THE GENERAL Γ - COMPATIBLE ROOK LENGTH POLYNOMIALS

EDWARD ARROYO AND FANGJUN ARROYO

Abstract

Rook placements and rook polynomials have been studied by mathematicians since the early 1970's. Since then many relationships between rook placements and other subjects have been discovered (cf. [1], [6-15]). In [2] and [3], K. Ding introduced the rook length polynomials and the γ-compatible rook length polynomials. In [3] and [4], he used these polynomials to establish a connection between rook placements and algebraic geometry for the first time.

In this paper, we give explicit formulas for the γ-compatible rook length polynomials in more general cases than considered in [3]. In particular, we generalize the formula for the rook length polynomial in the parabolic case in [2] to the γ-compatible rook length polynomial.

1. Introduction

Let $\mathbf{M}_{m, n}^{r}(\mathbf{C})$ be the set of all $m \times n$ matrices of rank r over the complex field \mathbf{C}, where m and n are positive integers and r is a nonnegative integer. Also let $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)$ be a partition of some positive integer with $\lambda_{1} \geq \cdots \geq \lambda_{m}>0$. A Ferrers board F_{λ} is a subarray of an $m \times n$ matrix, where $n=\lambda_{1}$ and the $i t h$ row has length λ_{i} for $1 \leq i \leq m$.

Let $\mathbf{M}_{\lambda}^{r}=\left\{a \in \mathbf{M}_{m, n}^{r}(\mathbf{C}) \mid a_{i j}=0\right.$ for $\left.(i, j) \notin F_{\lambda}\right\}$. An element of \mathbf{M}_{λ}^{r} is called a rook placement of rank r on F_{λ} if it is a (0,1) matrix with exactly r 1's (or rooks) and at most one 1 (or rook) in each row and column.

Let R_{λ}^{r} be the set of all the rook placements of rank r on F_{λ}. For any $\sigma \in R_{\lambda}^{r}$, the length function $l(\sigma)$ is the minimum number of adjacent row and/or column transpositions required to get the 1's in the upper right hand corner such that all intermediate rook placements are in the Ferrers board F_{λ}.

In the sequel, whenever we display a rook placement σ on F_{λ}, we omit the elements $\sigma_{i j}$ for $(i, j) \notin F_{\lambda}$ in order to make the shape of the Ferrers board F_{λ} more evident. We will also write $\sigma(i)=j$ if and only if $\sigma_{i j}=1$ for $(i, j) \in F_{\lambda}$.

Corresponding author: Edward Arroyo.
Received March 1, 2007.
Key words and phrases. Rook placements, rook length polynomials, $q-$ analogues.

For example, let $\lambda=(3,2,2)$ and let σ be defined by $\sigma(1)=1, \sigma(2)=3$, and $\sigma(3)=2$. Then

$$
\sigma=\left[\begin{array}{lll}
1 & 0 & 0 \\
& 0 & 1 \\
& 1 & 0
\end{array}\right]
$$

is a rook placement of rank $r=3$ on F_{λ} with $l(\sigma)=1$.
The rook length polynomial is then defined by

$$
R L_{r}(\lambda, q)=\sum_{\sigma \in R_{\lambda}^{r}} q^{l(\sigma)}
$$

In [2], K. Ding showed the relationship between the rook length polynomials and Garsia-Remmel polynomials. In [4], he showed that the Poincare polynomial for homology (and cohomology) of the partition varieties $\mathbf{B} / \mathbf{M}_{\lambda}^{m}$ with real coefficients is $R L_{m}\left(\lambda, q^{2}\right)$, where \mathbf{B} is the Borel subgroup of upper triangle matrices of $\mathbf{G} \mathbf{L}_{m}(\mathbf{C})$.

Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{t}\right)$ be a partition of m. We say that λ is a γ-compatible partition if $\lambda=\left(k_{1}^{\gamma_{1}}, \ldots, k_{t}^{\gamma_{t}}\right)$, where $k_{i}, 1 \leq i \leq t$, are positive integers with $k_{1} \geq \cdots \geq k_{t}$.

A rook placement σ of rank r on a Ferrers board F_{λ}, where λ is a γ-compatible partition, is said to be γ-compatible if σ is monotone increasing on each interval $\left(\sum_{j=1}^{j^{\prime}} \gamma_{j}\right.$, $\left.\sum_{j=1}^{j^{\prime}+1} \gamma_{j}\right]$, i.e., if $\sigma(i)<\sigma(i+1)$ whenever $\sum_{j=1}^{j^{\prime}} \gamma_{j}<i<i+1 \leq \sum_{j=1}^{j^{\prime}+1} \gamma_{j}$, for fixed values of $j^{\prime}, 0 \leq j^{\prime}<t$. (If $j^{\prime}=0$, then $\sum_{j=1}^{0} \gamma_{j}=0$.)

