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BLENDERS FOR A NON-NORMALLY

HÉNON-LIKE FAMILY

SHIN KIRIKI AND MASAKI NAKAJIMA

Abstract. A blender is an indispensable concept presented by Bonatti and Dı́az [3]

to study high-dimensional C
1-robust transitive dynamics around heterodimensional

cycles. In this paper, we present a certain Hénon-like family of real quadratic diffeo-

morphisms on R
3, which exhibits an phase transition from non-normal horseshoes

to blenders. It can be observable from a rapidly jump of topological dimension for

some projected stable segments in some characteristic region of R
3.

1. Introduction

1.1. Non-normally Hénon-like family

A family of real quadratic polynomials

fa,b(x, y) = (1 − ax2 + by, x)

or its topological conjugacy class is called a Hénon family, presented in [15]. Under
appropriate conditions for parameters (a, b), the family exhibits representative dynami-
cal features from horseshoe structures to strange attractors via homoclinic bifurcations,
see [1, 2, 13, 14]. Moreover, the family plays a significant role in more general situa-
tions of two-dimensional dynamics near homoclinic tangencies, see in [5, 17, 18]. On
the other hand, in higher than three-dimension, although several excellent results exist
by using methods extended directly from two-dimensional cases as in [19, 22], certain
new mechanisms different from the two-dimensional cases are required to explain some
phenomena such as bifurcations on heterodimensional cycles studied by Dı́az and others
[3, 8, 9, 10, 11, 12]. A blender is indeed an essential concept to understand these results,
first presented by Bonatti and Dı́az [3, 5, 7]. Especially, it makes a significant contribu-
tion to obtain robustness of cycles close to a given heterodimensional bifurcation in the
C1 topology [4]. A precise definition of blender will be present in the next section.

Affine examples of blenders are already presented in [5, §6.2.1] and [7, §3], which are
constructed geometrically by adding three-dimensional deviations to non-normally affine
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horseshoe maps on R
3, see the next section. However, as far as authors know, there is no

example which is defined by a real quadratic polynomial, like the Hénon family, which
has blender structures. So, we here present a simple family of real polynomials on R

3

defined as follows:

ϕa,b,c,d(x, y, z) = (1 − ax2 + by, x, cz + dx).

Especially, for |c| > 1, a topological conjugacy class of this family is called to be non-
normally Hénon-like in this paper.

Before stating the main result, let us give a brief overview for the family: If |c| < 1
and d = 0, since ϕa,b,c,d(x, y, z) = (fa,b(x, y), cz) is the essentially same as a normally
Hénon-like family which are studied in [22, 6, 21, 16], we can not expect to detect blender-
like structures in such cases. Hence, we should focus on the family for |c| > 1. Under
the condition d = 0, if a and b satisfy similar open conditions given by Devaney-Nitecki
[13], ϕ has a basic set, called a non-normally hyperbolic horseshoe in [7, §1], such that
(i) the dimension of unstable bundle of basic set is equal to 2; (ii) the restriction for
ϕ to the basic set is conjugate to the full shift on two symbols; (iii) the basic set as
well as it’s stable and strong unstable manifolds are all embedded to the xy-plane (see
Figure 1). That is, the nontrivial dynamics of ϕa,b,c,d with d = 0 is no different from
that of two-dimensional Hénon family. Then, in this paper, we study what happens
in three-dimensional dynamics of this family when the value of d varies from 0. In
fact, one will observe that the parameter d controls a structural deviation from non-
normally hyperbolic horseshoe to generate certain distinctive properties with respect to
its invariant manifolds.

Figure 1: Stable, strong unstable segments and local unstable manifold of p in the non-
normally hyperbolic horseshoe for ϕa,b,c,0 for a = 5, b = −0.1 and c = 1.1.
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In the end of the section, we introduce one of advantages of our settings: the above

polynomial definition allows us to simulate it on computers. For example, stable, strong

unstable segments and local unstable manifold for some fixed point in the non-normally

hyperbolic horseshoe for ϕa,b,c,d with d = 0 can be observed numerically as in Figure 1.

In addition, several numerical pictures of blender phenomena in the case of d 6= 0 will be

presented in the next section.

