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CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS
INVOLVING LINEAR OPERATORS

H. A. AL-KHARSANI AND N. M. AL-AREEFI

Abstract. In terms of linear operators we introduce new classes of functions. Then
by using differential subordinations, certain results concerning inclusion relations,

coefficient bounds and other results are given.

1. Introduction

Let A, denote the classes of functions of the form
f(z) =2 + Z apz” (1.1)

which are analytic in the open disk U = {z € C,|z| < 1}. If f and ¢ are analytic in
U, we say that f is subordinate to g, written f < g or f(z) < g(2), if there exists a
Schawrz function w, analytic in U which w(0) = 0 and |w(z)| < 1 (¢ € U), such that
f(z) = g(w(2))(z € U). In particular, if the function ¢ is univalent in U, the above
subordination is equivalent to f(0) = ¢(0) and f(U) C ¢g(U). For 0 < ¢ < p,8 < 1,
we denote by x*(§), K(§), (&, ) the subclasses of A, consisting of all analytic p-valent
functions which are, respectively, starlike of order &, convex of order &, close-to-convex
of order &, and type (§ in U.

Let N be the class of all functions ¢ which are analytic and univalent in U and for
which ¢(U) is convex with ¢(0) =1 and Re{¢(z)} > 0 for z € U.

From the principle of subordination between analytic functions, we introduce the
subclasses x*(§, ¢), K(&, ¢), and ¢(&, 5, ¢,v) of the class A, for 0 < ¢ < p, f < 1, and
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¢,¢ € N, which are defined by
v = {re a2 (S8 ) <o mu}.

p—£¢\ f(2)
Ko ={r ey ot (140 —¢) <o mw}, (12)
B(€,5; 6, v) :{feAp e (€.0) st <Z§(S) 5) <o) U}.

We note that the classes mentioned above are the familiar classes which have been used
widely on the space of analytic and p-valent functions in U, and for special choices for the
functions ¢ and v involved in these definitions, we can obtain the well known subclasses
of A,. For example, we have

(g,lfz) (), K <£,1fz> K(€), @ <5 [ b 1:)@(5,6). (1.3)

1

Also let the Hadamard product (or convolution) f x g of two analytic functions

z)=2zF + Z arz®, g(z) = 2P + Z by 2" (1.4)
k=p+1 k=p+1
be given by
(f*g)(2) =2"+ Z arbrz". (1.5)
k=p+1

For oj e C(j =1,2,...,1) and §; € C\{0,-1,-2,...}(j =1,2,...,m), the general-
ized hypergeometric function is defined by the infinite series
lFm(alw")al;ﬁlw")ﬁTru Z 6m)kk

(1 <m+1;l,me Ny ={0,1,2,...}),

where (a)g is the Pochhammer symbol defined by

(@) = I'(a+ k) (k=0)
"TUT0) \al+l) - (atk—1) (keN:={L2...).

In particular, the incomplete beta function, related to the Gauss hypergeometric function,
o(a, c; z) is defined by

(o]
dla,c;2) = zF(a,1;¢2) = E i P 2 eUe#0,—1,-2,
(¢)k

z

Note that ¢(a,1;2) = a—ae

. Moreover, ¢(2,1;z) = is the Koebe function.

(1—2)
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Corresponding to the function

hp(at,...;a0; 81, By 2) = 2P Fp (a1, .. 005 81y -« - B 2). (1.6)

The Dziok-Srivastava operator [7] (see also [6] and [22]) Hy™(ay,...,cu, B1,. .., Bm) is
defined by the Hadamard product

H;)’m(ala see 7al;ﬁ17 s 7ﬁm)f(z)
= hp(ala'"7O‘l;ﬂla"'7ﬂm;z)*f(z)

_ o~ ()k—p - ()p—p  amz®
" Z (ﬁl)k—p T (ﬁm)k—p (k - p)!'