For example, if $\gamma=(3,4)$ and $\lambda=(6,6,6,5,5,5,5)=\left(6^{3}, 5^{4}\right)$, then

$$
\sigma=\left[\begin{array}{llllll}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
& 1 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 1 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 0 \\
& 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

is a γ-compatible rook placement on F_{λ}.
Let $R_{\lambda}^{r}(\gamma)$ be the set of all γ-compatible rook placements on the Ferrers board F_{λ} with rank r. The γ-compatible rook length polynomial is defined by

$$
R L_{r}(\lambda, \gamma, q)=\sum_{\sigma \in R_{\lambda}^{r}(\gamma)} q^{l(\sigma)}
$$

In [3], K. Ding gave an explicit formula for $R L_{r}(\lambda, \gamma, q)$ when $r=m$ and proved that the Poincare polynomial for cohomology of the partition variety $\mathbf{P}_{\gamma} / \mathbf{M}_{\lambda}^{m}$ with real
coefficients is the γ-compatible rook length polynomial with $r=m$, where \mathbf{P}_{γ} denotes the parabolic subgroup of \mathbf{G}_{m} of the form

$$
P_{\gamma}=\left[\begin{array}{cccc}
G_{\gamma_{1}} & * & \cdots & * \\
0 & \ddots & * & \vdots \\
\vdots & 0 & \ddots & * \\
0 & \cdots & 0 & G_{\gamma_{t}}
\end{array}\right]
$$

Here $G_{\gamma_{i}}=\mathbf{G} \mathbf{L}_{\gamma_{i}}(\mathbf{C})$ and the *'s are arbitrary matrices of the appropriate sizes.
In this paper we give explicit and recurrence formulas for $R L_{r}(\lambda, \gamma, q)$, where $1 \leq$ $r \leq \min (m, n)$. We also give an explicit formula for the case where λ is parabolic and $r=m$.

2. A recurrence formula for the general γ - compatible rook length polyno-

 mialFor integers a and b such that $a \geq b \geq 0$, the Gaussian binomial coefficient is defined by

$$
\left[\begin{array}{c}
a \\
b
\end{array}\right]_{q}=\frac{[a]!_{q}}{[b]!_{q}[a-b]!_{q}}
$$

where $[s]!_{q}=(1)_{q}(2)_{q} \cdots(s)_{q}$ with $(k)_{q}=\left(1+q+\cdots+q^{k-1}\right)$ for $1 \leq k \leq s$ and $[0]!_{q}=1$.

We will make use of the following result results from [3] in our proof of Theorem 3. The second result is a local formula for computing the length of a rook placement:

Proposition 1. For integers s and t such that $s \geq 0$ and $t \geq 1$, we have

$$
\sum_{0 \leq a_{1}<\cdots<a_{t} \leq s} q^{a_{1}+\cdots+a_{t}}=\left[\begin{array}{c}
s+t \\
s
\end{array}\right]_{q} .
$$

Proposition 2.(Local Formula) Let $\sigma \in R_{\lambda}^{r}$, then

$$
l(\sigma)=\sum_{i=1}^{r}\left(u_{i}+v_{i}+w_{i}\right)
$$

where u_{i} is the number of zero columns to the right of the ith rook, v_{i} is the number of rooks above and to the right (or 'northeast') of the ith rook, and w_{i} is the number of zero rows above the ith rook.

Theorem 3. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{t}\right)$ be a partition of m and $\lambda=\left(k_{1}^{\gamma_{1}}, \ldots, k_{t}^{\gamma_{t}}\right)$ be a γ-compatible partition, where $k_{i}, 1 \leq i \leq t$, are positive integers with $k_{1} \geq \cdots \geq k_{t}$. Let k_{t+1} and γ_{t+1} be positive integers where $k_{t+1} \leq k_{t}$. Then $\lambda \cup k_{t+1}^{\gamma_{t+1}}=\left(k_{1}^{\gamma_{1}}, \ldots, k_{t+1}^{\gamma_{t+1}}\right)$ is $\gamma \cup \gamma_{t+1}=\left(\gamma_{1}, \ldots, \gamma_{t+1}\right)-$ compatible and

$$
\begin{aligned}
& R L_{r}\left(\lambda \cup k_{t+1}^{\gamma_{t+1}}, \gamma \cup \gamma_{t+1}, q\right) \\
& =\sum_{r_{t+1}=0}^{\min \left(r, \gamma_{t+1, k_{t+1}}\right)} q^{r_{t+1}\left(\Gamma-r+r_{t+1}\right)}\left[\begin{array}{c}
\gamma_{t+1} \\
r_{t+1}
\end{array}\right]_{q}\left[\begin{array}{c}
k_{t+1} \\
r_{t+1}
\end{array}\right]_{q} R L_{r-r_{t+1}}\left(\lambda-r_{t+1}^{\Gamma}, \gamma, q\right),
\end{aligned}
$$

where $r=\sum_{i=1}^{t+1} r_{i}, \Gamma=\sum_{k=1}^{t} \gamma_{k}$ and $\lambda-r_{t+1}^{\Gamma}=\left(\left(k_{1}-r_{t+1}\right)^{\gamma_{1}}, \ldots,\left(k_{t}-r_{t+1}\right)^{\gamma_{t}}\right)$.
Proof. Consider a $\gamma \cup \gamma_{t+1}$-compatible rook placement σ on $F_{\lambda \cup k_{t+1}^{\gamma_{t+1}}}$ of rank r. There are γ_{t+1} rows and r_{t+1} rooks in the last block of σ where $0 \leq r_{t+1} \leq \min \left(r, \gamma_{t+1}, k_{t+1}\right)$. Suppose that the j th rook of the last block lies in the $x_{r_{t+1}-j+1}$ column from the right and the $y_{j} t h$ row from the top of the last block. Then $1 \leq y_{1}<\cdots<y_{r_{t+1}} \leq \gamma_{t+1}$ and $1 \leq x_{1}<\cdots<x_{r_{t+1}} \leq k_{t+1}$.

Let α_{j} be the number of zero rows in $\lambda \cup k_{t+1}^{\gamma_{t+1}}$ above the $j t h$ rook, β_{j} be the number of rooks northeast of the $j t h$ rook and δ_{j} the number of zero columns to the right of the $j t h$ rook.