1.2. Blenders and main result

To grasp a concept of general blender and its related properties easily, an affine

example in [5, 7] is useful as follows. Let h be a two-dimensional diffeomorphism which

has an affine horseshoe for the rectangle R = [−1, 1]2 on the xy-plane in R
3 such that

• h(R) ∩ R consists of two sub-rectangles R1 = [−1, 1] × I1 and R2 = [−1, 1] × I2,

where I1, I2 ⊂ (−1, 1) are disjoint closed intervals along the y-axis,

• R ∩ h−1(R) consists of two sub-rectangles h−1(R1) = J1 × [−1, 1] and h−1(R2) =

J2 × [−1, 1] where J1, J2 ⊂ (−1, 1) are disjoint closed intervals along the x-axis,

• The restriction of h to h−1(R1) ∪ h−1(R2) is uniformly expanded and contracted

along the x and y-axis, respectively. For simplicity, the expanding ratio is supposed

to be bigger than 2.

Using the affine horseshoe map h, an affine blender map is defined as a diffeomorphism

Φ : R
3 → R

3 satisfying

Φ(x, y, z) =

{

(h(x, y), 5z/4) if (x, y) ∈ h−1(R1) and z ∈ [−1, 1],
(h(x, y), 5z/4− 1/2) if (x, y) ∈ h−1(R2) and z ∈ [−1, 1].

A maximal invariant set Λ =
⋂

n∈Z
Φn(D), where D = [−1, 1]3 is a unit cube, is

called an affine blender which has a uniformly hyperbolic splitting TΛ = E
s
Λ ⊕E

u
Λ where

E
s
Λ is the one-dimensional stable bundle along the y-axis and E

u
Λ is the two-dimensional

unstable bundle along the xz-plane, respectively. Therefore, the index (dimension of the

unstable bundle) of Λ is equal to 2. Set A := R1 × [−1, 1] and B := R2 × [−1, 3/4] of

Φ(D) ∩ D (see Figure 2). Denote a saddle fixed point which is contained in A by p.

Observe that the connected component of W s(p) ∩ D containing p, denoted by W s
D(p),

is located on the disk D ∩ {z = 0}. To introduce the following distinctive property with

respect to stable manifold of p, consider an upper subset D̃ := D ∩ {z > 0} of D (see

Figure 2). For given y ∈ [−1, 1], z ∈ (0, 1) and 0 < ε < 1 − z, a two-dimensional subset

Sε = [−1, 1] × y × (z, z + ε) in D̃ is called a unstable strip of width ε. Note that the

unstable strip is tangent to E
u
Λ.

Lemma 1.1.(distinctive property [3, 5, 7]) The stable manifold W s(p) intersects with

any unstable strip Sε of width ε in D̃ for arbitrarily small ε > 0.
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Figure 2: Affine blender map and its invariant cones

Remark 1.2. The above lemma implies that W s(p) is projectively dense in D̃, that is,

Cl(πx(W s(p) ∩ D)) ⊃ D̃ ∩ {x = 0},

where Cl(·) is the closure of a given set and πx : D → D ∩ {x = 0} is a canonical

projection along the strong stable direction given in the x-axis.

For a given unstable strip S, let w(S) denote the length of the shortest curve in

S which intersects transversely with the strong unstable cone and connects the two

boundary components inside the strip. Lemma 1.1 can be obtain from the following fact:

• For a given unstable strip Sε in D̃, either Φ(Sε) intersects W s
D(p), or else Φ(Sε)∩D

contains a unstable strip S′ with w(S′) ≥ 5ε/4 (see [5, Lemma 6.6] or [7]).

Now, one can extract essences from the above affine model to define general blenders

from a constructive viewpoint as presented in [5, §6.2.2]: Let ϕ be a C1 diffeomorphism

on a three-dimensional Riemannian manifold M and D ⊂ M be a copy of the three-

dimensional disk [−1, 1]3. We say that (D, ϕ) is a blender structure or ϕ has a blender

Λ =
⋂

n∈Z
ϕn(D), if it has the following two properties:

• (hyperbolicity) there exist ϕ-invariant two unstable cone fields Cuu, Cu with Cuu ⊂
Cu in the tangent space of ϕ−1(D) ∩ D and ϕ−1-invariant stable cone field Cs in

the tangent space of ϕ(D)∩D such that every vector in Cu (resp. Cs) is uniformly

expanded by dϕ (resp. dϕ−1);
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• (distinctive property) for any two-dimensional strip S tangent to Cu crossing D,

– either ϕ(S)∩D contains a strip S′ tangent to Cu which intersects the connected
component of W s(p) ∩ D containing p,

– or ϕ(S)∩D contains a strip S′ with w(S′) ≥ λw(S) where λ > 1 is independent
of S.

