TAMKANG JOURNAL OF MATHEMATICS
Volume 43, Number 1, 1-10, Spring 2012
doi:10.5556/].tkjm.43.2012.1-10

Available online at http://journals.math.tku.edu.tw,

MULTI-DIMENSIONAL HADAMARD'’S INEQUALITIES

YIN CHEN

Abstract. In this paper, Hadamard’s inequalities are extended to a convex function on a
convex set in R? or R%. In particular, it is proved that the average of convex function on
a disc of radius r is between the average of the function on the circle of radius r and that
on the circle of 23—’

1. Introduction

Let f be a convex function defined on [a, b]. Then we have the following inequalities,
which are called Hermite-Hadamard’s inequalities, or simply Hadamard’s inequalities,

a+b 1 b fa)+ f(b)

We want to extend Hadamard’s inequalities to a convex function of several variables. Re-
call that a function defined on a convex domain D of a vector space is convex if for any non-
negative constant «a € [0, 1] and any two points x1, x» € D, the following inequality holds

flax;+ (A —a)xp) <af(x)+ (1 —a)f(x).

Let us consider a function f(x, y) on a convex subset D of R?. Note that if f(x, y) is a convex
function on D, then it is convex on any line segment in D and in particular, it is convex of both
xand y.

Hadamard’s inequalities deal with a convex function on [a, b]. It states that the average
of a convex function f on [a, b] is between the values of f at the midpoint x = %b and the
average of the values of f at the endpoints a and b. Let us consider a convex function f on
a disk. A nature question is to ask if the similar inequalities hold for the function f on an
annulus (contained in the disk): @ < r < b where r = \/x2 + y2. We show that we do have
such similar inequalities. A particular case of these inequalities improves an inequality of
Hadamard’s type on a disk obtained by Chen [2] or Dragomir [3]. We also get some similar

inequalities of Hadamard’s type for a convex function on a regular polygon. We extend our
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results then to a convex function on a ball of R%. The reader is referred to [5] and [6] for the
original papers on Hadamard’s inequality, and [1], [4], [7], [8], [9], [10] or [13] for some new
developments on this topic.

2. Hadamard’s inequality on an annulus

In this section, we will fix the following notations

D(r) ={(x,y): x? +y2 < r2}
and
L(r) =1{(x,y): x? +y2 = rz}.

We will always consider a convex function on a disk centred at (0,0). It is easy to see that our
inequalities will be true for a convex function on a disk centred at any point in R?. Let f be a
convex function on D(R). For 0 < r < R, we define

F(r,0) = f(rcos#,rsin), 2)
Mg(r) = sup{f(x,y): X+ y2 =r?, 3)
1
Cr(r) = ﬁfm)f(x,y)ds, 4)
and .
Bp(r) = —fo fx,y)dxdy. 5)
r D(r)
Clearly
1 2n
Cr(r) = gfo F(r,0)do, (6)
and o
By(r) = —f f F(rt,0)tdodt (7)
Jo Jo
1
= zf Cr(ro)tdt. )
0

The following theorem is an analogue of Theorem 2.6.8 of [11] for the convex functions.

Theorem 2.1. Let f be a convex function on D(R). Then the functions M¢(r), C¢(r) and Bg(r)

are all increasing convex functions of r on [0, R].

Proof. We first observe that F(r,0) is a convex function of r on [0, R] for any 6 € [0,2x]. Thus
for any nonnegative constants a; and a, with a; + @, = 1 and for any ry, 7, € [0, R], we have

Flair +azrz,0) < a1 F(r1,0) + ax F(ry,0). 9
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Taking the supremum for 0 over [0,27] on both sides of the above inequality gives the con-
vexity of M¢(r). If we integrate both sides of (9) for 6 over [0,27], and then divide both sides
by 27, we know that C¢(r) is convex. If we replace r1 and r, by 17 and r» ¢ in (9), multiply %
on both sides, and then integrate both sides for ¢ over [0, 1] and for 8 over [0, 27], we will have
that B¢(r) is also convex.