Since $\sum_{j=1}^{t}\left(\gamma_{i}-r_{i}\right)$ is the total number of zero rows in the first t blocks and $\left(y_{j}-j\right)$ is the number of zero rows above the j th rook in the last block, then $\alpha_{j}=\sum_{j=1}^{t}\left(\gamma_{i}-r_{i}\right)+$ $\left(y_{j}-j\right)=\Gamma-r+r_{t+1}+y_{j}-j$. Since σ is $\gamma \cup \gamma_{t+1}$-compatible, then if there is a rook to the northeast of the j th rook, the rook must be in one of the first t blocks. So the column in which the rook is located is a zero column in the last block. Since $x_{r_{t+1}-j+1}-\left(r_{t+1}-j+1\right)$ is the number of zero columns to the right of the $j t h$ rook in the last block, then $\beta_{j}+\delta_{j}=x_{r_{t+1}-j+1}-\left(r_{t+1}-j+1\right)$.

By removing the last block and all the columns which contain the rooks in the last block from σ, we obtain a Ferrers board of shape

$$
\lambda-r_{t+1}^{\Gamma}=\left(\left(k_{1}-r_{t+1}\right)^{\gamma_{1}}, \ldots,\left(k_{t}-r_{t+1}\right)^{\gamma_{t}}\right) .
$$

Thus the original rook placement σ induces a γ-compatible rook placement σ^{\prime} of rank $r-r_{t+1}$ on this new Ferrers board $F_{\lambda-r_{t+1}^{\Gamma}}$. Moreover, in removing the last block the values in the local formula for the remaining rooks remain unchanged. Consequently, these rooks contribute $l\left(\sigma^{\prime}\right)$ to the value of $l(\sigma)$ and so

$$
\begin{aligned}
l(\sigma) & =l\left(\sigma^{\prime}\right)+\sum_{j=1}^{r_{t+1}}\left(\alpha_{j}+\beta_{j}+\delta_{j}\right) \\
& =l\left(\sigma^{\prime}\right)+\sum_{j=1}^{r_{t+1}}\left(\Gamma-r-1+y_{j}+x_{r_{t+1}-j+1}\right) \\
& =l\left(\sigma^{\prime}\right)+r_{t+1}(\Gamma-r-1)+\sum_{j=1}^{r_{t+1}}\left(y_{j}+x_{j}\right)
\end{aligned}
$$

Conversely, suppose we are given $\sigma^{\prime} \in R_{\lambda-r_{t+1}^{\Gamma}}^{r-r_{t+1}}(\gamma)$, where $0 \leq r_{t+1} \leq \min \left(r, \gamma_{t+1}\right.$, k_{t+1}), and integers x_{i} and $y_{i}, 1 \leq i \leq r_{t+1}$, where $1 \leq x_{1}<\cdots<x_{r_{t+1}} \leq k_{t+1}$ and $1 \leq y_{1}<\cdots<y_{r_{t+1}} \leq \gamma_{t+1}$. Then we can reverse the above process to obtain a unique rook placement $\sigma \in R_{\lambda \cup k_{t+1}^{\gamma_{t+1}}}^{r}\left(\gamma \cup \gamma_{t+1}\right)$. More specifically, we first insert r_{t+1} zero columns in σ^{\prime} at the positions $x_{1}, \ldots, x_{r_{t+1}}$ from the right. Then we attach a block with γ_{t+1} rows and k_{t+1} columns to σ^{\prime} at the bottom. This last block will contain r_{t+1} rooks in the positions determined by the x_{i} 's and the y_{i} 's.

Thus,

$$
\begin{aligned}
& R L_{r}\left(\lambda \cup k_{t+1}^{\gamma_{t+1}}, \gamma \cup \gamma_{t+1}, q\right) \\
& =\sum_{\sigma \in R L_{\substack{r \\
\lambda \cup k^{r}{ }_{t+1}+1}} \sum^{\left(\gamma \cup \gamma_{t+1}\right)}} q^{l(\sigma)} \\
& =\sum_{\substack{0 \leq r_{t} \leq \min \left(r, k_{t+1}, \gamma_{t+1}\right),}} q^{l\left(\sigma^{\prime}\right)+r_{t+1}(\Gamma-r-1)+\sum_{j=1}^{r_{t+1}}\left(x_{j}+y_{j}\right)} \\
& 1 \leq x_{1}<\cdots<x_{r_{t+1}} \leq k_{t+1}, \\
& 1 \leq y_{1}<\cdots<y_{r_{t+1}} \leq \gamma_{t+1} \\
& =\sum_{r_{t+1}=0}^{\min \left(r, \gamma_{t+1}, k_{t+1}\right)}\left(q^{r_{t+1}(\Gamma-r-1)} \sum_{\substack{1 \leq x_{1}<\cdots<x_{r_{t+1}} \leq k_{t+1}, 1 \leq y_{1}<\cdots<y_{r_{t+1}} \leq \gamma_{t+1}}} q^{\sum_{j=1}^{r_{t+1}\left(x_{j}+y_{j}\right)}} \sum_{\sigma^{\prime} \in R_{\substack{r-r_{t} \\
\lambda-r_{t+1}^{\Gamma}}}(\gamma)} q^{l\left(\sigma^{\prime}\right)}\right) \\
& =\sum_{r_{t+1}=0}^{\min \left(r, \gamma_{t+1}, k_{t+1}\right)}\left(q^{r_{t+1}(\Gamma-r-1)} \sum_{\substack{1 \leq x_{1}<\cdots<x_{r_{t+1}} \leq k_{t+1}, 1 \leq y_{1}<\cdots<y_{r_{t+1}} \leq \gamma_{t+1}}} q^{\sum_{j=1}^{r_{t+1} x_{j}+\sum_{j=1}^{r_{t+1}} y_{j}}} \sum_{j}\right. \\
& \left.* R L_{r-r_{t+1}}\left(\lambda-r_{t+1}^{\Gamma}, \gamma, q\right)\right) \\
& =\sum_{r_{t+1}=0}^{\min \left(r, \gamma_{t+1}, k_{t+1}\right)}\left(q^{r_{t+1}(\Gamma-r-1)} q^{r_{t+1}\left(r_{t+1}+1\right)}\left[\begin{array}{c}
k_{t+1} \\
r_{t+1}
\end{array}\right]_{q}\left[\begin{array}{c}
\gamma_{t+1} \\
r_{t+1}
\end{array}\right]_{q}\right. \\
& \left.* R L_{r-r_{t+1}}\left(\lambda-r_{t+1}^{\Gamma}, \gamma, q\right)\right) \\
& =\sum_{r_{t+1}=0}^{\min \left(r, \gamma_{t+1}, k_{t+1}\right)}\left(q^{r_{t+1}\left(\Gamma-r+r_{t+1}\right)}\left[\begin{array}{c}
k_{t+1} \\
r_{t+1}
\end{array}\right]_{q}\left[\begin{array}{c}
\gamma_{t+1} \\
r_{t+1}
\end{array}\right]_{q} R L_{r-r_{t+1}}\left(\lambda-r_{t+1}^{\Gamma}, \gamma, q\right)\right) .
\end{aligned}
$$