Let us now state our result for the non-normally Hénon-like family on R
3 defined by

ϕ(x, y, z) = ϕa,b,c,d(x, y, z) = (1 − ax2 + by, x, cz + dx), (1.1)

where a, b, c and d are real parameters.

Main Theorem. There exists a constant 0 < δ < 1/4 such that if the parameters a, b, c,
and d in (1.1) satisfy the following conditions:

a > a1 =
15(1 + |b|)2

4
, 0 < |b| < δ, 1 + |d| < c <

10

9
, |d| <

1

9
, (1.2)

then

(1) for d = 0, ϕa,b,c,0 has a non-normally hyperbolic horseshoe Λa,b,c,0 containing a
saddle fixed point pa,b,c,0 satisfying

dim Cl(πx(W s(pa,b,c,0)) = 1.

(2) for d 6= 0, ϕa,b,c,d has a blender Λa,b,c,d =
⋂

n∈Z
ϕn

a,b,c,d(D) for some cube D =
Da,b,c,d ⊂ R

3, containing a saddle fixed point pa,b,c,d satisfying

dim(Cl(πx(W s(pa,b,c,d) ∩ D))) = 2.

Remark 1.3. Numerical simulations in Figure 3 also support the main theorem. In fact,
although uniformly hyperbolicity of ϕa,b,c,d does not break down under conditions (1.2),

geometrical dispersions of stable segments abruptly occurs if d crosses 0, which corre-
sponds to the phase transition from the non-normally hyperbolic horseshoe to blenders.

2. Geometrical property

2.1. Configurations of ϕ-image

The condition (1.2) with d 6= 0 implies that ϕa,b,c,d has a saddle fixed point of index
2, denoted by

p = pa,b,c,d = (xp, yp, zp), (2.1)

where

xp = yp =
(1 − c)zp

d
=

b − 1 −
√

(1 − b)2 + 4a

2a
.
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Figure 3: (a.1) Stable segments for ϕa,b,c,d for d = 0 and (a.2) their projective images on
the yz-plane; (b.1) Stable segments for ϕa,b,c,d for d = −0.1 and (b.2) their projective
images on the yz-plane, where (a, b, c) is fixed near (5,−0.1, 1.11).

Set a three-dimensional disk:

D = Da,b,c,d := {(x, y, z) : |x|, |y| ≤ r1, |z − zp| ≤ r2}

where

r1 = r1;a,b :=
3(1 + |b|) + 2

√

(1 + |b|)2 + 4a

4a
, r2 = r2;a,b,c,d :=

|dxp|
c − 1

.

Note that
|b| + 1 +

√

(|b| + 1)2 + 4a

2a
< r1 <

4

5
, (2.2)

where the second inequality is obtained from conditions for a and b in (1.2). Denote each
side panel in D = Da,b,c,d by X± = X±

a,b,c,d := {x = ±r1} ∩ D, Y ± = Y ±

a,b,c,d := {y =

±r1}∩D, and Z± = Z±

a,b,c,d := {z = zp ± r2}∩D. Remark that positions of Da,b,c,d and
the xy-plane vary according to d, as shown in Figure 4, satisfying as follows:
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Figure 4:

• for d < 0, Z−

a,b,c,d ⊂ {z = −2r2} and Z+
a,b,c,d ⊂ {z = 0};

• for d > 0, Z−

a,b,c,d ⊂ {z = 0} and Z+
a,b,c,d ⊂ {z = 2r2}.

In the next proposition, we observe the positional relationship between ϕa,b,c,d(D)
and D under the parameter condition (1.2).

Proposition 2.1. If the parameters of ϕ = ϕa,b,c,d satisfy (1.2), then the intersection
between ϕ(D) and D consists of two disjoint components A = Aa,b,c,d and B = Ba,b,c,d

which satisfy the following conditions:

(1) If d < 0, then

A ∩
(

Y ± ∪ ϕ(X± ∪ Z±)
)

= ∅, B ∩
(

Y ± ∪ Z+ ∪ ϕ(X± ∪ Z−)
)

= ∅.

