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THE GENERAL Γ− COMPATIBLE ROOK LENGTH

POLYNOMIALS

EDWARD ARROYO AND FANGJUN ARROYO

Abstract. Rook placements and rook polynomials have been studied by math-

ematicians since the early 1970’s. Since then many relationships between rook

placements and other subjects have been discovered (cf. [1], [6-15]). In [2] and [3],

K. Ding introduced the rook length polynomials and the γ−compatible rook length

polynomials. In [3] and [4], he used these polynomials to establish a connection

between rook placements and algebraic geometry for the first time.

In this paper, we give explicit formulas for the γ−compatible rook length poly-

nomials in more general cases than considered in [3]. In particular, we general-

ize the formula for the rook length polynomial in the parabolic case in [2] to the

γ−compatible rook length polynomial.

1. Introduction

Let Mr
m,n (C) be the set of all m×n matrices of rank r over the complex field C, where

m and n are positive integers and r is a nonnegative integer. Also let λ = (λ1, . . . , λm)

be a partition of some positive integer with λ1 ≥ · · · ≥ λm > 0. A Ferrers board Fλ is a

subarray of an m×n matrix, where n = λ1 and the ith row has length λi for 1 ≤ i ≤ m.

Let Mr
λ =

{

a ∈ Mr
m,n (C) | aij = 0 for (i, j) /∈ Fλ

}

. An element of Mr
λ is called a

rook placement of rank r on Fλ if it is a (0, 1) matrix with exactly r 1’s (or rooks) and

at most one 1 (or rook) in each row and column.

Let Rr
λ be the set of all the rook placements of rank r on Fλ. For any σ ∈ Rr

λ, the

length function l (σ) is the minimum number of adjacent row and/or column transposi-

tions required to get the 1’s in the upper right hand corner such that all intermediate

rook placements are in the Ferrers board Fλ.

In the sequel, whenever we display a rook placement σ on Fλ, we omit the elements

σij for (i, j) /∈ Fλ in order to make the shape of the Ferrers board Fλ more evident. We

will also write σ (i) = j if and only if σij = 1 for (i, j) ∈ Fλ.
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For example, let λ = (3, 2, 2) and let σ be defined by σ (1) = 1, σ (2) = 3, and
σ (3) = 2. Then

σ =





1 0 0

0 1

1 0





is a rook placement of rank r = 3 on Fλ with l (σ) = 1.
The rook length polynomial is then defined by

RLr (λ, q) =
∑

σ∈Rr
λ

ql(σ).

In [2], K. Ding showed the relationship between the rook length polynomials and
Garsia-Remmel polynomials. In [4], he showed that the Poincare polynomial for ho-
mology (and cohomology) of the partition varieties B�Mm

λ with real coefficients is
RLm

(

λ, q2
)

, where B is the Borel subgroup of upper triangle matrices of GLm (C).

Let γ = (γ1, . . . , γt) be a partition of m. We say that λ is a γ−compatible partition
if λ = (kγ1

1 , . . . , kγt

t ) , where ki, 1 ≤ i ≤ t, are positive integers with k1 ≥ · · · ≥ kt.

A rook placement σ of rank r on a Ferrers board Fλ, where λ is a γ−compatible par-

tition, is said to be γ−compatible if σ is monotone increasing on each interval
(

∑j′

j=1 γj ,
∑j′+1

j=1 γj

]

, i.e., if σ (i) < σ (i + 1) whenever
∑j′

j=1 γj < i < i + 1 ≤
∑j′+1

j=1 γj , for fixed

values of j′, 0 ≤ j′ < t. (If j′ = 0, then
∑0

j=1 γj = 0.)

For example, if γ = (3, 4) and λ = (6, 6, 6, 5, 5, 5, 5) =
(

63, 54
)

, then

σ =





















0 0 1 0 0 0
0 0 0 0 1 0

0 0 0 0 0 0

1 0 0 0 0

0 0 1 0 0

0 0 0 0 0
0 0 0 0 1





















is a γ-compatible rook placement on Fλ.

Let Rr
λ (γ) be the set of all γ−compatible rook placements on the Ferrers board Fλ

with rank r. The γ−compatible rook length polynomial is defined by

RLr (λ, γ, q) =
∑

σ∈Rr
λ
(γ)

ql(σ).

