>AG) —1=0(G)

which is a contradiction. Hence |S1| + |S2| < 9(G).

Conversely if G satisfy the given conditions then 9(G) > 9({v}) = A(G) — 1. To
show that 0(G) < A(G) —1, let D be a 0-set. Assume first that v € D. Since conditions
(i) and (ii) hold, adding another vertex to D does not increase the differential of G.
Hence we assume that D = {v} and 0(G) = A(G) — 1. Suppose v € D. Let Sy and S5 be
as given in the theorem. Let A be the set of all vertices in X — {v} which are supports.
Let Sy = ¢. If there exist a special vertex in S7, then there exist at least two vertices x,y
such that z,y € Si1. Now 0(G) < 0(A) = [S1]|+ |A|+1—|A| =|51|+1 < A—1. Further
adding x or y to A does not increase the differential of GG. Suppose there does not exist
a special vertex in Sq, then 0(G) < 9(A) = |S1]| + |A| — |A] < A —1. Let Sy # ¢, then
I(G) <I(AUS2) = |S1]|+|A|+2|S2| +1—|A| —|S2| = |S1|+[S2]+1 < A-2+1=A—1.
Hence 0(G) < A(G) — 1.

5. The differential 0(T) of a complete binary tree 7'
Finally we calculate the value of 9(G) for a complete binary tree.

Theorem 19. Let G be a complete binary the consisting of k levels, then

3 ] 9k—2
3 - k=3 3 2
; g n or 3n +
oG =1 |
[T] 1 2]972

5 +1 k=3n+1
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Proof. Let G be a complete binary tree. Let S; be the set of all vertices in level ¢ and
|S;| = ni, then n; = 2¢.
Since ng > ngp_1 > ng_o > -+ > ng, clearly Sp_1USp_4U---USy is a d-set if k = 3n.
If k£ = 3n,

a(G):[ 2k2 2k3 2k—5+“.)7(2k—1+2k—4+2k—7+“.)]71
1 1 1 1 1
= |237 — N ) 1 3 (R S TR N R |
() g o)
1 1 2 /1 1 1
= |923n — )=l )] =1
[ < R ) 2(23+26+29+ )]
2.-8"—-1 8 /8" -1 6
=8" | — — = —1==(8"-1
o2 ()] =gy
[*5] 93n—2 n=lo3n—2
Also 0(G) =3 — =3 .
81 ‘ 82
i= =0
_38” 14t +1+ n 1
4 8 &2 8n—1
6
=-8" -1
=(3" 1)
Ifk=3n+1,

a(G) — [23n+1 + 23n71 + 23n72 4. ] o [23n + 237’173 4 23n76 4. }

= 2% {2+1+2+22+---]—2(8) [1+§+2 +-

12(8") — 5

Also 9(G) = |3 Z g +1
=0
38" 8 /81
2 7( gn )H
12(8") — 5
7

If k = 3n + 2,
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_ (23n+1 + 23n72 + 23n75 4. )

= (242" +27 4. 42 o x2(1+ 22+ 204 .)

(o) ()

3
=-(8(8)" -1
7( ()" 1)
3 23n
Also 0(G) = 3 T
1=
1 1 1 3
=38 |14+ 4+ —4...40 —| == n_1).
3(8 ){ +8+82+ +8” 7(8(8) )
Hence the theorem is proved.
References

[1] W. Goddard and M. A. Henning, Generalized domination and independence in graphs,
Congr. Numer., 123:161-171, 1997.

[2] F. Harary, Graph Theory, Addison Wesley, Reading Mass., 1972.

[3] S. T. Hedetniemi, Private communication.

[4] J. L. Mashburn, T. W. Haynes, S. M. Hedetniemi, S. T. Hedetniemi and P. J. Slater,
Differentials in graphs, Utilitas Math, 69(2006), 43-54.

[5] A. McRae and D. Parks, Private communication.

[6] C. Q. Zhang, Finding critical independent sets and critical vertex subsets are polynomial
problems, SIAM J. Discrete Math., 3 (1990).k 431-438.

Department of Mathematics, D.B. Jain College, Chennai 600 097, Tamil Nadu, India.

E-mail: roushinip@yahoo.com

Department of Mathematics, SMK Fomra Institute of Technology, Chennai 603 103, Tamil
Nadu, India.


mailto:roushinip@yahoo.com

	1. Introduction
	2. Properties of (Delta-1)-differential graphs
	3. Characterizations of five classes of (Delta-1)-differential graphs
	3.1. Unicylic graphs
	3.2. Split graphs
	3.3. Grid graphs
	3.4. k-regular graphs

	4. Bipartite graphs
	5. The differential
	References