Corollary 4. Let $r=m$. Then $r_{i}=\gamma_{i}, 1 \leq i \leq t+1$, and

$$
R L_{m}\left(\lambda \cup k_{t+1}^{\gamma_{t+1}}, \gamma \cup \gamma_{t+1}, q\right)=\left[\begin{array}{l}
k_{t+1} \\
\gamma_{t+1}
\end{array}\right]_{q} R L_{m-\gamma_{t+1}}\left(\lambda-\gamma_{t+1}^{\Gamma}, \gamma, q\right),
$$

where $\lambda-\gamma_{t+1}^{\Gamma}=\left(\left(k_{1}-\gamma_{t+1}\right)^{\gamma_{1}}, \ldots,\left(k_{t}-\gamma_{t+1}\right)^{\gamma_{t}}\right)$.
Let $\gamma=(1, \ldots, 1)=\left(1^{m}\right)$. Then the γ-compatible rook length polynomial is the rook length polynomial, i.e.,

$$
R L_{r}(\lambda, \gamma, q)=R L_{r}(\lambda, q)
$$

In this case, $k_{i}=\lambda_{i}, 1 \leq i \leq m$, and $\Gamma=\sum_{k=1}^{m} \gamma_{k}=m$.
The following corollary of Theorem 3 appears as Corollary 5.35 of [2].
Corollary 5. Let $\gamma=(1, \ldots, 1)=\left(1^{m}\right)$ and λ_{m+1} be an integer such that $1 \leq \lambda_{m+1} \leq$ λ_{m}. Then

$$
R L_{r}\left(\lambda \cup \lambda_{m+1}, q\right)=R L_{r}(\lambda, q)+q^{m-r+1}\left(\lambda_{m+1}\right)_{q} R L_{r-1}\left(\lambda-1^{m}, q\right),
$$

where $\lambda-1^{m}=\left(\lambda_{1}-1, \ldots, \lambda_{m}-1\right)$.

3. The general formula for the γ - compatible rook length polynomial

Theorem 6. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{t}\right)$ be a partition of m and $\lambda=\left(k_{1}^{\gamma_{1}}, \ldots, k_{t}^{\gamma_{t}}\right)$ be a γ-compatible partition, where $k_{i}, 1 \leq i \leq t$, are positive integers with $k_{1} \geq \cdots \geq k_{t}$. Then the γ-compatible rook length polynomial for $0 \leq r \leq \min \left(m, k_{1}\right)$ is given by

$$
R L_{r}(\lambda, \gamma, q)=\sum_{\boldsymbol{\Delta}} \prod_{i=1}^{t}\left[\begin{array}{c}
k_{i}-r_{i+1}-r_{i+2}-\cdots-r_{t} \\
r_{i}
\end{array}\right]_{q}\left[\begin{array}{l}
\gamma_{i} \\
r_{i}
\end{array}\right]_{q} q^{\sum_{i=2}^{t} \sum_{j=1}^{i-1} r_{i}\left(\gamma_{j}-r_{j}\right)}
$$

where $\boldsymbol{\Delta}=\left\{\left(r_{1}, r_{2}, \ldots, r_{t}\right) \mid 0 \leq r_{i} \leq \min \left(\gamma_{i}, k_{i}\right), r_{1}+\ldots+r_{t}=r\right\}$ and r_{i} equals the number of rooks in block $i, 1 \leq i \leq t$.

The proof will be by induction on the number of blocks t. The base case, when $t=1$, is stated and proved in the following lemma.