(2) If d > 0, then

A ∩
(

Y ± ∪ ϕ(X± ∪ Z±)
)

= ∅, B ∩
(

Y ± ∪ Z− ∪ ϕ(X± ∪ Z+)
)

= ∅.

Proof. First, let us show the case of d < 0. Set the points on the edges of D as



















P1 = (0,−r1, 0), P2 = (0,−r1,−2r1),

P±

1 = (±r1,−r1, 0), P±

2 = (±r1,−r1,−2r1),

Q1 = (0, r1, 0), Q2 = (0, r1,−2r1),

Q±

1 = (±r1, r1, 0), Q±

2 = (±r1, r1,−2r1).

See Figure 5.
We here consider a canonical projection πz : R

3 → R
2 along the z-axis. Since

πz ◦ ϕa,b,c,d(x, y, z) = fa,b(x, y) which is the two-dimensional Hénon family given in the
introduction, the same discussions as in [13] hold for πz ◦ ϕ := πz ◦ ϕa,b,c,d, as follows:
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Figure 5: D and ϕa,b,c,d(D) when b, d < 0.

• By (2.2),

1 ± br1 ≥ 1 − |b|r1 > 4/5 > r1.

Hence, πz ◦ ϕ(P1) = (1 − br1, 0) and πz ◦ ϕ(Q1) = (1 + br1, 0) are contained in the

half-plane {x > r1}. Also, by (2.2)

1 − ar2
1 ± br1 ≤ 1 − ar2

1 − |b|r1 < −r1.

Then, for each i = 1, 2, πz ◦ϕ(P−

i ) = (1− ar2
1 − br1,−r1), πz ◦ϕ(P+

i ) = (1− ar2
1 −

br1, r1), πz ◦ϕ(Q−

i ) = (1− ar2
1 + br1,−r1) and πz ◦ϕ(Q+

i ) = (1− ar2
1 + br1, r1) are

located on {x < −r1}. See Figure 6.

• πz◦ϕ(Y +) (resp. πz◦ϕ(Y −)) is a quadratic curve between πz◦ϕ(Q+
i ) and πz◦ϕ(Q−

i )

(resp. πz ◦ ϕ(P+
i ) and πz ◦ ϕ(P−

i )) which has the critical point πz ◦ ϕ(Qi) (resp.

πz ◦ ϕ(Pi)). See Figure 6.

Next, consider the other projection πy : R
3 → R

2 along the y-axis. One can observe

the following situations (see Figure 7):

• Since πy◦ϕ(P1) = (1−br1, 0) and πy◦ϕ(P−
1 ) = (1−ar2

1−br1,−dr1), the subsegment

of πy ◦ϕ(Z+) between these points has no intersection with πy(Z+). On the other

hand, the remaining subsegment of πy◦ϕ(Z+) between πy◦ϕ(P1) and πy◦ϕ(P+
1 ) has

has no intersection with πy(Z+), and penetrates πy(D) from πy(X+) to πy(X−).
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Figure 6: Projections of D and ϕ(D) on the xy-plane for b, d < 0

Figure 7: Projections of D and ϕ(D) on the xz-plane for b, d < 0

• By direct calculations,

−2cr2 − dr1 < −2r2.

Therefore, the subsegment of πy ◦ ϕ(Z−) between πy ◦ ϕ(P2) = (1 − br1, 0) and
πy ◦ ϕ(P−

2 ) = (1 − ar2
1 − br1,−2cr2 − dr1) has no intersection with πy(Z−). Also,

the subsegment of πy ◦ϕ(Z−) between πy◦ϕ(P2) and πy ◦ϕ(P+
2 ) has no intersection

with πy(Z−).

From the above facts,

A := ϕ(D) ∩ D ∩ {x < 0}, B := ϕ(D) ∩ D ∩ {x > 0}

satisfy the claim (1) of this proposition. One can check similarly the case (2) for d > 0.
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2.2. Stable cone field and structural deviation

The next lemma is a technical result to construct cone fields assuring the uniform

hyperbolicity in following several propositions. Let A and B be the components of

ϕ(D) ∩ D in the above Proposition 2.1.