In [3], K. Ding gave an explicit formula for RLr (λ, γ, q) when r = m and proved
that the Poincare polynomial for cohomology of the partition variety Pγ�Mm

λ with real
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coefficients is the γ−compatible rook length polynomial with r = m, where Pγ denotes

the parabolic subgroup of Gm of the form

Pγ =













Gγ1 ∗ · · · ∗

0
. . . ∗

...
... 0

. . . ∗
0 · · · 0 Gγt













.

Here Gγi
= GLγi

(C) and the ∗’s are arbitrary matrices of the appropriate sizes.

In this paper we give explicit and recurrence formulas for RLr (λ, γ, q), where 1 ≤

r ≤ min (m, n). We also give an explicit formula for the case where λ is parabolic and

r = m.

2. A recurrence formula for the general γ− compatible rook length polyno-

mial

For integers a and b such that a ≥ b ≥ 0, the Gaussian binomial coefficient is defined

by
[

a

b

]

q

=
[a]!q

[b]!q [a − b]!q
,

where [s]!q = (1)q (2)q · · · (s)q with (k)q =
(

1 + q + · · · + qk−1
)

for 1 ≤ k ≤ s and

[0]!q = 1.

We will make use of the following result results from [3] in our proof of Theorem 3.

The second result is a local formula for computing the length of a rook placement:

Proposition 1. For integers s and t such that s ≥ 0 and t ≥ 1, we have

∑

0≤a1<···<at≤s

qa1+···+at =

[

s + t

s

]

q

.

Proposition 2.(Local Formula) Let σ ∈ Rr
λ, then

l (σ) =

r
∑

i=1

(ui + vi + wi),

where ui is the number of zero columns to the right of the ith rook, vi is the number of

rooks above and to the right (or ‘northeast’) of the ith rook, and wi is the number of zero

rows above the ith rook.
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Theorem 3. Let γ = (γ1, . . . , γt) be a partition of m and λ = (kγ1

1 , . . . , kγt

t ) be a

γ−compatible partition, where ki, 1 ≤ i ≤ t, are positive integers with k1 ≥ · · · ≥ kt. Let

kt+1 and γt+1 be positive integers where kt+1 ≤ kt. Then λ ∪ k
γt+1

t+1 =
(

kγ1

1 , . . . , k
γt+1

t+1

)

is

γ ∪ γt+1 = (γ1, . . . , γt+1)−compatible and

RLr

(

λ ∪ k
γt+1

t+1 , γ ∪ γt+1, q
)

=

min(r,γt+1,kt+1
)

∑

rt+1=0

qrt+1(Γ−r+rt+1)

[

γt+1

rt+1

]

q

[

kt+1

rt+1

]

q

RLr−rt+1

(

λ − rΓ
t+1, γ, q

)

,

where r =
∑t+1

i=1ri, Γ =
∑t

k=1γk and λ − rΓ
t+1 = ((k1 − rt+1)

γ1 , . . . , (kt − rt+1)
γt) .

Proof. Consider a γ ∪ γt+1−compatible rook placement σ on F
λ∪k

γt+1
t+1

of rank r. There

are γt+1 rows and rt+1 rooks in the last block of σ where 0 ≤ rt+1 ≤ min(r, γt+1, kt+1).
Suppose that the jth rook of the last block lies in the xrt+1−j+1 column from the right
and the yjth row from the top of the last block. Then 1 ≤ y1 < · · · < yrt+1 ≤ γt+1 and
1 ≤ x1 < · · · < xrt+1 ≤ kt+1.

Let αj be the number of zero rows in λ∪ k
γt+1

t+1 above the jth rook, βj be the number
of rooks northeast of the jth rook and δj the number of zero columns to the right of the
jth rook.

Since
∑t

j=1 (γi − ri) is the total number of zero rows in the first t blocks and (yj−j) is

the number of zero rows above the jth rook in the last block, then αj =
∑t

j=1 (γi − ri)+
(yj − j) = Γ − r + rt+1 + yj − j. Since σ is γ ∪ γt+1−compatible, then if there is a
rook to the northeast of the jth rook, the rook must be in one of the first t blocks.
So the column in which the rook is located is a zero column in the last block. Since
xrt+1−j+1 − (rt+1 − j + 1) is the number of zero columns to the right of the jth rook in
the last block, then βj + δj = xrt+1−j+1 − (rt+1 − j + 1).

By removing the last block and all the columns which contain the rooks in the last
block from σ, we obtain a Ferrers board of shape

λ − rΓ
t+1 = ((k1 − rt+1)

γ1 , . . . , (kt − rt+1)
γt) .