Lemma 7. Let $\lambda=\left(n^{m}\right)$ and $\gamma=((m))$. In particular, λ is γ-compatible and F_{λ} is an $m \times n$ rectangular Ferrers board. Then for $0 \leq r \leq \min (m, n)$

$$
R L_{r}(\lambda, \gamma, q)=\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}\left[\begin{array}{l}
m \\
r
\end{array}\right]_{q}
$$

Proof. If $r=0, R L_{r}(\lambda, \gamma, q)=1$. So assume that $r \geq 1$. For any $\sigma \in R_{\lambda}^{r}(\gamma)$, let the j th rook of σ be in the x_{r-j+1} th column from the right and the $y_{j} t h$ row from the top where $1 \leq j \leq r, 1 \leq x_{1}<\cdots<x_{r} \leq n$, and $1 \leq y_{1}<\cdots<y_{r} \leq m$. Since $x_{j}-j$ counts the number of zero columns to the right of the $(r-j+1)$ th rook, then $u=\sum_{j=1}^{r}\left(x_{j}-j\right)$ counts the total number of zero columns to the right of all r rooks in σ. Since $y_{j}-j$ counts the number of zero rows above the j th rook, then $w=\sum_{j=1}^{r}\left(y_{j}-j\right)$ counts the total number of zero rows above all r rooks in σ. By the definition of γ-compatible, $\sigma(i)<\sigma(i+1)$ and so there are no rooks above and to the right of any of the rooks. So $l(\sigma)=u+w$. Thus,

$$
\begin{aligned}
R L_{r}\left(\left(n^{m}\right),(m), q\right) & =\sum_{\sigma \in R_{\lambda}^{r}(\gamma)} q^{l(\sigma)} \\
& =\sum_{\substack{1 \leq x_{1}<\cdots<x_{r} \leq n, 1 \leq y_{1}<\cdots<y_{r} \leq m}} q^{u+w} \\
& =\sum_{1 \leq x_{1}<\cdots<x_{r} \leq n} q^{u} \sum_{1 \leq y_{1}<\cdots<y_{r} \leq m} q^{w} \\
& =\left[\begin{array}{l}
n \\
r
\end{array}\right]_{q}\left[\begin{array}{l}
m \\
r
\end{array}\right]_{q} .
\end{aligned}
$$

Proof of Theorem 6. We have already proven the base case as Lemma 7. For the inductive step, we assume that formula is true for $t-1$ blocks, where $t>1$.

By the recurrence formula (Theorem 3), we have

$$
R L_{r}(\lambda, \gamma, q)=\sum_{r_{t}=0}^{\min \left(r, \gamma_{t, k_{t}}\right)} q^{r_{t}\left(\Gamma-r+r_{t}\right)}\left[\begin{array}{l}
\gamma_{t} \\
r_{t}
\end{array}\right]_{q}\left[\begin{array}{l}
k_{t} \\
r_{t}
\end{array}\right]_{q} R L_{r-r_{t}}\left(\lambda-r_{t}^{\Gamma}, \gamma^{\prime}, q\right)
$$

where $\Gamma=\sum_{i=1}^{t-1} \gamma_{i}=m-\gamma_{t}, \lambda-\gamma_{t}^{\Gamma}=\left(\left(k_{1}-\gamma_{t}\right)^{\gamma_{1}}, \ldots,\left(k_{t}-\gamma_{t}\right)^{\gamma_{t-1}}\right)$ and $\gamma^{\prime}=$ $\left(\gamma_{1}, \ldots, \gamma_{t-1}\right)$.

By the induction hypothesis,

$$
\begin{aligned}
& R L_{r-r_{t}}\left(\lambda-r_{t}^{\Gamma}, \gamma^{\prime}, q\right) \\
& =\sum_{\boldsymbol{\Delta}^{\prime}} \prod_{i=1}^{t-1}\left[\begin{array}{c}
\left(k_{i}-r_{t}\right)-r_{i+1}-r_{i+2}-\cdots-r_{t-1} \\
r_{i}
\end{array}\right]_{q}\left[\begin{array}{c}
\gamma_{i} \\
r_{i}
\end{array}\right]_{q} q^{\sum_{i=2}^{t-1} \sum_{j=1}^{i-1} r_{i}\left(\gamma_{j}-r_{j}\right)},
\end{aligned}
$$

where $\boldsymbol{\Delta}^{\prime}=\left\{\left(r_{1}, r_{2}, \ldots, r_{t-1}\right) \mid 0 \leq r_{i} \leq \min \left(\gamma_{i}, k_{i}\right), r_{1}+\ldots+r_{t-1}=r-r_{t}\right\}$.

So

$$
\begin{aligned}
& R L_{r}(\lambda, \gamma, q)=\sum_{0 \leq r_{t} \leq \min \left(k_{t}, \gamma_{t}, r\right)}\left(q^{r_{t}\left(m-\gamma_{t}-r+r_{t}\right)}\left[\begin{array}{l}
k_{t} \\
r_{t}
\end{array}\right]_{q}\left[\begin{array}{l}
\gamma_{t} \\
r_{t}
\end{array}\right]_{q}\right. \\
& * \sum_{\Delta^{\prime}} \prod_{i=1}^{t-1}\left[\begin{array}{c}
\left.\left.\left(k_{i}-r_{t}\right)-r_{i+1}-r_{i+2}-\cdots-r_{t-1}\right]_{q}\left[\begin{array}{c}
\gamma_{i} \\
r_{i}
\end{array}\right]_{q} q^{\sum_{i=2}^{t-1 i} \sum_{j=1}^{1} r_{i}\left(\gamma_{j}-r_{j}\right)}\right)
\end{array}\right. \\
& =\sum_{0 \leq r_{t} \leq \min \left(k_{t}, \gamma_{t}, r\right)} q^{r_{t}\left(m-\gamma_{t}-r+r_{t}\right)} \\
& * \sum_{\Delta^{\prime}} \prod_{i=1}^{t}\left[\begin{array}{c}
k_{i}-r_{i+1}-r_{i+2}-\cdots-r_{t} \\
r_{i}
\end{array}\right]_{q}\left[\begin{array}{c}
\gamma_{i} \\
r_{i}
\end{array}\right]_{q} q^{\sum_{i=2}^{t-1 i} \sum_{j=1} r_{i}\left(\gamma_{j}-r_{j}\right)} \\
& =\sum_{\boldsymbol{\Delta}} \prod_{i=1}^{t}\left[\begin{array}{c}
k_{i}-r_{i+1}-r_{i+2}-\cdots-r_{t} \\
r_{i}
\end{array}\right]_{q}\left[\begin{array}{c}
\gamma_{i} \\
r_{i}
\end{array}\right]_{q} q^{\sum_{i=2}^{t} \sum_{j=1}^{i-1} r_{i}\left(\gamma_{j}-r_{j}\right)} .
\end{aligned}
$$

