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DIFFERENTIALS IN CERTAIN CLASSES OF GRAPHS

P. ROUSHINI LEELY PUSHPAM AND D. YOKESH

Abstract. Let X ⊂ V be a set of vertices in a graph G = (V, E). The boundary

B(X) of X is defined to be the set of vertices in V − X dominated by vertices

in X, that is, B(X) = (V − X) ∩ N(X). The differential ∂(X) of X equals the

value ∂(X) = |B(X)| − |X|. The differential of a graph G is defined as ∂(G) =

max{∂(X)|X ⊂ V }. It is easy to see that for any graph G having vertices of

maximum degree ∆(G), ∂(G) ≥ ∆(G)−1. In this paper we characterize the classes

of unicyclic graphs, split graphs, grid graphs, k-regular graphs, for k ≤ 4, and

bipartite graphs for which ∂(G) = ∆(G) − 1. We also determine the value of ∂(T )

for any complete binary tree T .

1. Introduction

Let G = (V, E) be a graph. For graph theoretic terminology not given here, refer to

Harary [2]. For a vertex v ∈ V , the open neighborhood of v is the set N(v) = {u ∈ V |uv ∈

E} and the closed neighborhood is the set N [v] = N(v)∪ {v}. For a set S ⊆ V , its open
neighborhood is N(S) = ∪v∈SN(u) and the closed neighborhood is N [S] = N(S) ∪ S.

The boundary B(S) of a set S is defined to be the set of vertices in V −S dominated

by vertices in S, that is B(X) = (V − S) ∩ N(S). The differential ∂(S) of S equals

the value ∂(S) = |B(S)| − |S|. The differential of a graph of G is defined as ∂(G) =
max{∂(S)|S ⊂ V }. As reported in [4], the differential of a set was first defined by

Hedetniemi [3], and later studied by Mashburn et al. [4] and Goddard and Henning [1].

The minimum differential of an independent set was also studied by Zhang [6].

It is easy to see that for any graph G having vertices of maximum degree ∆(G),

∂(G) ≥ ∆(G)−1. We say that a graph G is a (∆−1)-differential graph if ∂(G) = ∆(G)−1.
In this paper we characterize the classes of unicyclic graphs, split graphs, grid graphs,

k-regular graphs, for k ≤ 4, and bipartite graphs that are (∆ − 1)-differential. We also

determine the value of ∂(T ) for any complete binary tree T .
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2. Properties of (∆ − 1)-differential graphs

In this section we determine several properties of (∆− 1)-differential graphs that can

be used to characterize the five classes of (∆− 1)-differential graphs in the next section.

Theorem 1. Let G = (V, E) be a connected (∆ − 1)-differential graph, let v ∈ V be

a vertex of maximum degree, that is, |N(v)| = ∆(G), and let H be the subgraph of G

induced by V − N [v]. Then the following properties hold:

(i) Each connected component of H is either a K1 or a K2.

(ii) Each vertex u ∈ N(v) has at most two neighbors in H.

(iii) If S is the set of all vertices in N(v) having two neighbors in H, and no two members

of S have a common neighbor in H, then |S| ≤ ∆ − 2.

(iv) The diameter of G is at most 6.

Proof. Since the theorem clearly holds when ∆(G) = 1, we assume that ∆(G) ≥ 2.

(i) Let v be a vertex of maximum degree, i.e., |N(v)| = ∆(G), and assume that D = {v}

is a ∂-set. Let x be a vertex in H , the subgraph of G induced by the vertices

in V − N [v]. If x has more than one neighbor in H then ∂(D ∪ {x}) > ∂(D),

contradicting our assumption that D is a ∂-set. Hence, each component of H has

maximum degree at most 1, and therefore each component H is either a K1 or a

K2.

(ii) If any vertex u ∈ N(v) has three or more neighbors in H then ∂(D ∪ {u}) > ∂(D),

again contradicting our assumption that D is a ∂-set.