Thus the original rook placement σ induces a γ−compatible rook placement σ′ of
rank r − rt+1 on this new Ferrers board Fλ−rΓ

t+1
. Moreover, in removing the last block

the values in the local formula for the remaining rooks remain unchanged. Consequently,
these rooks contribute l (σ′) to the value of l (σ) and so

l (σ) = l (σ′) +

rt+1
∑

j=1

(αj + βj + δj)

= l (σ′) +

rt+1
∑

j=1

(

Γ − r − 1 + yj + xrt+1−j+1

)

= l (σ′) + rt+1 (Γ − r − 1) +

rt+1
∑

j=1

(yj + xj) .
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Conversely, suppose we are given σ′ ∈ R
r−rt+1

λ−rΓ
t+1

(γ) , where 0 ≤ rt+1 ≤ min(r, γt+1,

kt+1), and integers xi and yi, 1 ≤ i ≤ rt+1, where 1 ≤ x1 < · · · < xrt+1 ≤ kt+1

and 1 ≤ y1 < · · · < yrt+1 ≤ γt+1. Then we can reverse the above process to obtain a
unique rook placement σ ∈ Rr

λ∪k
γt+1
t+1

(γ ∪ γt+1) . More specifically, we first insert rt+1

zero columns in σ′ at the positions x1, . . . , xrt+1 from the right. Then we attach a block
with γt+1 rows and kt+1 columns to σ′ at the bottom. This last block will contain rt+1

rooks in the positions determined by the xi’s and the yi’s.

Thus,

RLr

(

λ ∪ k
γt+1

t+1 , γ ∪ γt+1, q
)

=
∑

σ∈RLr

λ∪k
γt+1
t+1

(γ∪γt+1)

ql(σ)

=
∑

0≤rt≤min(r,kt+1,γt+1),

σ′∈R
r−rt

λ−rΓ
t+1

(γ),

1≤x1<···<xrt+1
≤kt+1,

1≤y1<···<yrt+1
≤γt+1

q
l(σ′)+rt+1(Γ−r−1)+

∑rt+1

j=1 (xj+yj)

=

min(r,γt+1,kt+1)
∑

rt+1=0













qrt+1(Γ−r−1)
∑

1≤x1<···<xrt+1
≤kt+1,

1≤y1<···<yrt+1
≤γt+1

q

∑rt+1

j=1 (xj+yj)
∑

σ′∈R
r−rt

λ−rΓ
t+1

(γ)

ql(σ′)













=

min(r,γt+1,kt+1)
∑

rt+1=0













qrt+1(Γ−r−1)
∑

1≤x1<···<xrt+1
≤kt+1,

1≤y1<···<yrt+1
≤γt+1

q

∑rt+1

j=1 xj +
∑rt+1

j=1 yj

∗ RLr−rt+1

(

λ − rΓ
t+1, γ, q

))

=

min(r,γt+1,kt+1)
∑

rt+1=0

(

qrt+1(Γ−r−1)qrt+1(rt+1+1)

[

kt+1

rt+1

]

q

[

γt+1

rt+1

]

q

∗ RLr−rt+1

(

λ − rΓ
t+1, γ, q

))

=

min(r,γt+1,kt+1)
∑

rt+1=0

(

qrt+1(Γ−r+rt+1)

[

kt+1

rt+1

]

q

[

γt+1

rt+1

]

q

RLr−rt+1

(

λ − rΓ
t+1, γ, q

)

)

.

Corollary 4. Let r = m. Then ri = γi, 1 ≤ i ≤ t + 1, and

RLm

(

λ ∪ k
γt+1

t+1 , γ ∪ γt+1, q
)

=

[

kt+1

γt+1

]

q

RLm−γt+1

(

λ − γΓ
t+1, γ, q

)

,
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where λ − γΓ
t+1 = ((k1 − γt+1)

γ1 , . . . , (kt − γt+1)
γt) .

Let γ = (1, . . . , 1) = (1m). Then the γ−compatible rook length polynomial is the

rook length polynomial, i.e.,

RLr (λ, γ, q) = RLr (λ, q) .

In this case, ki = λi, 1 ≤ i ≤ m, and Γ =
∑m

k=1γk = m.

The following corollary of Theorem 3 appears as Corollary 5.35 of [2].