Lemma 2.2. Suppose that a and b satisfy (1.2). Then

(1) |x| > (1 + |b|)/a for (x, y, z) ∈ ϕ−1(A ∪ B),

(2) |y| > (1 + |b|)/a for (x, y, z) ∈ A ∪ B.

Proof. For (x, y, z) ∈ ϕ−1(A ∪ B),

|1 − ax2 + by| ≤ r1

where r1 = {3(1 + |b|) + 2
√

(1 + |b|)2 + 4a}/(4a) given in the main theorem. Then, we

have

|x| ≥ a−1/2
√

1 − r1β =
1

2a

√

4a − β(3β + 2
√

β2 + 4a),

where β := 1 + |b|. Observe that, for every a > 15β2/4,

∂

∂a
(4a − β(3β + 2

√

β2 + 4a)) > 0.

So, for any a > 15β2/4, we get

1

2a

√

4a − β(3β + 2
√

β2 + 4a) ≥ 1

2a

√

15β2 − β(3β + 2
√

β2 + 15β2) =
β

a
.

That is, |x| > (1 + |b|)/a. Moreover, one can check |y| > (1 + |b|)/a in essentially the

same way as above.

We here construct a stable cone field Cs for which central angle is dependent on the

parameter b. The inverse function of (1.1) is given by

ϕ−1
a,b,c,d(x, y, z) = (y,

x − 1 + ay2

b
,
z − dy

c
). (2.3)

Proposition 2.3.(stable cone fields) Let

Cs(q) = Cs
b (q) =

{

(ξ, η, ζ) ∈ TqD :
√

|b||η| ≥
√

ξ2 + ζ2

}

for each q ∈ A ∪ B. If the parameters of ϕ = ϕa,b,c,d satisfy (1.2), then each v ∈ Cs(q)

satisfies (dϕ−1)qv ∈ Cs(ϕ−1(q)) and |(dϕ−1)qv| > ρ|v| for some constant ρ > 1.
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Proof. Write q = (x, y, z) ∈ A∪B and v = (ξ, η, ζ) ∈ Cs(q). From the direct calculation,

u = (ξ−1, η−1, ζ−1) := (dϕ−1)qv = (η, b−1(ξ + 2ayη), c−1(ζ − dη)).

By the fact |η| >
√

ξ2 + ζ2 ≥ |ξ|, |ζ|, and conditions c > 1, |d| < 1/9 in (1.2),

ξ2
−1 + ζ2

−1 ≤ η2 + c−2(|ζ| + |dη|)2 < η2{1 + c−2(1 + |d|)2}
< η2{1 + (1 + 1/9)2} = 181η2/81 < 2.3η2.

Meanwhile, by Lemma 2.2 and 0 < |b| < 1/4,

η2
−1 ≥ |b|−2(2a|y||η| − |ξ|)2 ≥ |b|−2η2(2a|y| − 1)2

≥ 4|b|−1η2{2(1 + |b|) − 1}2 > 4|b|−1η2.

Therefore, one has |b|η2
−1 > ξ2

−1 + ζ2
−1, that is, u ∈ Cs(ϕ−1(q)). Moreover,

‖u‖ = |η−1| > 2|b|−1/2|η| > 4|η| = 4‖v‖,

where ‖ · ‖ is the maximum norm which is equivalent to the Euclidean norm.

As stated in the previous subsection, ϕa,b,c,d(D) has the saddle fixed point p in A.
Denote the connected component of W s(p)∩D containing p by W s

D(p). From Proposition
2.1, we have a two-dimensional subset of the boundary of B which is contained in Int(D)
for d < 0 (resp. d > 0), which is denoted by ∂+B (resp. ∂−B), see Figure 8.

Figure 8: Positional relationship between W s
D(p) and B

Proposition 2.4. Suppose the parameters of ϕ = ϕa,b,c,d satisfy (1.2). For any d < 0
(resp. d > 0), there exist a small neighborhood V + (resp. V −) of ∂+B (resp. ∂−B) such
that

V + ∩ W s
D(p) = ∅ (resp. V − ∩ W s

D(p) = ∅).
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Proof. The upper bound δ for |b| in the condition (1.2) will be decided definitely in this

proof. For any d < 0, observe

ϕ−1(B) ⊂ D ∩ {0 < x ≤ r1}.

Hence, for any (x, y, z) ∈ ∂+B, its z-coordinate satisfies

z ≥ dr1.