(iii) Let S ⊆ N(v) be the set of neighbors of v, each of which has two neighbors in H

and no two vertices in S have a common neighbor in H . In this case, if |S| = ∆(G)

then ∂(S) > ∂(D), again contradicting our assumption that D is a ∂-set.

(iv) Since G is connected, and since by (a) each connected component of H is either a

K1 or a K2, it follows that every vertex in H is within distance at most 2 to a vertex

in N(v), and therefore is within distance at most 3 to the vertex v of maximum

degree ∆(G). Therefore, every pair of vertices in G are within distance 6 of each

other and diam(G) ≤ 6.

3. Characterizations of five classes of (∆ − 1)-differential graphs

In this section we characterize the classes of unicyclic graphs, split graphs, grid graphs,

k-regular graphs, for k ≤ 4, and bipartite graphs that are (∆ − 1)-differential graphs.

3.1. Unicylic graphs

Definition 2. A graph G with |V | = n is a unicyclic graph if it is connected and |E| = n;

or equivalently, if it is connected and contains exactly one cycle.
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In this section we provide a characterization of the unicyclic graphs that are (∆− 1)-

differential graphs. In order to do this we need the family T of rooted trees and theorem

as defined and proved by Mashburn et al. [4].

For a rooted tree T , let Tu denote the subtree of T rooted at vertex u. Let Pn denote

the path on n vertices.

The family T consists of all trees T rooted at a vertex v of maximum degree having

the following properties:

(i) each vertex u ∈ N(v) has deg(u) ≤ 3,

(ii) the connected components of T − N [v] are K1’s and K2’s, and

(iii) either N(v) contains at least two vertices u for which Tu ∈ {K1, K2} or N(v)

contains exactly one leaf and no vertex of N(v) has degree three.

Theorem 3.([4]) A tree T is a (∆ − 1)-differential tree if and only if T ∈ T .

Theorem 4. A unicyclic graph G with cycle Cn is a (∆ − 1)-differential graph if and

only if

(i) 3 ≤ n ≤ 5, and

(ii) there exists an edge e ∈ Cn and a vertex of maximum degree in G that is not

incident to e such that G − e ∈ T .

Proof. Let G be a (∆ − 1)-differential unicyclic graph having a vertex v ∈ V of degree

∆(G). If v ∈ V (Cn), then by Theorem 1(i), 3 ≤ n ≤ 5. If v 6∈ V (Cn) we claim that

n = 3. By Theorem 1(ii), each component of the subgraph H induced by the vertices in

V − N [v] is a K1 or a K2. Hence, v is adjacent to at least one vertex of Cn and n = 3.

Since G is a (∆ − 1)-differential unicyclic graph, D = {v} is a ∂-set. Let e be an edge

in Cn such that there is a vertex of maximum degree not incident to e. Then G − e is a

tree and ∂(G − e) = (∆ − 1). Hence, by Theorem 3, G − e ∈ T .

Conversely, let G satisfy the given conditions. Let e be an edge in Cn such that

G − e ∈ T , where there is a vertex v of maximum degree not incident to e. Since

G − e ∈ T , by Theorem 3, ∂(G − e) = ∆(G − e) − 1 and D = {v} is a ∂-set of G − e.

Hence, by the choice of e the differential of G does not increase. Therefore, G is a

(∆ − 1)-differential graph.

3.2. Split graphs

In this section we provide a characterization of the class of (∆ − 1)-differential split

graphs.

Definition 5. A graph G = (V, E) is called a split graph if the vertex set has a bipar-

tition V = V1 ∪ V2, where V1 is an independent set (no two vertices in V1 are adjacent)

and the subgraph G[V2] induced by V2 is a complete graph (every pair of vertices are

adjacent).
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Theorem 6. A split graph G with bipartition (V1, V2) is a (∆ − 1)-differential graph

if and only if there exist v ∈ V2 with maximum degree ∆(G) such that the following

conditions hold.

(i) Each u ∈ V2 − {v} has at most two neighbours in V1 − N(v).