Let 1, r» be two constants such that 0 < r; < r, < R. Note that

_ 1 n 1 r
n=|—+—/|r+ 2 2 (=712). (10)

Since the three points (r,60), (r1,0) and (12,0 + ) are on the same line and f is convex on the
line, by (10), we have

1 ]
F(rl,H)s(—+£)F(r2,6)+ ——Q)F(rz,em). 1)
2 27'2 2 I

Taking supremum on both sides of (11) for 6 € [0, 27] gives that

M¢(r) =

1+r1)M(r)+(1 rl)M(r)—M(r)
2 2r, ) IVET\2 T 2py ) S T2

So M f(r) is increasing.
If we take integral on both sides of (11) for 8 € [0,27] and multiply both sides by %, we
have

Cr(r) =

1 r 1 r _
5t ZrZ)Cf(r2)+ (2 2r2)cf(r2) =Cy(r2).

This shows that C r(r) are increasing on [0, R].

If we replace r, and ry by tr; and tr, in (11), multiply both sides by %, and then do the
integrals for ¢ over [0, 1] and for 0 over [0,27], we have

By( )<(1+—r1)B( )+(1 —“)B( )= B (ry)
rn)<|- r - — Ip) = ).
U VIPTSY Bl VIRPTSY Rttt
This shows that B r(r)is also increasing. Oa

Now let us consider Hadamard’s inequalities over a < r < b.

Theorem 2.2. Let f(x,y) be a convex function on the disk D(R). If0 < a < b <R, then

1 2(a® + ab + b?)
n(b? - a?) ffasrsbf(x’ ydxdyzCy ( 3(a+b) )
a+2b

1 2a+b
n(b? - a?) ffasrsbf(x’ ydxdys 3(a+Db) Cria+ 3(a+b) Cr®).
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Proof. For any 0 € [0,27], F(r,0) is a convex function of r on [0, R]. So there is a constant A(6)

not depending on r such that

F(r,0) = F(ro,0) + A0)(r — o),

2 2
where rg = %. Therefore

2n pb
ff f(x,y)dxdyz/ / F(r,0)rdrd6o
asrs<b 0 Ja

21 rb 27 rb
zf fF(ro,B)rdrd0+f fA(B)(rz—ror)drdB
0 a 0 a

b2 _ 42 p2nm 27
_r-a f F(ro,0) dO + f 0do
2 0 0

= n(b* — a*)C(ro).

This proves the first inequality.

To show the second inequality, we first note that
b—r r—a
F(r,0) < ——F(a,0) + ——F(b,0),
b-a b—a

foranyr:a<r < bandany®0 € [0,27], since F(r,0) is convex function of r. It follows that

1
n(b% - a?) ffasrsbf(x’ ydxdy

1 b p—r r-a
<— F(a,0 F(b,0)| drd6
n(bz—az)]o fa [b—ar (a )+b—ar (b,0)] dr
< ﬂc (a)+ﬂc (b)
“3a+b) Y 3@ T
This completes the proof. O

Letting a — 0, we have Hadamard'’s inequalities on a disk.

Corollary 2.3. Let f be a convex function on D(R) and0 < b < R. Then
2 1 2

By Theorem (2.1), we know that f(0,0) < C r (b), thus Corollary (2.3) implies and improves
the following Hadamard’s inequality on a disk, obtained by Dragomir [3] and also by Chen [2].

Corollary 2.4. Let f be a convex function on [0, R]. Then

2
£(0,0)= Cr(zb) < By(b) = Cy(b) < My (D). (13)
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Let f(x,y) = v/x%*+ y%. Then f is a convex function on RZ. Itis easy to find Mg(r)=r,
Cr(r)=r and B r(r) = %r. Therefore the constant % on both sides of (12) is the best possible.

3. Hadamrad’s inequalities and centroid

Let (%, y) be the centroid of a convex set D in R2. Let us compare the average value of f

on D with the value of f at the centriod.