From Theorem 6, we obtain Theorem 33 of [3] as a corollary.
Corollary 8. If $r=m$, then $r_{i}=\gamma_{i}, 1 \leq i \leq t$ and $\boldsymbol{\Delta}$ contains only one condition, namely $r_{i}=\gamma_{i}, 1 \leq i \leq t$. Thus when $r=m$,

$$
R L_{m}(\lambda, \gamma, q)=\prod_{i=1}^{t}\left[\begin{array}{c}
k_{i}-\gamma_{i+1}-\gamma_{i+2}-\cdots-\gamma_{t} \\
\gamma_{i}
\end{array}\right]_{q} .
$$

Example. Let $\gamma=(1,3)$ and $\lambda=(4,3,3,3)$. Then λ is $\gamma-$ compatible since $\lambda=\left(4^{1}, 3^{3}\right)$. Let $r=3$. Since $0 \leq r_{i} \leq \min \left(\gamma_{i}, k_{i}\right), i=1,2, \Delta=\left\{\left(r_{1}, r_{2}\right)=(0,3),\left(r_{1}, r_{2}\right)=(1,2)\right\}$. By Theorem 6, we get

$$
\begin{aligned}
R L_{3}((4,3,3,3),(1,3), q) & =q^{3}+\left[\begin{array}{l}
2 \\
1
\end{array}\right]_{q}\left[\begin{array}{l}
1 \\
1
\end{array}\right]_{q}\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q}\left[\begin{array}{l}
3 \\
2
\end{array}\right]_{q} \\
& =q^{3}+\frac{(3)!_{q}(3)!_{q}}{(2)!_{q}} \\
& =q^{3}+(1+q)\left(1+q+q^{2}\right)^{2} \\
& =1+3 q+5 q^{2}+6 q^{3}+3 q^{4}+q^{5}
\end{aligned}
$$

We now calculate the γ-compatible rook length polynomial directly from its definition.

Let $\sigma_{i}, 1 \leq i \leq 19$, be defined as follows:

$$
\sigma_{1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 0
\end{array}\right], \quad \sigma_{2}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 0 & 0 \\
& 0 & 1 & 0
\end{array}\right], \quad \sigma_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 0 & 0 \\
& 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{aligned}
& \sigma_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 0 & 1 \\
& 0 & 0 & 0
\end{array}\right], \quad \sigma_{5}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 1 \\
& 0 & 0 & 0
\end{array}\right], \quad \sigma_{6}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 0 \\
& 0 & 0 & 1
\end{array}\right], \\
& \sigma_{7}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 1 & 0
\end{array}\right], \quad \sigma_{8}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 0 & 1
\end{array}\right], \quad \sigma_{9}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
& 0 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 1
\end{array}\right], \\
& \sigma_{10}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 1 \\
& 0 & 0 & 0
\end{array}\right], \quad \sigma_{11}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
& 0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \sigma_{12}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
& 0 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 1
\end{array}\right], \\
& \sigma_{13}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
& 1 & 0 & 0 \\
& 0 & 0 & 1 \\
& 0 & 0 & 0
\end{array}\right], \quad \sigma_{14}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
& 1 & 0 & 0 \\
& 0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right], \quad \sigma_{15}=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
& 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 0 & 1
\end{array}\right], \\
& \sigma_{16}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
& 1 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 0
\end{array}\right], \quad \sigma_{17}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 0
\end{array}\right], \quad \sigma_{18}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 0
\end{array}\right], \\
& \sigma_{19}=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
& 1 & 0 & 0 \\
& 0 & 1 & 0 \\
& 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Then by the definition of the length function, we have

$$
\begin{aligned}
& l\left(\sigma_{1}\right)=3, \quad l\left(\sigma_{2}\right)=4, \quad l\left(\sigma_{3}\right)=3, \quad l\left(\sigma_{4}\right)=2, \quad l\left(\sigma_{5}\right)=1, \quad l\left(\sigma_{6}\right)=2, \\
& l\left(\sigma_{7}\right)=5, \quad l\left(\sigma_{8}\right)=4, \quad l\left(\sigma_{9}\right)=3, \quad l\left(\sigma_{10}\right)=0, \quad l\left(\sigma_{11}\right)=1, \quad l\left(\sigma_{12}\right)=2, \\
& l\left(\sigma_{13}\right)=1, \quad l\left(\sigma_{14}\right)=2, \quad l\left(\sigma_{15}\right)=3, \quad l\left(\sigma_{16}\right)=2, \quad l\left(\sigma_{17}\right)=3, \quad l\left(\sigma_{18}\right)=4, \\
& \text { and } l\left(\sigma_{19}\right)=3 \text {. }
\end{aligned}
$$

So

$$
R L_{3}((4,3,3),(1,3), q)=\sum_{i=i}^{18} q^{l\left(\sigma_{i}\right)}=1+3 q+5 q^{2}+6 q^{3}+3 q^{4}+q^{5}
$$