(ii) If S is the subset of V2 −{v} such that each vertex in S has exactly two neighbours

in V1 − N(v) and no two members of S have a common neighbour in V1 − N(v)
then S does not dominate N(v) − {x}, x ∈ V1.

Proof. Let G be a (∆−1)-differential split graph having a vertex v ∈ V2 of degree ∆(G).
Since the theorem clearly holds when ∆(G) = 1, we assume that ∆(G) ≥ 2.
Suppose there exist a vertex u ∈ V2 − {v} which has more than two neighbours in

V1−N(v), then ∂{u, v} ≥ ∆−1+3−2 = ∆ > ∆(G)−1 = ∂(G), which is a contradiction.

Hence each vertex in V2 − {v} has at most two neighbours in V1 − N(v). Let S be a
subset of V2 − {v} satisfying condition (ii). Suppose S dominates N(v) − {x}, then
∂(S) = 2|S| + ∆ − 1 − |S| − |S| + 1 = ∆ > ∆(G) − 1 = ∂(G), which is a contradiction.
Hence condition (ii) holds.

Conversely let G satisfy the given conditions. Now ∂(G) ≥ ∂({v}) = ∆(G) − 1. Now
to prove ∂(G) ≤ ∆(G) − 1. Let D be a ∂-set, assume v ∈ D. Clearly adding another
vertex to D does not increase the differential of G. Hence D = {v} and ∂(G) = ∆(G)−1.

If v 6∈ D, adding a vertex of V1 to D does not increase the differential of G.
If D = V2 − {v}, then

∂(G) ≤ ∂(D) ≤ 2(|V2| − 1) + ∆ − (|V2| − 1) − 2 − (|V2| − 1) ≤ ∆ − 2 ≤ ∆ − 1.
Hence ∂(G) = ∆(G) − 1.

3.3. Grid graphs

In this section we determine all (∆ − 1)-differential grid graphs.

Definition 7. The Cartesian product G�H of a graph G = (V, E) and a graph H =
(W, F ) is the graph with vertex set equal to the Cartesian product V �W and two vertices

(u, v) and (w, x) are adjacent in the Cartesian product graph if and only if either u = w

and v is adjacent to x in H , or u is adjacent to w in G and v = x.

Definition 8. The m by n grid graph Gm,n is the Cartesian product of two paths Pm

and Pn, Gm,n = Pm�Pn.

Theorem 9. Gm,n is a (∆ − 1)-differential graph if and only if 2 ≤ m, n ≤ 3.

Proof. The proof follows directly from Theorem 1(i).

3.4. k-regular graphs, for k ≤ 4

Definition 10. A graph G = (V, E) is called k-regular if every vertex v ∈ V has degree
k, that is |N(v)| = k.
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In this section we study an important property of a regular graph G, which is (∆ −
1)-differential, that can be used to characterize k-regular graphs, which are (∆ − 1)-
differential, when 1 ≤ k ≤ 4.

Theorem 11. A k-regular graph G is a (∆−1)-differential graph, then k+1 ≤ p ≤ k+3
where p is the number of vertices in the graph.

Proof. Let G be a (∆ − 1)-differential k-regular graph. Let v ∈ V and H = V − N [v].
We claim that H has at most two vertices.

Suppose not, then there exist at least 3 vertices x, y, z in H . In view of Theorem 1(i)
following cases arise.

(i) {x, y, z} is independent.

(ii) xy ∈ E(G) and yz 6∈ E(G).

(iii) xy ∈ E(G) and yz ∈ E(G).

In case (i), N(x) = N(y) = N(z) = N(v) which implies that each vertex in N(v) has
three neighbors in H , which is a contradiction.

In case (ii), both x and y are adjacent to k − 1 vertices in N(v). By Theorem 1(ii),
each vertex in N(v) has at most two neighbors in H . Hence deg(z) < k, which is a
contradiction.

Case (iii) can be similarly dealt with. Hence H has at most two vertices. Therefore
k + 1 ≤ p ≤ k + 3.

Theorem 12. A k-regular graph G where k = 1, 2 is a (∆ − 1)-differential graph if and

only if G is isomorphic to K2 or Cn, 3 ≤ n ≤ 5.