Theorem 3.1. Let f be a convex function on a convex region D c R?. Then

1
m Lf(x,y)dxdy 14)

where (X, y) is the centroid of D and A(D) is the area of D.

fx, =

Proof. Since (X, y) is the centroid of D, we have

[fpxdxdy J_/:fnydxdy
[fpdxdy’ fIpdxdy

ff (x—x)dxdy=0, ff (y—ydxdy=0. (15)
D D
f being a convex function on D implies that f has support at (%, y) ([12], page 108), that is

X =

It follows that

fa,NzfxHN+Ax-x)+By—-7)

for some constants A and B and for any (x, y) € D. Therefore
ffo(x,y)dxdyzffD(f(fc,j/)+A(x—5c)+B(y—J7))dxdy

_ f fD F& ) dxdy (by(15)
_ F& PAD),

which completes the proof. O

4. Hadamrad’s inequality on a regular polygon

We now give an application to Theorem (3.1).

We see in section 2 that the average of a convex function on a disk is between the average
of the function on the boundary and the average of the function on a shrunk curve to % size
of the boundary. We will show that this is true too for a convex function on a regular polygon.

First we need a lemma for the convex function on a triangle. Let A be a triangle and
A, B, C be three vertices. Take points E and F on line segments AB and AC respectively such
that|AE| = 2| AB| and |AF| = | AC|. Then
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Lemma 4.1.
1
_ - 1
A(A) f/ fx,y)dxdy = IEFlf fx,y)ds (16)
2
A f/ fx,ydxdy< _f(xA»J’A) 31BC| f(x,y)ds (17)

where (x4, y4) is the coordinates of point A, and A(A) is the area of A.

Proof. Without loss of generality, let us consider a triangle ABC such that B is at (0,0), C is at
(p,0) with p > 0 and A is at (x4, y4). Let n be a positive integer larger than 2. Let Dy be the

point B, D, be the point C and D; be the points (ip, 0) fori =1,2,...,n—1. Clearly for i =

A(A (Zi—l xA yA)
n

1,2,...,n, the small triangle AD;_; D; has the area and has the centroid 33

Applying Theorem (3.1) on each triangle AD;_; D;, we have

n 2i—1 XA YA
— (x,y)dxdy= (— +—,—).
A(A)/fA(AD,»_lD,»)f ¥ vzt 3n p 33

Adding both sides for i =1,2,..., n, we have

ff(xy)dxdy>2f( - xA,ﬁ),

A(A) 3 3

or

ff(x ydxdy = Xn:;f(zl—l xA )

A(A) = 3’
2 2i—1
3 pf( i— p+— y_)
2pl 13n 3n 3°3
1 & f( L XA E)
TIEFI =307\ 3n BENEYA
As n — oo, clearly last sum goes to the integral of f on EF
lim —— Y 2P p(2=L, XA yA) f fee, 2 dx
n—co | EF| = 13n 3n P33 IEFI '
" |EF] f Jy)ds.

This proves (16).

To prove (17), we will use a theorem in [1] that says the average of a convex function on a
triangle is less than or equal to the average of the values of the function at the three vertices.
Applying this theorem on each small triangle AD;_; D; fori =1,2,..., n, we have

n fGa,ya)+ fELp,0)+ f(Lp,0)
— ) dxdy< ,
A(A) ffA(AD,—lD,-)f(x ydxdy 3
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Adding all these inequalities yields

f(xA;J/A)+f(l P,0)+f( p,O)
3

A(A) ff(xy)dm f;

or

Fa,ya) + FEELp,0)+ (4 p,0)
A(A)ffﬂxy)dxdy Z 3n

_ [l ya) +i FELD,0)+ f(Lp,0)
3 i=1 3n

_fGaya)  fFO0O-f(p0) 2 &p i

B 3 * 3n +3p§1nf(np)0)

Clearly, as n — oo, the above sum has a limit

p
hmz f( p,O) fof(x,O)dxszcf(x,y)ds.

n—»oo
This proves (17). Oa
Now we will extend these inequalities to a convex function on a regular polygon.