Special cases of the Dziok-Srivastava linear operator include the Hohlov linear op-
erator [9]. The Carlson-Shaffer linear operator [3], the Ruscheweh derivative operator
[19], the generalized Bernardi-Libera-Livingston operator (cf. [2], [11], [12]) and the
Srivastava-Owa fractional derivative operators (cf. [16], [18]).

Corresponding to the function hy(au, ..., ar, B1,. .., Bm; 2) defined by (1.6), we intro-

duce a function F, (o, ..., B1,. .., Bm; 2) given by
hp(ala' "7al;ﬁla' 7677172) *]:;t(alw' '7al;ﬁ17" 7677172)
2P (1.7)

ze€U,u>0,l=m+1).

TEST

Analogous to Hp(ai,...,a;,081,...,0m), we mnow define the linear operator
Jular, .. ;o 61, ..., Bm) on A, as follows:

Ju(ah"'7alaﬁ17"'7ﬁm)f(2) :fu(ala-"7al7ﬁla"-aﬁm;z)*f(z)

1.8
(an,B; € C\Zysi=1,...;5j=1,....mpu>0;2€U; f € A,). (18)
For convenience, we write
‘];lljm(al) = J#(ala o 705l761a i 76777,)
If f is given by (1.1), then by (1.8), we see that
T f(z) =22+ Y Uy(an, pagzt, (1.9)

k=p+1

where

(B1)k—p - (Bm)k—p
(@1)k—p - (QWr—p
Special cases of this operator are [10] when p = 1, the generalized integral operator
in [1] when p = 1 and p = 2 and Noor integral operator [14]. We can verify from the
definition (1.8) that
2T (e + 1) f(2)) = ar ;™ (@) f(2) = (ar = p) T (@1 + 1) f(2) (1.10)

2T (@) f(2)) = (n+p = DI () f(2) = (= DI (@) f(z)  (L11)

(o, ) = (p+p—1)k—p
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By using the operator J ll;m(al), we introduce the following classes of analytic functions
for g, e N and 0 < & <p, 5 < 1t

Xon i (lmi &) == {f € Ap - Ji™ (1) f(2) € X" (& 0)}
Kayu(lm; &) == {f € Ay : J:™ (1) f(2) € K(& )} (1.12)
(I)ahlt(hm;gaﬁ;(z)aw) = {f € A;D : J;ltml(al)f(z) € @(5,57 ¢7¢)} :

Also

2f'(2)
p

[(2) € Koy u(l,m; & 0) & € Xayu(l,m; &5 0). (1.13)

The multiplier transformations defined on A, by the following infinite series

I(r,\) f(z) = 2P + i (k+)\) apz® (A>0). (1.14)

k=p+1 p+>\

The operator I,(r, \) is closely related to Salagean, derivative operators [21]. The oper-
ator Iy := I (r, \) was studied recently by Cho and Srivastava [4] and Kim [5].

The operator I, := I1(r, 1) was studied by Uralgaddi and Somanatha [23]. By using
Hadamard product

I(r,\) f(2) :== Fx(z) * f(z) where Fi(z)=2z"+ Z —)Tzk (A>0). (1.15)

Corresponding to the function Fj(z) defined by (1.15), we introduce a function
F3.u(2) given by

ZP

Fi(z) * F3 u(z) = 1= zyurp1°

zeU,u>0. (1.16)

Using I,(r, A), we define the multiplier transformations T),(r, A) as follows:
Tu(r, N f(2) = F5 . (2) * f(2) A>0,u>0,2€U, feA,). (1.17)
If f is given by (1.1), then by (1.17), we see that

Tu(rNf(z) = 2"+ Y Wk(r, Nagz", (1.18)

k=p+1

C(wtp =1y (A"
P =T (kH)

For p = 1 we note that a special case of this operator is the integral operator defined in
[15].

where
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We can verify from the definition (1.17) that