Proof. If G is isomorphic to either K2 or Cn, 3 ≤ n ≤ 5 then clearly ∂(G) = ∆(G) − 1.
Conversely, let G be a (∆ − 1)-differential graph, which is k-regular, k = 1, 2. If G is
1-regular, then clearly G is isomorphic to K2. Suppose G is 2-regular, then by Theorem
1(i), G is isomorphic to Cn, 3 ≤ n ≤ 5.

Theorem 13. A 3-regular graph G is a (∆ − 1)-differential graph if and only if G is

isomorphic to K4 or K3,3 or C3 × K2.

Proof. Let G be a (∆ − 1)-differential 3-regular graph. By Theorem 11, 4 ≤ p ≤ 6,
where p is the number of vertices in G. Since the number of vertices of odd degree in
any graph is even, p = 4 or p = 6. Let v ∈ V and vi, i = 1, 2, 3 be the neighbors of v.
When p = 4, clearly G is isomorphic to K4.
When p = 6, let x, y ∈ V −N(v). If x, y are not adjacent then clearly N(x) = N(y) and
N(v) is independent. Therefore G is isomorphic to K3,3.

If x and y are adjacent then exactly one member say v1 of N(v) is adjacent to both
x and y, and the other two members v2, v3 of N(v) are adjacent to x and y respectively.
Further v2 and v3 are adjacent. Hence G is isomorphic to C3 × K2.

Conversely suppose G is isomorphic to K4 or K3,3 or C3 × K2 then clearly ∂(G) =
∆(G) − 1.
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Figure 1:

Theorem 14. A 4-regular graph is a (∆ − 1)-differential graph if and only if G is

isomorphic to Gi, 1 ≤ i ≤ 4 as given in Figure 1.

Proof. Let G be a (∆ − 1)-differential 4-regular graph. By Theorem 11, 5 ≤ p ≤ 7.
When p = 5, G is isomorphic to K5.

When p = 6, let x ∈ V − N(v) where v ∈ V . Let N(v) = {v1, v2, v3, v4}. Clearly x is
adjacent to each vi, 1 ≤ i ≤ 4 and the subgraph induced by {v1, v2, v3, v4} is a cycle of
length 4. Hence G is isomorphic to G2.

When p = 7, let x, y ∈ V − N(v). If x and y are not adjacent, then x and y are
adjacent to each vi and the subgraph induced by {v1, v2, v3, v4} is 2k2. Therefore G is
isomorphic to G3. If x and y are adjacent then exactly two members of N(v) say v1

and v2 are adjacent to x and y, and the other two members v3 and v4 of N(v) are such
that x and y are adjacent to v3 and v4 respectively. Further the subgraph induced by
{v1, v2, v3, v4} is a P4, such that v1 and v2 are the ends of P4. Hence G is isomorphic to
G4.

Conversely, suppose G is isomorphic to Gi, 1 ≤ i ≤ 4, then clearly G is a (∆ − 1)-
differential graph.

4. Bipartite graphs

Definition 15. A graph G = (V, E) is called bipartite if the vertex set can be partitioned
into two independent sets.

Finally we provide a characterization of the class of (∆ − 1)-differential bipartite
graphs. For this purpose we prove the following lemma.

Lemma 16. A bipartite graph with bipartition (X, Y ) is a (∆ − 1)-differential graphs,

then the following holds.

(i) Every vertex in N(v) is of degree at most 3 and every vertex in Y − N(v) is of

degree 1.

(ii) Every vertex in X − {v} has at most one neighbor in Y − N(v).
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Proof. Let v be a vertex of maximum degree ∆(G). If there exist a vertex y ∈ N(v) of
degree more than three, there ∂({v, y}) ≥ ∆(G)+3− 2− 1 = ∆(G) ≥ ∆(G)− 1 = ∂(G),
which is a contradiction. Hence every member in N(v) is of degree at most three.