Theorem 4.2. Let f be convex on a regular n-gon P,, C(a,b) be the center of P,,, D), be the
boundary of P, and E,, be the boundary of the n-gon whose vertices are the points on the line
segments connecting C and the vertices of P,, and 2 5 of the length of the segments from C. Then

1
Tpn) N f,y)dxdy = Ll Enf(x,y)ds (18)
1
Ay ), f,y)dxdy < §f(a'b)+3|Dn| o, fx,y)ds (19)

Proof. Divide the n-gon to n identical triangles and apply Lemma (4.1) to each triangle. [

If n — coin (18) and (19), then we can get another proof for Corollary (2.3).

5. Three dimensional Hadamard’s inequalities
Let B(r) and S(r) be the ball and the surface of the ball of radius r in the space, that is,

B(r) ={(x,p,2):x*+y*+ 2> <r?)
and
S(r) ={(x,y,2) : x>+ y* + 22 = 1%},

Let f be a convex function on D(R). For 0 < r < R, we define

F(p,¢,0) = f(psin¢cosh, psingsing, pcos),
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M{(r) = sup{f(x,y,2) : x* + y* + 2* = r?},

1
Qf(r) - W/ﬁ(r) f(x)yyz) ds»

and .
p = — ), 2)dxdydz.
(1) 4m3fff3mf(xyz) xdydz
Clearly
1 T 21
Qf(r):—f f F(r,¢,0)sin¢p dOd ¢,
4m Jo Jo
and

3 rl pmop2n
Pf(r)=—fff F(rt,0) tsingpdtdododt
4o Jo Jo
1
:3] Qr(rn) #dt.
0

By the similar way as in the proof of Theorem (2.1), we can easily prove the following
theorem.

Theorem 5.1. Let f be a convex function on B(R). Then the functions M¢(r), P¢(r) and Q¢ (r)

are all increasing convex functions of r on [0, R].

Theorem 5.2. Let f be a convex function on B(R) and0 < b < R. Then
3 1 3
Qf(zb) < Pr(b) < Zf(O,O,O) + ZQf(b)-

Proof. Let pg = %b. Since F(p, ¢,0) is convex of p on [0, R], it follows that there is A(¢,0) such
that

F(p,¢,0) = F(po,p,0) + Al,0)(p — po). (20)
Clearly , ,
fofo fo A,0)(p — po) p>sinpdBddpdp = 0. (21)

By (20) and (21), we will have

3 T 21 rb )
Ps(b) = —— F(p,,0) p*singpdpdb d
£(b) Mbgfofofo (0,¢,0) p~singdp db d

3 T r27 pb )
F(pg,d,0 inbdpdbd
ol [ ] Feoeoptsingapasds

=

1 T P27 )
= Efo fo F(po,¢,0)sinpdO d¢
= Qr(po).
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On the other hand, since

o p
<(1--)0+—-0,
p==3)0%
we have
F(p,$,0) < (1— %)f(0,0,0) + %F(b,¢,9).
Thus
3 T 27 rb )
P - F ) ) i
f(b)<47rb3fofo fo (p,$,0)p“singpdp dO de¢
3 7T p27 pb o )
> 1-2)£0,0,000%sinddp do d
= | [ a=8r0.00ptsingdpdod

3 T r27m bp )
D) —F ) i
+4nb3/0 /0 fo b (b,¢p,0)p~sinpdp dO d¢p
1 3
= Zf(0,0,0)+ZQf(b).

Using the same way in the proof of Theorem (3.1), we can easily see the following theo-

rem.

Theorem 5.3. Let f be a convex function on a convex domain D c R3. Then

1
fx,3,2) < m[/ Df(x,y,z)dxdydz

where (X, j, z) is the centroid of D and V (D) is the volume of D.
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