Remark that W s
D(p) is a segment through p, for which the tangent space is contained

in the stable cone Cs
b (p) with opening slope is smaller than

√

|b| as given in Proposition

2.3. Hence, for any (x, y, z) ∈ W s
D(p),

z < zp + 2r1

√

|b|,

where zp is the z-coordinate of p. For |b| → 0, one get

dr1 = dr1;a,b =
d{3(1 + |b|) + 2

√

(1 + |b|)2 + 4a}
4a

−→ d(3 + 2
√

1 + 4a)

4a

and

zp = zpa,b,c,d
=

d(b − 1 −
√

(1 − b)2 + 4a)

2a(1 − c)
−→ d(−1 −

√
1 + 4a)

2a(1 − c)
.

Since d < 0 and c < 10/9,

d(−1 −
√

1 + 4a)

2a(1 − c)
<

d(3 + 2
√

1 + 4a)

4a
.

Therefore, by taking δ > 0 small enough, for any 0 < |b| < δ, one obtain

zpa,b,c,d
+ 2r1;a,b

√

|b| < dr1;a,b.

This implies that, for d < 0, W s
D(p) is located below ∂+B as shown in Figure 8. Hence,

one can take a neighborhood V + of ∂+B such that V + ∩ W s
D(p) = ∅.

For d > 0, it is clear that the claim can be shown similarly. This ends the proof.

2.3. Strong unstable and unstable cone fields

Proposition 2.5.(unstable cone field) Let

Cu(q) =
{

(ξ, η, ζ) ∈ TqD :
√

ξ2 + ζ2 ≥
√

2|η|
}

for any q ∈ ϕ−1(A ∪ B). If the parameters of ϕ = ϕa,b,c,d satisfy (1.2), then each

v ∈ Cu(q) satisfies (dϕ)qv ∈ Cu(ϕ(q)) and |(dϕ)qv| > ρ|v| for some constant ρ > 1.
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Proof. For any q = (x, y, z) ∈ ϕ−1(A ∪ B) and v = (ξ, η, ζ) ∈ Cu(q), set

w = (ξ1, η1, ζ1) := (dϕ)qv = (−2axξ + bη, ξ, cζ + dξ).

For simplicity, use the maximum norm ‖ · ‖ same as in the previous proof. By the

condition c > 1 + |d| in (1.2),

‖w‖ = max{|ξ1|, |η1|, |ζ1|} ≥ c|ζ| − |d||ξ| > (c − |d|)|ζ| > |ζ|. (2.4)

The proof will be divided into the following three cases:

• First consider the case: |ξ| ≥ |η|. By directly estimations,

ξ2
1 + ζ2

1 ≥ {2|ξ|(1 + |b|) − |bη|}2 + (|cζ| − |dξ|)2

≥ {2|ξ|(1 + |b|) − |bξ|}2 > 4ξ2 = 4η2
1 .

Hence, w ∈ Cu(ϕ(q)).

If |ξ| ≥ |ζ|,
‖v‖ = max{|ξ|, |η|, |ζ|} = |ξ|.

By Lemma 2.2, we have

‖w‖ = max{|ξ1|, |η1|, |ζ1|} ≥ |2axξ| − |bη| > 2|ξ|,

That is, ‖w‖ ≥ 2‖v‖.
On the other hand, if |ξ| < |ζ|,

‖v‖ = max{|ξ|, |η|, |ζ|} = |ζ|.

By (2.4), we get ‖w‖ ≥ ρ‖v‖ where ρ > 1 is some constant.

• Next, consider the case: |η| > |ξ| and |ζ| >
√

2|ξ|. By the condition c > 1 + |d| in

(1.2),

ξ2
1 + ζ2

1 ≥ (|cζ| − |dξ|)2 > |ζ|2(|c| − |d|)2 > |ζ|2 > 2|ξ|2 = 2|η1|2.

Then, we get w ∈ Cu(ϕ(q)).

Since
√

2|η| ≤
√

ξ2 + ζ2 <
√

η2 + ζ2, one can get |η| < |ζ| which implies that

‖v‖ = max{|ξ|, |η|, |ζ|} = |ζ|. (2.5)

So, from (2.4), we obtain ‖w‖ ≥ ρ‖v‖.
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• Finally, consider the remaining case: |η| > |ξ| and |ζ| ≤
√

2|ξ|. Since the previous
(2.5) also holds, √

2|ξ| ≥ |ζ| > |η| > |ξ|.
So, one can estimate as follows.