2ATulr + LA(2)) =0+ NTu(r, N f(2) = XTu(r +1,0) f(2) (1.19)
2HTu(r, N f(2)) =1 = w)Tu(r, N f(2) + (4 p = DT (r, M) f(2). (1.20)

By using the operator T),(r, A\) we introduce the following classes of analytic functions
for g, e N, and 0 < € < p, B < 1:

Xp(r A& 0) = {f € Ap : Tu(r, N f(2) € X (& 0)}
Ka(r A &) == {f € Ap : Tu(r, \) f(2) € K(& 9)} (1.21)
QL (r & B, ) ={f € Ap : Tu(r, ) f(2) € (€, B3 6,¥)}
Also ,
1) eKrngo) & L e xioneo (1.22)

In this paper, basic properties of the «classes x.(l,m;&, ¢),K.(l,m;&, @),

inclusion relations and coefficient bounds. Various known or new special cases of our re-
sults are also pointed out.

2. Inclusion properties involving the operator Jf;m and T},
The following results will be required in our investigation.

Lemma 2.1. ([13]). Let ¢ be convex univalent in U with $(0) = 1 and Re [kp(z)+v] > 0
(k,v € C). If p is analytic in U with p(0) = 1, then

p(2) + k;(i% <4(z) (2€D) (2.1)
implies
p(z) < ¢(2), (z € ). (2.2)

Lemma 2.2. ([13]). Let ¢ be convex univalent in U and let w be analytic in U with
Re{w(2)} > 0. If p is analytic in U and p(0) = ¢(0), then

p(2) +w(2)zp'(2) < ¢(2) (2 €U) (2.3)
implies
p(z) < ¢(z) (2 €. (2.4)
Theorem 2.3. Let > 1 and ¢ € N'. Then
() Xarur1 (M€ @) C Xayull, m5658) C Xayv1,ul,m;€56) (1 > p) (2.5)

(i) Xp1 (A& D) CxL(m A& @) C X+ 1,065 0). (2.6)
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Proof. (i) First of all, we will show that
Xay,ut+1(Lm3 & @) C Xag (L, m; & ). (2.7)

Let f S onl,l“rl(lam;g; QS) and set

1 (2T () f(2)
z) = — , 2.8
p(z) < T o) f(2) 5) (2.8)

where p is analytic in U with p(0) = 1. Using (1.11) and (2.8),

1 (25 e)f =) )
pg< Tl () f(2) §>_p(2)+@§)p(z)+u1+§’ (z€U). (2.9)

Since g > 1 and ¢ € N, we see that
Re{(p—&od(z) +p—1+& >0 {z e U}. (2.10)

Using Lemma 2.1 to (2.9), we find that p < ¢, which means f € xa,..(l, m;&; ¢).
To prove the second part, let f € xa, u(l,m;&; @) and put

o L <Z<J;;m<a1 +1f() §> | 2.11)

Tp—€\ T+ D)

where s is analytic function with $(0) = 1. Then, by using the arguments above with
(1.10), it follows that s < ¢ in U, which implies that f € xa,+1,.(, m; &, ¢). Therefore,
we complete the proof.

(ii) The proof is the same as (i).
Theorem 2.4. Let > 1 and ¢ € N'. Then,

(1) ICou,MJrl(lam;g;(yb) C ICou,M(lam;g;(yb) C IcalJrl,p,(lam;g;(yb)a ayp > p (212)

(i) Ky (r X&) CKL(r A& ¢) C L+ 1M ¢). (2.13)
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Proof. Applying (1.13) and Theorem 2.3, we find that

F(2) € Kay 1 (L ms €,6) & T07 (1) f(2) € K(& 9)
(pr(Z)) (6 d)

< Jﬁﬁ(al)

2f'(2)
p

=

€ Xa1,;t+1(l7 m; §7 ¢)

= %}’2) € Xaru(l,m; & 9)

o 2UEm @)Y
p

€X"(&0) (2.14)

& JM o) f(z) € K& ¢)
& f(2) € Kay u(l,m; & @)
f(z) € Kay u(l,m; €5 9) < Zsz) € Xay ull,m; & 0)

= %}Z) € Xa1+1,;t(l7m;§;¢)

= f(Z) € ’COqul,M(lam;f; QS);
which completes the proof.