4. A formula for the parabolic γ - compatible rook length polynomial

We say that λ is parabolic of type $\mu=\left(\mu_{1}, \ldots, \mu_{k}\right)$ (or μ-parabolic) if $m=n$ and there exist positive integers μ_{1}, \ldots, μ_{k} such that

$$
M_{\lambda}^{r}=\left\{\left[\begin{array}{cccc}
A_{11} & A_{12} & \cdots & A_{1 k} \\
0 & A_{22} & \cdots & A_{2 k} \\
\vdots & 0 & \ddots & \vdots \\
0 & \cdots & 0 & A_{k k}
\end{array}\right]\right\}
$$

where $A_{i i}$ is a $\mu_{i} \times \mu_{i}$ submatrix for $1 \leq i \leq k$. If λ is μ-parabolic and $r=m$, then the invertible elements in $M_{\lambda}{ }^{m}$ form a parabolic subgroup of $G L_{m}(\mathbf{C})$.

A rook placement of rank r on a Ferrers board F_{λ}, where λ is μ-parabolic, is said to be μ-parabolic. Let $R L_{\lambda}^{r}(\gamma, \mu)$ be the set of all γ-compatible μ-parabolic rook placements of rank r on the Ferrers board F_{λ}. The γ-compatible μ-parabolic rook length polynomial is given by

$$
R L_{r}(\lambda, \gamma, \mu, q)=\sum_{\sigma \in R L_{\lambda}^{r}(\gamma, \mu)} q^{l(\sigma)} .
$$

We now give a formula for the γ-compatible μ-parabolic rook length polynomial for $r=m$.

If $n_{1}+n_{2}+\cdots+n_{t}=n$, where n, n_{1}, \ldots, n_{t} are positive integers, then the Gausian multinomial coefficient is given by

$$
\left[\begin{array}{c}
n \\
n_{1}, n_{2}, . ., n_{t}
\end{array}\right]_{q}=\frac{[n]!_{q}}{\left[n_{1}\right]!_{q}\left[n_{2}\right]!_{q} \cdots\left[n_{t}\right]!_{q}}
$$

Theorem 9. Suppose that $r=m=n$ and that the partition $\lambda=\left(k_{1}^{\gamma_{1}}, \ldots, k_{t}^{\gamma_{t}}\right), k_{1} \geq$ $k_{2} \geq \cdots \geq k_{t}>0$, is both $\gamma=\left(\gamma_{1}, \ldots, \gamma_{t}\right)$-compatible and parabolic of type $\mu=$ $\left(\mu_{1}, \ldots, \mu_{l}\right)$. Clearly, there are integers $0=s_{0}<s_{1}<\cdots<s_{l} \leq t$ such that $\gamma_{\left(s_{i}+1\right)}+$ $\cdots+\gamma_{s_{(i+1)}}=\mu_{i+1}$, for $0 \leq i \leq l-1, k_{\left(s_{i}+1\right)}=\cdots=k_{s_{(i+1)}}$, for $0 \leq i \leq l-1$, and $\lambda=\left(k_{1}^{\mu_{1}}, \ldots, k_{l}^{\mu_{l}}\right)$. Then

$$
R L_{m}(\lambda, \gamma, \mu, q)=\prod_{i=0}^{l-1}\left[\begin{array}{c}
\mu_{(i+1)} \\
\gamma_{\left(s_{i}+1\right)}, \gamma_{\left(s_{i}+2\right)}, \cdots, \gamma_{s_{(i+1)}}
\end{array}\right]_{q}
$$

Proof. We apply Theorem 6 with $r_{i}=\gamma_{i}$ for $1 \leq i \leq t$.

$$
\begin{aligned}
& R L_{r}(\lambda, \gamma, \mu, q)=\sum_{\sigma \in R L_{\lambda}^{r}(\gamma, \mu)} q^{l(\sigma)} \\
& \quad=\prod_{i=1}^{t}\left[\begin{array}{c}
k_{i}-\gamma_{i+1}-\gamma_{i+2}-\cdots-\gamma_{t} \\
\gamma_{i}
\end{array}\right]_{q}
\end{aligned}
$$