If there exists a vertex w ∈ Y −N(v) of degree more than 1, then ∂{v, w} ≥ ∆+2−2 =
∆(G) ≥ ∆(G) − 1 = ∂(G), which is a contradiction. Hence every vertex in Y − N(v) is
of degree 1.

If there exists a vertex x ∈ X − {u} which has more than one neighbor in Y − N(v)
then ∂{x, v} ≥ ∆ + 2 − 2 = ∆(G) > ∆(G) − 1 = ∂(G), which is a contradiction. Hence
each vertex in X − {v} has at most one neighbor in Y − N(v).

Definition 17. Let G be a bipartite graph with bipartition (X, Y ). Let v be a vertex
in X of maximum degree ∆(G). A vertex x ∈ N(v) with deg(x) = 3 and N(x) − {v} =
{w1, w2} is said to be a special vertex if either w1 or w2 has a neighbor z in N(v), then z

has a neighbor in X −{v, w1, w2} which is a support. In Figure 2, x is a special vertex.

Theorem 18. A bipartite graph with bipartition (X, Y ) is a (∆ − 1)-differential graph

if and only if there exist a vertex v say in X of maximum degree ∆(G) such that the

following conditions hold:

(i) Every vertex in N(v) is of degree at most three and every vertex in Y − N(v) is of

degree one.

(ii) Every vertex in X − {v} has almost one neighbor in Y − N(v).

(iii) If S1 is the set of all vertices in N(v) which are adjacent to a support in X − {v}
and S2 is the set of all vertices in N(v) − S1 which are of degree three, such that

no two members of S2 have a common neighbor in X − {v}, then

when S2 = φ, |S1| ≤

{

∆ − 2 if there exists a special vertex in S1

∆ − 1 otherwise

Further when |S1| = ∆−1, v is a support. When S2 6= φ, then |S1|+|S2| ≤ ∆(G)−2.

Proof. Let G be a (∆ − 1)-differential bipartite graph. Let v be a vertex of maximum
degree ∆(G). By Lemma 16, conditions (i) and (ii) hold.
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Let S1 be the set of all vertices in N(v) which are adjacent to a support X − {v}
and S2 be the set of all vertices in N(v) − S1 which are of degree three, such that no
two members of S2 have a common neighbor in X − {v}. Let A be the set of vertices
in X − {v} which are supports. If S2 = φ and there exists a special vertex in S1, then
we claim |S1| ≤ ∆ − 2. Suppose not, then ∂(A) = |A| + |S1| + 1 − |A| = |S1| + 1 ≥
∆(G) − 1 + 1 = ∆(G) > ∆(G) − 1 = ∂(G), which is a contradiction.

If S2 = φ and if there exists no special vertex in S1, then we claim |S1| ≤ ∆ − 1.
Suppose not, then ∂(A) = |A| + |S1| − |A| = |S1| ≥ ∆(G), which is a contradiction.

If |S1| = ∆ − 1, then we claim that v is a support. Suppose not, then ∂({A, w}) =
|A| + |S1| + 2 − |A| − 1 = |S1| + 1 = ∆, where w is the vertex of degree one adjacent to
v. Hence ∂({A, w}) > ∂(G), which is a contradiction.

If S2 6= φ, then we claim |S1| + |S2| ≤ ∆ − 2. Suppose not, then

∂(A ∪ S2) = |A| + |S1| + 2|S2| + 1 − |A| − |S2|

= |S1| + |S2| + 1

≥ ∆ − 1 + 1

= ∆ ≥ ∆(G) − 1 = ∂(G)

which is a contradiction. Hence |S1| + |S2| ≤ ∂(G).
Conversely if G satisfy the given conditions then ∂(G) ≥ ∂({v}) = ∆(G) − 1. To

show that ∂(G) ≤ ∆(G)− 1, let D be a ∂-set. Assume first that v ∈ D. Since conditions
(i) and (ii) hold, adding another vertex to D does not increase the differential of G.
Hence we assume that D = {v} and ∂(G) = ∆(G)−1. Suppose v 6∈ D. Let S1 and S2 be
as given in the theorem. Let A be the set of all vertices in X − {v} which are supports.
Let S2 = φ. If there exist a special vertex in S1, then there exist at least two vertices x, y