Now, by using Lemma 2.2, we obtain the following inclusion relation for the class

Doyl mi €, B @ 10) and @5 (1, m; &, B; ¢, 7).

Theorem 2.5. Let > 1 and ¢, € N'. Then

(1) Payut1l,m;€, 8;0,0) CPay u(l,m; €, B5 6, 0) CPayy1,u(l, ms &, 85 0,9), (a1>p)  (2.15)
(il) Py (r, A€, 8;0,0) C PL(r, A€, B ¢,9) C PL(r+ 1, M€, B 0, 9). (2.16)

Proof. First, we will prove that

(I)al,;t+1(l7 m; ga ﬁy ¢a ¢) C (I)ou,;t(la m; €a 57 ¢7 w) (217)

Let f(Z) S q)a17M+1 (la m; ga B, (7257 1/)) Thena from the definition of (I)ahll«Jrl(la m; fa 6; ¢a w)a
there exists a function r(z) € x*(&, ¢) such that

1 (20 () f(2))
p—0 r(z)

Choose the function g(z) such that Jf;fl (a1)g(z) = r(z). Then, g(2) € Xay,ut1(l, ;& 0)
and
L (205 () /()
P=B N\ Juri(a)g(2)

- ﬁ) < Y(z) (z €U). (2.18)

5><¢@) (z € V). (2.19)
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Now let

L1 (M)
p(z) = py— < J,l[m(oq)g(z) 5) ) (2.20)

where p is analytic in U with p(0) = 1. Using (1.11), we have
(p = B)zp'(2)J;™(@1)g(2) + (0 — B)p(2) + B)z(J;™ (e1)g(2))’
= (p+p— 12T (@) f(2)) = (1= Dz(J™ (1) f(2))"

Since g(2) € Xay,ut1(l,m;&; @), by Theorem 2.3, we know that g(2) € Xay,u(l,m;6;0).

(2.21)

Let l
L1 (AU ag(2))
q(z) = P < T an)a(2) 5) . (2.22)
Then, using (1.11), once again, we have
Jl’m1 a1)g(z
(u+pl)%(pf)ﬁ2)+ul+é (2.23)

From (2.21), (2.23), we obtain

L (2 ')
p=p < Tl (an)g(2) ﬁ) =pla)+ —Oq2) tp—1+¢ (2.24)

Since pt > 1 and ¢ < ¢ in U,

Re{(p—&q(z) + p—1+&} >0 (z € 1). (2.25)

Therefore, from Lemma 2.2, we can show that p < 1, so that f € O, ,(I,m;&, 5; 0,7).
For the second part, by using the same arguments above with (1.10), we obtain

Doy pu(l,mi &, B3 0,1) C Paygr,u(l,ms &, B; 0, 0). (2.26)

Therefore, we complete the proof.

3. Inclusion Properties Involving the Integral Operator F,

In this section, we consider the generalized Libera integral operator F,, [17] defined

Fu(f) = Fa(f)(z) = 22 / e fde (feApa> 1) (3)

Za

First we will prove the following.

Theorem 3.1.
(i) If fe onl,u(lam§€§¢)7 then Fa(f) € Xa1,;t(l7m§§§¢) (a > O)'
(i) If f € X, (1, X &5 0), then Fo(f) € X5,(r, A6 ) (a > 0).