Corollary 5. Let γ = (1, . . . , 1) = (1m) and λm+1 be an integer such that 1 ≤ λm+1 ≤

λm. Then

RLr (λ ∪ λm+1, q) = RLr (λ, q) + qm−r+1 (λm+1)q RLr−1 (λ − 1m, q) ,

where λ − 1m = (λ1 − 1, . . . , λm − 1) .

3. The general formula for the γ− compatible rook length polynomial

Theorem 6. Let γ = (γ1, . . . , γt) be a partition of m and λ = (kγ1

1 , . . . , kγt

t ) be a

γ−compatible partition, where ki, 1 ≤ i ≤ t, are positive integers with k1 ≥ · · · ≥ kt.

Then the γ−compatible rook length polynomial for 0 ≤ r ≤ min(m, k1) is given by

RLr (λ, γ, q) =
∑

∆

t
∏

i=1

[

ki − ri+1 − ri+2 − · · · − rt

ri

]

q

[

γi

ri

]

q

q
P

t
i=2

Pi−1
j=1ri(γj−rj),

where ∆ = {(r1, r2, . . . , rt) | 0 ≤ ri ≤ min(γi, ki), r1 + . . . + rt = r} and ri equals the

number of rooks in block i, 1 ≤ i ≤ t.

The proof will be by induction on the number of blocks t. The base case, when t = 1,

is stated and proved in the following lemma.

Lemma 7. Let λ = (nm) and γ = ((m)) . In particular, λ is γ−compatible and Fλ is an

m × n rectangular Ferrers board. Then for 0 ≤ r ≤ min(m, n)

RLr (λ, γ, q) =

[

n

r

]

q

[

m

r

]

q

.
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Proof. If r = 0, RLr (λ, γ, q) = 1. So assume that r ≥ 1. For any σ ∈ Rr
λ(γ), let the jth

rook of σ be in the xr−j+1th column from the right and the yjth row from the top where

1 ≤ j ≤ r, 1 ≤ x1 < · · · < xr ≤ n, and 1 ≤ y1 < · · · < yr ≤ m. Since xj − j counts the

number of zero columns to the right of the (r − j + 1)th rook, then u =
∑r

j=1 (xj − j)

counts the total number of zero columns to the right of all r rooks in σ. Since yj − j

counts the number of zero rows above the jth rook, then w =
∑r

j=1 (yj − j) counts the

total number of zero rows above all r rooks in σ. By the definition of γ−compatible,

σ (i) < σ (i + 1) and so there are no rooks above and to the right of any of the rooks. So

l(σ) = u + w. Thus,

RLr ((nm), (m), q) =
∑

σ∈Rr
λ
(γ)

ql(σ)

=
∑

1≤x1<···<xr≤n,
1≤y1<···<yr≤m

qu+w

=
∑

1≤x1<···<xr≤n

qu
∑

1≤y1<···<yr≤m

qw

=

[

n

r

]

q

[

m

r

]

q

.

Proof of Theorem 6. We have already proven the base case as Lemma 7. For the

inductive step, we assume that formula is true for t − 1 blocks, where t > 1.

By the recurrence formula (Theorem 3), we have

RLr (λ, γ, q) =

min(r,γt,kt
)

∑

rt=0

qrt(Γ−r+rt)

[

γt

rt

]

q

[

kt

rt

]

q

RLr−rt

(

λ − rΓ
t , γ′, q

)

,

where Γ =
∑t−1

i=1 γi = m − γt, λ − γΓ
t = ((k1 − γt)

γ1 , . . . , (kt − γt)
γt−1) and γ′ =

(γ1, . . . , γt−1) .

By the induction hypothesis,

RLr−rt

(

λ − rΓ
t , γ′, q

)

=
∑

∆′

t−1
∏

i=1

[

(ki − rt) − ri+1 − ri+2 − · · · − rt−1

ri

]

q

[

γi

ri

]

q

q
Pt−1

i=2

Pi−1
j=1ri(γj−rj),

where ∆′ = {(r1, r2, . . . , rt−1) | 0 ≤ ri ≤ min(γi, ki), r1 + . . . + rt−1 = r − rt}.
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So

RLr (λ, γ, q) =
∑

0≤rt≤min(kt,γt,r)

(

qrt(m−γt−r+rt)

[

kt

rt

]

q

[

γt

rt

]

q

∗
∑

∆′

t−1
∏

i=1

[

(ki−rt)−ri+1−ri+2−· · ·−rt−1

ri

]

q

[

γi

ri

]

q

q

t−1
P

i=2

i−1
P

j=1
ri(γj−rj)





=
∑

0≤rt≤min(kt,γt,r)

qrt(m−γt−r+rt)

∗
∑

∆′

t
∏

i=1

[

ki − ri+1 − ri+2 − · · · − rt

ri

]

q

[

γi

ri

]

q

q

t−1
P

i=2

i−1
P

j=1

ri(γj−rj)

=
∑

∆

t
∏

i=1

[

ki − ri+1 − ri+2 − · · · − rt

ri

]

q

[

γi

ri

]

q

q

t
P

i=2

i−1
P

j=1

ri(γj−rj)

.