such that x, y 6∈ S1. Now ∂(G) ≤ ∂(A) = |S1|+ |A|+1− |A| = |S1|+1 ≤ ∆− 1. Further
adding x or y to A does not increase the differential of G. Suppose there does not exist
a special vertex in S1, then ∂(G) ≤ ∂(A) = |S1| + |A| − |A| ≤ ∆ − 1. Let S2 6= φ, then
∂(G) ≤ ∂(A∪S2) = |S1|+ |A|+2|S2|+1−|A|−|S2| = |S1|+ |S2|+1 ≤ ∆−2+1 = ∆−1.
Hence ∂(G) ≤ ∆(G) − 1.

5. The differential ∂(T ) of a complete binary tree T

Finally we calculate the value of ∂(G) for a complete binary tree.

Theorem 19. Let G be a complete binary the consisting of k levels, then

∂(G) =































3

[ k−1

3 ]
∑

i=0

2k−2

8i
k = 3n or 3n + 2

3

[ k−1

3 ]−1
∑

i=0

2k−2

8i
+ 1 k = 3n + 1

.
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Proof. Let G be a complete binary tree. Let Si be the set of all vertices in level i and

|Si| = ni, then ni = 2i.

Since nk > nk−1 > nk−2 > · · · > n0, clearly Sk−1∪Sk−4∪· · ·∪S0 is a ∂-set if k = 3n.

If k = 3n,

∂(G) =
[

(2k + 2k−2 + 2k−3 + 2k−5 + · · · ) − (2k−1 + 2k−4 + 2k−7 + · · · )
]

− 1

=

[

23n

(

1 +
1

22
+

1

23
+

1

25
+ · · ·

)

− 23n

(

1

2
+

1

24
+

1

27
+ · · ·

)]

− 1

=

[

23n

(

1 +
1

2
+

1

22
+

1

23
+ · · ·

)

− 23n 2

2

(

1

23
+

1

26
+

1

29
+ · · ·

)]

− 1

= 8n

[

2 · 8n − 1

8n
−

8

7

(

8n − 1

8n

)]

− 1 =
6

7
(8n − 1)

Also ∂(G) = 3

[ 3n−1

3 ]
∑

i=0

23n−2

8i
= 3

n−1
∑

i=0

23n−2

8i

=
38n

4

[

1 +
1

8
+

1

82
+ · · · +

1

8n−1

]

=
6

7
(8n − 1)

If k = 3n + 1,

∂(G) =
[

23n+1 + 23n−1 + 23n−2 + · · ·
]

−
[

23n + 23n−3 + 23n−6 + · · ·
]

= 23n

[

2 + 1 +
1

2
+

1

22
+ · · ·

]

− 2(8)n

[

1 +
1

23
+

1

26
+ · · ·

]

=
12(8n) − 5

7

Also ∂(G) =






3

[k−1

3 ]−1
∑

i=0

2k−2

8i






+ 1

=
3(8n)

2
×

8

7

(

8n − 1

8n

)

+ 1

=
12(8n) − 5

7

If k = 3n + 2,

∂(G) =
(

23n+2 + 23n + 23n−1 + 23n−3 + · · · + 20
)



138 P. ROUSHINI LEELY PUSHPAM AND D. YOKESH

−
(

23n+1 + 23n−2 + 23n−5 + · · ·
)

=
(

20 + 21 + 22 + · · · + 23n+2
)

− 2 × 2
(

1 + 23 + 26 + · · ·
)

=

(

23n+3 − 1

2 − 1

)

− 4

(

(23)n+1 − 1

23 − 1

)

=
3

7
(8(8)n − 1)

Also ∂(G) =






3

[ k−1

3 ]
∑

i=0

23n

8i







= 3(8n)

[

1 +
1

8
+

1

82
+ · · · +

1

8n

]

=
3

7
(8(8)n − 1).

Hence the theorem is proved.
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