CERTAIN SUBCLASSES OF MULTIVALENT FUNCTIONS 175

Proof. (i) Let f € xa,.u(l,m;&; @) and set

_ 1 (M) Fa(f)(2) e
P&\ (@) Fa(f)(2)

where p is analytic in U with p(0) = 1. From (3.1), we have

z(JL’m(al)Fa(f)(z))’ =(a+ l)Jf;m(al)f(z) - aJL’m(al)Fa(f)(z). (3.3)

Then, by using (3.2) and (3.3), we obtain
J" (1) f(2)

T (@) Fa(f)(2)

Taking the logarithmic differentiation on both sides of (3.4) and multiplying by z, we
have

p(2)

(a+1) =@ —-9Op(z) +a+¢ (3.4)

zp'(2) 1 (M) f(2)
plz) ¥ (p—&p(z) +a+é p—¢ ( JE (o) f(2)

Hence, by virtue of Lemma 2.1, we conclude that p < ¢ in U, which implies that F,,(f) €

Xan,u(l; ;€5 D).
(ii) The proof is the same as (i).

- g) (z € U). (3.5)

Next, we derive an inclusion property involving F,, which is given by the following.

Theorem 3.2.
(i) Iff € ’Cal,u(lvm§§§¢); then Fa(f) € ’Cal,;t(lvm§§§¢) (a > O)'
(ii) If f € K}, (r, N & ), then Fo(f) € K (r, A\ &0)  (a > 0).

Proof. By applying Theorem 3.1, it follows that

f(z) € Koy u(l,m: & 0) & %}Z) € Xayu(l,m; & 9)

2f'(z)
p

= F,(
(Fa(f)(2))

& e € Xa,u(l,m; & )

& Fu(f)(2) € Koy u(l,ms; & 0).

) € Xowull;m; €5 0) (3.6)

From Theorems 3.1 and 3.2, we have the following.

Theorem 3.3.
(1) If f € Doy pu(l,m; & By 0, 00), then Fu(f) € @ay u(l,ms; &, 55 0,0),

(a >0).
(il) If f € @5 (r, \; &, B850, 0), then Fu(f) € ®5(r, X6, 8;0,4), (a>0).
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Proof. Let f € @, ,(l,m;&, B;¢,%). Then, from the definition of the class ®q, (I, m;¢,
B; ¢,1), there exists a function g(z) € Xay,u(l, m;&; @) such that

1 [ 2(Jy™ () f(2)
P=B\ T (a)g(2)

- 6) < (z) (z € U). (3.7)

Thus, we set

p(z) = (3.8)

| <z<Jﬁm<a1> F()E) ﬁ>
P\ I (e Falg)(z |
)

)
where p is analytic in U with p(0) = 1. Since g(2) € Xa, u(l,m;& @), we see from
Theorem 3.1 that F,(9) € Xay,u(l,m;&; ¢). Using (3.3), we have

)
(0 = B)p(2) + )™ (1) Fa(9)(2) + aJyy™ (a1) Fa(f)(2) = (a+ 1), (a1) f(2). (3.9)

By some calculation, we get

SO 1) AN e P
(a—‘rl)JfL’m(Oq)Fa(g)(Z) = ((p=Bp(2) +B)((p = &)a(z) + a+&) + (p— B)zp'(2), (3.10)
where
1 (2(T™ (1) Fa(g)(2))
2) = —¢. 3.11
e p"5< Tu™ (1) Fa(9)(2) g) o4y
Hence, we have
L (e /(2)
p—p ( T () g(2) ﬁ) A (p—&q(z) +a+& (3.12)

The remaining part of the proof in Theorem 3.3 is similar to that of Theorem 2.5 and
so we leave it.