ξ2
1 + ζ2

1 ≥ {2|ξ|(1 + |b|) − |bη|}2 + (|cζ| − |dξ|)2 ≥ {2|ξ|(1 + |b|) − |bξ|}2

≥ {2|ξ|(1 + |b|) −
√

2|ξ||b|}2 > 4ξ2 = 4η2
1 .

Thus, we obtain w ∈ Cu(ϕ(q)). Moreover, by Lemma 2.2,

‖w‖ ≥ | − 2axξ + bη| ≥ 2a|x||ζ| − |b||η| > 2(1 + |b|)|ζ| − |b||ζ| > 2|ζ| = 2‖v‖.

Now therefore, these cases complete the proof of this proposition.

Proposition 2.6.(strong unstable cone field) Let

Cuu(q) =
{

(ξ, η, ζ) ∈ TqD : |ξ| ≥
√

2
√

η2 + ζ2

}

for every q ∈ ϕ−1(A∪B). If the parameters of ϕ = ϕa,b,c,d satisfy (1.2), then (dϕ)qCuu(q) ⊂
Cuu(ϕ(q)).

Proof. For given q = (x, y, z) ∈ ϕ−1(A ∪ B) and v = (ξ, η, ζ) ∈ Cuu(q), write

(ξ1, η1, ζ1) := (dϕ)qv = (−2axξ + bη, ξ, cζ + dξ).

By Lemma 2.2 and |ξ|/
√

2 ≥ |η|, |ζ|, one can obtain

ξ2
1 ≥ (2a|x||ξ| − |bη|)2 ≥ {2(1 + |b|)|ξ| − |b||ξ|/

√
2}2 ≥ 4ξ2.

From the condition (1.2), observe that |d| + c/
√

2 < 1. Therefore, we get

η2
1 + ζ2

1 ≤ ξ2 + (|dξ| + c|ζ|)2 ≤ {1 + (|d| + c/
√

2)2}ξ2 ≤ 2ξ2,

which concludes (ξ1, η1, ζ1) ∈ Cuu(ϕ(q)). This ends the proof.

3. Proof of main result

3.1. Characteristic region in D

We say that a segment L is unstable (resp. stable) through D, if (i) TxL ⊂ Cuu(x)
(resp. Cs(x)) for every x ∈ L; (ii) one of the end-points of L is contained in X+ (resp.
Y +) while another is contained in X− (resp. Y −). Moreover, we say that an unstable
segment Lu through D is in the upper (resp. lower) region to a stable segment Ls

through D, if Lu dose not intersect Ls, and Lu is in the homotopy class of the segment
L+ = [−r1, r1] × {0} × {r2} (resp. L− = [−r1, r1] × {0} × {−r2}) in D \ Ls. See Figure
9.
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Figure 9: Lu is located in the upper region of W s
D(p).

Proposition 3.7. Suppose the parameters of ϕ = ϕa,b,c,d satisfy (1.2) with d < 0 (resp.

d > 0). Then, there exists a neighborhood U− (resp. U+) of Z− (resp. Z+) on the
boundary of D = Da,b,c,d such that every unstable curve Lu through D in the upper

(resp. lower) region of W s
D(p) dose not intersect U− (resp. U+).

Proof. We here show the claim for d < 0. In the case for d > 0, the proof is essentially

same. By p ∈ Int(A) and Proposition 2.3,

(W s
D(p) ∩ A) ∩ (Z± ∪ X±) = ∅.

Therefore,
W s

D(p) ⊂ Int(ϕ−1(A)).

Also, from Proposition 2.1, one can get immediately

ϕ−1(A) ∩ (Z± ∪ X±) = ∅.

That is, it implies the existence of a sufficiently small neighborhood U− of Z− satisfying

U− ∩ ϕ−1(A) = ∅. Hence, one can get not only W s
D(p) ∩ U− = ∅ but Lu ∩ U− = ∅ for

any unstable curve Lu in the upper region of W s
D(p).

3.2. Sufficient condition for the blender structure

The following properties for ϕa,b,c,d will be sufficient to show the existence of blenders,

which are corresponding to the conditions given primarily by Bonatti-Dı́as [3, p.365-369].