$$
\begin{aligned}
& =\prod_{i=0}^{l-1} \prod_{j=\left(s_{i}+1\right)}^{s_{(i+1)}}\left[\begin{array}{c}
k_{j}-\gamma_{j+1}-\gamma_{j+2}-\cdots-\gamma_{t} \\
\gamma_{j}
\end{array}\right]_{q} \\
& =\prod_{i=0}^{l-1} \prod_{j=\left(s_{i}+1\right)}^{s_{(i+1)}}\left[\begin{array}{c}
\left.k_{j}-\gamma_{j+1}-\cdots-\gamma_{s_{(i+1)}}-\left(\mu_{i+2}+\cdots+\mu_{l}\right)\right]_{q} \\
\gamma_{j}
\end{array}\right. \\
& =\prod_{i=0}^{l-1} \prod_{j=\left(s_{i}+1\right)}^{s_{(i+1)}}\left[\begin{array}{c}
\left.k_{j}-\left(\mu_{i+2}+\cdots+\mu_{l}\right)-\gamma_{j+1}-\cdots-\gamma_{s_{(i+1)}}\right]_{q}, ~ \\
\gamma_{j}
\end{array}\right. \\
& =\prod_{i=0}^{l-1} \prod_{j=\left(s_{i}+1\right)}^{s_{(i+1)}}\left[\begin{array}{c}
\mu_{i+1}-\gamma_{j+1}-\cdots-\gamma_{s_{(i+1)}} \\
\gamma_{j}
\end{array}\right]_{q} \\
& =\prod_{i=0}^{l-1} \prod_{j=\left(s_{i}+1\right)}^{s_{(i+1)}}\left[\begin{array}{c}
\left.\gamma_{\left(s_{i}+1\right)}+\gamma_{\left(s_{i}+2\right)}+\cdots+\gamma_{s_{(i+1)}}-\gamma_{j+1}-\cdots-\gamma_{s_{(i+1)}}\right]_{q} \\
\gamma_{j}
\end{array}\right. \\
& =\prod_{i=0}^{l-1}\left[\begin{array}{c}
\gamma_{\left(s_{i}+1\right)} \\
\gamma_{\left(s_{i}+1\right)}
\end{array}\right]_{q}\left[\begin{array}{c}
\gamma_{\left(s_{i}+1\right)}+\gamma_{\left(s_{i}+2\right)} \\
\gamma_{\left(s_{i}+2\right)}
\end{array}\right]_{q} \ldots\left[\begin{array}{c}
\gamma_{\left(s_{i}+1\right)}+\cdots+\gamma_{s_{(i+1)}} \\
\gamma_{s_{(i+1)}}
\end{array}\right]_{q} \\
& =\prod_{i=0}^{l-1} \frac{\left[\gamma_{\left(s_{i}+1\right)}+\cdots+\gamma_{s_{(i+1)}}\right]_{q}!}{\left[\gamma_{\left(s_{i}+1\right)}\right]_{q}!\left[\gamma_{\left(s_{i}+2\right)}\right]_{q}!} \cdots \cdot\left[\gamma_{\left.s_{(i+1)}\right]_{q}}!\right. \\
& =\prod_{i=0}^{l-1}\left[\begin{array}{c}
\mu_{i+1} \\
\gamma_{\left(s_{i}+1\right)}, \gamma_{\left(s_{i}+2\right)}, \ldots, \gamma_{s_{(i+1)}}
\end{array}\right]_{q} .
\end{aligned}
$$

Corollary 10. Let $\gamma=\left(1^{m}\right)$. Then

$$
R L_{m}(\lambda, \mu, q)=R L_{m}\left(\lambda,\left(1^{m}\right), \mu, q\right)=\prod_{i=0}^{l-1}\left[\begin{array}{c}
\mu_{i+1} \\
1
\end{array}\right]_{q}=\prod_{i=0}^{l-1}\left(\mu_{i+1}\right)_{q}
$$

This result appears as Corollary 1.19 in [2].
Example. Let $\lambda=(6,6,4,4,4,1), \gamma=\left(1^{6}\right)$ and $\mu=(2,3,1)$. Then λ is γ-compatible and μ-parabolic. Then we have

$$
R L_{6}(\lambda, \mu, q)=(2)_{q}(3)_{q}(1)_{q}=q^{3}+2 q^{2}+2 q+1
$$

References

[1] A. Björner, L. Lovász, S.T. Vrećica and R.T. Živaljević, Chessboard complexes and matching complexes, J. London Math. Soc. (2) 49 (1994), 25-39.
[2] K. Ding, Invisible permutations and rook placements on a Ferrers board, Discrete Mathematics 139 (1995), 105-127.
[3] K. Ding, Rook placements and generalized partition varieties, Discrete Mathematics 176 (1997), 63-95.
[4] K. Ding, Rook placements and cellular decomposition of partition varieties, Discrete Mathematics 170 (1997), 107-151.
[5] D. Foata and M. Shutzenberger, On the rook polynomials of Ferrers relations, Collog. Math. Soc. Janos Bolyai 4, in: P. Erdös et al. eds., Combinatorial Theory and its Applications, Vol. 2 (North Holland, Amsterdam, 1970), 413-436.
[6] A. M. Garsia and J. B. Remmel, q-counting rook configurations and a formula of Frobenius, J. Combin. Theory Ser. A 41 (1986), 246-275.
[7] P. F. Garst, Cohen-Macaulay complexes and group actions, Ph.D. Thesis, University of Wisconsin-Madison, 1979.
[8] J. R. Goldman, J. T. Joichi, D. L. Reiner and D. E. White, Rook theory I, Rook equivalence of Ferrers boards, Proc. Amer. Soc. 52 (1975), 485-492.
[9] J. R. Goldman, J. T. Joichi, D. L. Reiner and D. E. White, Rook theory V, Rook Polynomials, Möbius inversions and the umbral calculus, J. Combin. Theory Ser. A. 21 (1976), 230-239.
[10] J. R. Goldman, J. T. Joichi, D. L. Reiner and D. E. White, Rook theory IV, Orthogonal sequences of rook polynomials, Studies Appl. Math. 56 (1977), 267-272.
[11] J. R. Goldman, J. T. Joichi, D. L. Reiner and D. E. White, Rook theory III, Rook polynomials and the chromatic structure of graphs, J. Combin. Theory Se. B 25 (1978), 135-142.
[12] H. Gould, The q-Stirling numbers of the first and second kinds, Duke Math. J. 28 (1961), 281-289.
[13] Sagan, A maj statistics for set partitions, Europ. J. Combin. 12 (1991), 69-79
[14] M. Wachs and D. White, p, q-Stirling numbers and set partition statistics, J. Combin. Theory Ser. A 56 (1991), 27-46.
[15] G. M. Ziegler, Shellability of chessboard complexes, Israel J. Math. 87 (1994), 97-110.

Department of General Studies, South University, Savannah, GA 34106, U.S.A.
E-mail: edarroyo@southuniversity.edu
Department of Mathematics, Francis Marion University, Florence, SC 29506, U.S.A.
E-mail: farroyo@fmarion.edu