4. Coefficient bounds

Now we will give bounds for the coefficients of series expansion of functions belonging

to the classes Xa,,u(€), Kar,u(§), X (§) and K7 ().
Taking into account the fundamental relation

1 (Z(szm(al)fs(Z))’ B £>
P&\ (e fe(2) ’

between the extremal functions in the class P(¢(z)) and the extremal functions fe of the

¢(z) = (4.1)

class Xa,,.(€) and in view of (1.9) and (4.1), we have for ¢(z) =1+ Z By.z",

fe=2"4+ Z Akzk (4.2)

k—p+1
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a coeflicient relation

k1
(k —p)Ar¥i(a1, p) = (p— &) ZkajAj\Ilj(alaN)a Ap =1

Jj=p
In particular, by a straightforward computation, we obtain

(p—&)B1

‘I’p+1(a1,ﬂ)' (43)

Apy1 =

Observe that the coefficients Ay are nonnegative since ¥ (aq, p) > 0.
We give sharp bound on the second coefficient for functions of the classes, Xa,,u(§)

and X;(f).
Theorem 4.1. i) If o function of the form (1.1) is in Xa, (), then

=& (BiDr—p
Vilon, ) (Dr—p

(i4) If a function of the form (1.1) is in X, (§), then

(p =€) (B1)k-p
Wi(r,p) (Dr—p

For the proof of this theorem, we need the following result by Rogosinski [20].

lax| < k>p+1. (4.4)

lag| <

k>p+1.

Rogosinski’s Theorem. Let h(z) = 1+Z c,2" be subordinate to H(z) = 1+Z Cr2*
k=1 k=1
in U. If H(z) is univalent in U and H(U) is convex, then |c;| < |Cy|, k> 1.

Proof of Theorem 4.1. (i) Let f € xa,,.(§), f(z) = 2P + Z az", we obtain

k=p+1
1 (2™ a)f(z)
p=t < T ) 5) o
1 (e f(=) o o function & is
Define ¢(z) = p_g< S ans ) g) = 1+; 2", The function ¢ i

univalent in U and ¢(U), the conic domain, is convex domain, so Rogosinski’s theorem
applies. Then we have
el <2, k1, (4.5)

Now writing ((p—&)q(z) +€)Ji’m(a1)f(z) = Z(th’m(al)f(z))' and comparing coefficients
of z¥ on both sides, we get

k—1
(k —plar¥i(ar, p) = (p =) Y ckja;¥i(on,p),  ap=1. (4.6)
Jj=p
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r—¢) (p—&)I|Bi]

=8 <

Upia(as, i) Upia(ar, p)

k=p+1. Let k> p+ 1 and assume that the inequality (4.4) is true for all j < k — 1.
By using (4.5), (4.6) and applying the induction hypothesis to |a;|, we get

From (4.6), we get |apt1] = . So the result is true for

-9 _ -
|a’k| < (k’ *p)\I/k(Oél,,LL) |Cl| +j§i_1 |ck—j| |a’j|‘llj(a17u)
w-oBl [, (1B,
~ (k=p)¥k(oa, p) +]Zp;rl (1);-p

Putting p — 1 < £ < p, we obtain

(p—©)|B] = (Bi)j—p
=T | 2

j=p+1 (1)3' —-p
By applying mathematical induction another time, we find that

|31 pf<|Bl|+1><|Bl|+2> (Bl +k-p-1)
b Z = —p—1)

Jj=p+1

Thus we get the inequality (4.4).
(i) The proof is the same as (i).

Applying the relation (1.13) and (1.22), we observe that the extremal function ICo, (&)
and K7 (£) denoted by F¢(z), is given by

? fe(’V)d
p/o =

where fe(2) is given by (4.2).

By (4.3) and for

(o)
z)=z+ Z Cr 2",
k=p+1

we get

plp— B
(p+ 1)¥pia(ar, 1)

Applying relation (1.13), we can prove the next result.

Cpt1 =

Corollary 4.2.
(1) If a function f of the form (1.1) is in Kq, u(€), then

ag| < L= OUB1De—y
= k(e @) (Dr—p
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(ii) If a function f of the form (1.1) is in K}, (), then

i
2]
3]
4]
5]
6]
7]
&
9]

[10]

11]

12]

13]

[14]

[15]

[16]
[17]

18]

[19]

p(p = OUB1D)k—p

ar| < .
lax] < kg (r, 1) (1) g—p
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