From Theorem 6, we obtain Theorem 33 of [3] as a corollary.

Corollary 8. If r = m, then ri = γi, 1 ≤ i ≤ t and ∆ contains only one condition,

namely ri = γi, 1 ≤ i ≤ t. Thus when r = m,

RLm (λ, γ, q) =

t
∏

i=1

[

ki − γi+1 − γi+2 − · · · − γt

γi

]

q

.

Example. Let γ = (1, 3) and λ = (4, 3, 3, 3). Then λ is γ−compatible since λ =
(

41, 33
)

.
Let r = 3. Since 0 ≤ ri ≤ min (γi,ki) , i = 1, 2, ∆ = {(r1, r2) = (0, 3) , (r1, r2) = (1, 2)}.
By Theorem 6, we get

RL3 ((4, 3, 3, 3) , (1, 3) , q) = q3 +

[

2
1

]

q

[

1
1

]

q

[

3
2

]

q

[

3
2

]

q

= q3 +
(3)!q (3)!q

(2)!q

= q3 + (1 + q)
(

1 + q + q2
)2

= 1 + 3q + 5q2 + 6q3 + 3q4 + q5.

We now calculate the γ−compatible rook length polynomial directly from its defini-
tion.

Let σi, 1 ≤ i ≤ 19, be defined as follows:

σ1 =









1 0 0 0

1 0 0
0 1 0

0 0 0









, σ2 =









1 0 0 0

1 0 0
0 0 0

0 1 0









, σ3 =









1 0 0 0

1 0 0
0 0 0

0 0 1









,
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σ4 =









1 0 0 0

1 0 0

0 0 1
0 0 0









, σ5 =









1 0 0 0

0 1 0

0 0 1
0 0 0









, σ6 =









1 0 0 0

0 1 0

0 0 0
0 0 1









,

σ7 =









1 0 0 0

0 0 0

1 0 0

0 1 0









, σ8 =









1 0 0 0

0 0 0

1 0 0

0 0 1









, σ9 =









1 0 0 0

0 0 0

0 1 0

0 0 1









,

σ10 =









0 1 0 0

0 1 0

0 0 1

0 0 0









, σ11 =









0 1 0 0

0 1 0

0 0 0

0 0 1









, σ12 =









0 1 0 0

0 0 0

0 1 0

0 0 1









,

σ13 =









0 0 1 0
1 0 0

0 0 1

0 0 0









, σ14 =









0 0 1 0
1 0 0

0 0 0

0 0 1









, σ15 =









0 0 1 0
0 0 0

1 0 0

0 0 1









,

σ16 =









0 0 0 1

1 0 0
0 1 0

0 0 0









, σ17 =









1 0 0 0

1 0 0
0 1 0

0 0 0









, σ18 =









1 0 0 0

1 0 0
0 1 0

0 0 0









,

σ19 =









0 0 0 0

1 0 0

0 1 0
0 0 1









.

Then by the definition of the length function, we have

l (σ1) = 3, l (σ2) = 4, l (σ3) = 3, l (σ4) = 2, l (σ5) = 1, l (σ6) = 2,

l (σ7) = 5, l (σ8) = 4, l (σ9) = 3, l (σ10) = 0, l (σ11) = 1, l (σ12) = 2,

l (σ13) = 1, l (σ14) = 2, l (σ15) = 3, l (σ16) = 2, l (σ17) = 3, l (σ18) = 4,

and l (σ19) = 3.
So

RL3 ((4, 3, 3) , (1, 3) , q) =

18
∑

i=i

ql(σi) = 1 + 3q + 5q2 + 6q3 + 3q4 + q5.
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4. A formula for the parabolic γ− compatible rook length polynomial

We say that λ is parabolic of type µ = (µ1, . . . , µk) (or µ−parabolic) if m = n and

there exist positive integers µ1, . . . , µk such that

M r
λ =





























A11 A12 · · · A1k

0 A22 · · · A2k

... 0
. . .