Lemma 3.8. Suppose the parameters of ϕ = ϕa,b,c,d satisfy (1.2) with d < 0 (resp.

d > 0).
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(I) There exists a box D = Da,b,c,d ⊂ R
3 such that D ∩ ϕ(D) contains a connected

component A disjoint from Y ± and ϕ(X± ∪ Z±), and contains another connected
component B disjoint from Y ±, Z+ and ϕ(X± ∪ Z−) (resp. ϕ(X± ∪ Z+)).

(II) There exist cone fields Cs, Cu, Cuu and a constant ρ > 1 satisfying as follows:

(II.a) For every x ∈ A ∪ B and every vector v ∈ Cs(x), the vector w = (dϕ−1)xv
belongs to the interior of Cs(ϕ−1(x)), and |w| ≥ ρ|v|;

(II.b) For every x ∈ ϕ−1(A) ∪ ϕ−1(B) and every vector v ∈ Cu(x), the vector
w = (dϕ)xv belongs to the interior of Cu(ϕ(x)), and |w| ≥ ρ|v|;

(II.c) For every x ∈ ϕ−1(A) ∪ ϕ−1(B) and every vector v ∈ Cuu(x), the vector
w = (dϕ)xv belongs to the interior of Cuu(ϕ(x)).

(III) Let W s
loc(p) be the connected component of W s(p)∩D containing p with index(p) =

2, which is a unique saddle fixed point for ϕ in A. There exists a neighborhood U−

(resp. U+) of the side face Z− (resp. Z+) of D such that every unstable curve Lu

through D in the upper (resp. lower) region of W s
loc(p) dose not intersect U− (resp.

U+).

(IV) There exist a neighborhood U+ of Z+ of D and a neighborhood V of W s
loc(p) such

that, for every unstable curve Lu through D in the upper (resp. lower) region of
W s

loc(p), one of the two following possibilities holds:

(IV.a) ϕ(L) ∩ A contains a unstable curve through D in the upper (resp. lower) of
W s

loc(p) and disjoint from U+ (resp. U−);

(IV.b) ϕ(L) ∩ B contains a unstable curve through D in the upper (resp. lower)
region of W s

loc(p) and disjoint from V .

Proof. The claim (I) corresponds with Proposition 2.1, and claims in (II) are exactly
same as those in Proposition 2.3, 2.5 and 2.6, respectively. Also, Proposition 3.7 implies
the claim (III). Finally, by Proposition 2.4 with Proposition 2.3-2.6, we can conclude
(IV) immediately

Finally, the proof of the main theorem in Subsection 1.2 is provided as follows.
Proof of Main Theorem. For d = 0, the claim (1) of the main theorem is trivial
from the observation in Subsection ??. For d 6= 0, since ϕa,b,c,d satisfies the above
geometric conditions (I) - (IV) of Lemma 3.8, from [3, p.365-369], one can directly obtain
a blender

⋂

n∈Z
ϕn

a,b,c,d(D) as claimed in (2). The dimensional property for projected
stable segments is also obtained from Lemma 1.1. This completes the proof.
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nacional de Sistemas Dinámicos, Facultad de Ciencias de la Universidad de Chile (January,

3-7, 2005). http://www.mat.puc-rio.br/~lodiaz/publ.html

[8] L. J. Dı́az and J. Rocha, Non-connected heterodimensional cycles: bifurcation and stability,

Nonlinearity 5 (1992), 1315 –1341

[9] L. J. Dı́az, Robust nonhyperbolic dynamics and heterodimensional cycles, Erg. Th. Dyn.

Sys. 15(1995), 291–315

[10] L. J. Dı́az and J. Rocha, Large measure of hyperbolic dynamics when unfolding heteroclinic

cycles, Nonlinearity 10 (1997), 857–84.

[11] L. J. Dı́az and J. Rocha, Noncritical saddle-node cycles and robust nonhyperbolic dynamics,

Dynam. Stability Systems, 12 (1997), 109–135

[12] L. J. Dı́az and J. Rocha, Partially hyperbolic and transitive dynamics generated by hetero-

clinic cycles, Ergod. Th. & Dynam. Sys. 21(2001), 25–76

[13] R. Devaney and Z. Nitecki, Shift automorphisms in the Hénon mapping, Commun. Math.
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