...

0 · · · 0 Akk





























,

where Aii is a µi × µi submatrix for 1 ≤ i ≤ k. If λ is µ−parabolic and r = m, then the

invertible elements in M m
λ form a parabolic subgroup of GLm (C) .

A rook placement of rank r on a Ferrers board Fλ, where λ is µ−parabolic, is said to be

µ−parabolic. Let RLr
λ (γ, µ) be the set of all γ−compatible µ−parabolic rook placements

of rank r on the Ferrers board Fλ. The γ−compatible µ−parabolic rook length polynomial

is given by

RLr (λ, γ, µ, q) =
∑

σ∈RLr
λ
(γ,µ)

ql(σ).

We now give a formula for the γ−compatible µ−parabolic rook length polynomial for

r = m.

If n1 + n2 + · · · + nt = n, where n, n1, . . . , nt are positive integers, then the Gausian

multinomial coefficient is given by

[

n

n1, n2, .., nt

]

q

=
[n]!q

[n1]!q [n2]!q · · · [nt]!q
.

Theorem 9. Suppose that r = m = n and that the partition λ = (kγ1

1 , . . . , kγt

t ) , k1 ≥

k2 ≥ · · · ≥ kt > 0, is both γ = (γ1, . . . , γt)−compatible and parabolic of type µ =

(µ1, . . . , µl). Clearly, there are integers 0 = s0 < s1 < · · · < sl ≤ t such that γ(si+1) +

· · · + γs
(i+1)

=µi+1, for 0 ≤ i ≤ l − 1, k(si+1) = · · · = ks
(i+1)

, for 0 ≤ i ≤ l − 1, and

λ = (kµ1

1 , . . . , kµl

l ). Then

RLm (λ, γ, µ, q) =

l−1
∏

i=0

[

µ(i+1)

γ(si+1),γ(si+2), . . . , γs(i+1)

]

q

.

Proof. We apply Theorem 6 with ri = γi for 1 ≤ i ≤ t.

RLr (λ, γ, µ, q) =
∑

σ∈RLr
λ
(γ,µ) ql(σ)

=
t
∏

i=1

[

ki − γi+1 − γi+2 − · · · − γt

γi

]

q
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=
l−1
∏

i=0

s(i+1)
∏

j=(si+1)

[

kj − γj+1 − γj+2 − · · · − γt

γj

]

q

=
l−1
∏

i=0

s(i+1)
∏

j=(si+1)

[

kj − γj+1 − · · · − γs(i+1)
− (µi+2 + · · · + µl)

γj

]

q

=
l−1
∏

i=0

s(i+1)
∏

j=(si+1)

[

kj − (µi+2 + · · · + µl) − γj+1 − · · · − γs(i+1)

γj

]

q

=
l−1
∏

i=0

s(i+1)
∏

j=(si+1)

[

µi+1 − γj+1 − · · · − γs(i+1)

γj

]

q

=
l−1
∏

i=0

s(i+1)
∏

j=(si+1)

[

γ(si+1) + γ(si+2) + · · · + γs(i+1)
− γj+1 − · · · − γs(i+1)

γj

]

q

=
l−1
∏

i=0

[

γ(si+1)

γ(si+1)

]

q

[

γ(si+1) + γ(si+2)

γ(si+2)

]

q

· · ·

[

γ(si+1) + · · · + γs(i+1)

γs(i+1)

]

q

=
l−1
∏

i=0

[

γ(si+1) + · · · + γs(i+1)

]

q
!

[

γ(si+1)

]

q
!
[

γ(si+2)

]

q
! · · ·

[

γs(i+1)

]

q
!

=
l−1
∏

i=0

[

µi+1

γ(si+1), γ(si+2), . . . , γs(i+1)

]

q

.

Corollary 10. Let γ = (1m) . Then

RLm (λ, µ, q) = RLm (λ, (1m) , µ, q) =

l−1
∏

i=0

[

µi+1

1

]

q

=

l−1
∏

i=0

(µi+1)q .

This result appears as Corollary 1.19 in [2].

Example. Let λ = (6, 6, 4, 4, 4, 1), γ =
(

16
)

and µ = (2, 3, 1). Then λ is γ−compatible

and µ−parabolic. Then we have

RL6 (λ, µ, q) = (2)q (3)q (1)q = q3 + 2q2 + 2q + 1.
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