Available online at http://journals.math.tku.edu.tw

MULTI-DIMENSIONAL HADAMARD'S INEQUALITIES

YIN CHEN

Abstract. In this paper, Hadamard's inequalities are extended to a convex function on a convex set in \mathbf{R}^2 or \mathbf{R}^3 . In particular, it is proved that the average of convex function on a disc of radius *r* is between the average of the function on the circle of radius r and that on the circle of $\frac{2r}{3}$.

1. Introduction

Let f be a convex function defined on [a, b]. Then we have the following inequalities, which are called Hermite-Hadamard's inequalities, or simply Hadamard's inequalities,

$$f\left(\frac{a+b}{2}\right) \le \frac{1}{b-a} \int_{a}^{b} f(x) \, dx \le \frac{f(a)+f(b)}{2}.$$
 (1)

We want to extend Hadamard's inequalities to a convex function of several variables. Recall that a function defined on a convex domain *D* of a vector space is convex if for any nonnegative constant $\alpha \in [0, 1]$ and any two points $x_1, x_2 \in D$, the following inequality holds

$$f(\alpha x_1 + (1 - \alpha)x_2) \le \alpha f(x_1) + (1 - \alpha)f(x_2).$$

Let us consider a function f(x, y) on a convex subset D of \mathbb{R}^2 . Note that if f(x, y) is a convex function on D, then it is convex on any line segment in D and in particular, it is convex of both x and y.

Hadamard's inequalities deal with a convex function on [a, b]. It states that the average of a convex function f on [a, b] is between the values of f at the midpoint $x = \frac{a+b}{2}$ and the average of the values of f at the endpoints a and b. Let us consider a convex function f on a disk. A nature question is to ask if the similar inequalities hold for the function f on an annulus (contained in the disk): $a \le r \le b$ where $r = \sqrt{x^2 + y^2}$. We show that we do have such similar inequalities. A particular case of these inequalities improves an inequality of Hadamard's type on a disk obtained by Chen [2] or Dragomir [3]. We also get some similar inequalities of Hadamard's type for a convex function on a regular polygon. We extend our

2010 Mathematics Subject Classification. 26D15, 26D07.

Key words and phrases. Hadamard's inequalities, convex function, regular polygon.

results then to a convex function on a ball of \mathbb{R}^3 . The reader is referred to [5] and [6] for the original papers on Hadamard's inequality, and [1], [4], [7], [8], [9], [10] or [13] for some new developments on this topic.

2. Hadamard's inequality on an annulus

In this section, we will fix the following notations

$$D(r) = \{(x, y) : x^2 + y^2 \le r^2\}$$

and

$$L(r) = \{(x, y) : x^2 + y^2 = r^2\}.$$

We will always consider a convex function on a disk centred at (0,0). It is easy to see that our inequalities will be true for a convex function on a disk centred at any point in \mathbb{R}^2 . Let f be a convex function on D(R). For $0 \le r \le R$, we define

$$F(r,\theta) = f(r\cos\theta, r\sin\theta), \tag{2}$$

$$M_f(r) = \sup\{f(x, y) : x^2 + y^2 = r^2\},$$
(3)

$$C_f(r) = \frac{1}{2\pi r} \int_{L(r)} f(x, y) \, ds,$$
(4)

and

$$B_f(r) = \frac{1}{\pi r^2} \iint_{D(r)} f(x, y) \, dx \, dy.$$
(5)

Clearly

$$C_f(r) = \frac{1}{2\pi} \int_0^{2\pi} F(r,\theta) \, d\theta,\tag{6}$$

and

$$B_{f}(r) = \frac{1}{\pi} \int_{0}^{1} \int_{0}^{2\pi} F(rt,\theta) t \, d\theta \, dt$$
⁽⁷⁾

$$= 2 \int_0^1 C_f(rt) t \, dt.$$
 (8)

The following theorem is an analogue of Theorem 2.6.8 of [11] for the convex functions.

Theorem 2.1. Let f be a convex function on D(R). Then the functions $M_f(r)$, $C_f(r)$ and $B_f(r)$ are all increasing convex functions of r on [0, R].

Proof. We first observe that $F(r,\theta)$ is a convex function of r on [0,R] for any $\theta \in [0,2\pi]$. Thus for any nonnegative constants α_1 and α_2 with $\alpha_1 + \alpha_2 = 1$ and for any $r_1, r_2 \in [0, R]$, we have

$$F(\alpha_1 r_1 + \alpha_2 r_2, \theta) \le \alpha_1 F(r_1, \theta) + \alpha_2 F(r_2, \theta).$$
(9)

Taking the supremum for θ over $[0,2\pi]$ on both sides of the above inequality gives the convexity of $M_f(r)$. If we integrate both sides of (9) for θ over $[0,2\pi]$, and then divide both sides by 2π , we know that $C_f(r)$ is convex. If we replace r_1 and r_2 by r_1t and r_2t in (9), multiply $\frac{t}{\pi}$ on both sides, and then integrate both sides for t over [0,1] and for θ over $[0,2\pi]$, we will have that $B_f(r)$ is also convex.

Let r_1, r_2 be two constants such that $0 \le r_1 \le r_2 \le R$. Note that

$$r_1 = \left(\frac{1}{2} + \frac{r_1}{2r_2}\right)r_2 + \left(\frac{1}{2} - \frac{r_1}{2r_2}\right)(-r_2).$$
(10)

Since the three points (r_2, θ) , (r_1, θ) and $(r_2, \theta + \pi)$ are on the same line and f is convex on the line, by (10), we have

$$F(r_1,\theta) \le \left(\frac{1}{2} + \frac{r_1}{2r_2}\right) F(r_2,\theta) + \left(\frac{1}{2} - \frac{r_1}{2r_2}\right) F(r_2,\theta + \pi).$$
(11)

Taking supremum on both sides of (11) for $\theta \in [0, 2\pi]$ gives that

$$M_f(r_1) \le \left(\frac{1}{2} + \frac{r_1}{2r_2}\right) M_f(r_2) + \left(\frac{1}{2} - \frac{r_1}{2r_2}\right) M_f(r_2) = M_f(r_2).$$

So $M_f(r)$ is increasing.

If we take integral on both sides of (11) for $\theta \in [0, 2\pi]$ and multiply both sides by $\frac{1}{2\pi}$, we have

$$C_f(r_1) \le \left(\frac{1}{2} + \frac{r_1}{2r_2}\right) C_f(r_2) + \left(\frac{1}{2} - \frac{r_1}{2r_2}\right) C_f(r_2) = C_f(r_2).$$

This shows that $C_f(r)$ are increasing on [0, R].

If we replace r_1 and r_2 by tr_1 and tr_2 in (11), multiply both sides by $\frac{t}{\pi}$, and then do the integrals for *t* over [0, 1] and for θ over [0, 2 π], we have

$$B_f(r_1) \le \left(\frac{1}{2} + \frac{r_1}{2r_2}\right) B_f(r_2) + \left(\frac{1}{2} - \frac{r_1}{2r_2}\right) B_f(r_2) = B_f(r_2).$$

This shows that $B_f(r)$ is also increasing.

Now let us consider Hadamard's inequalities over $a \le r \le b$.

Theorem 2.2. Let f(x, y) be a convex function on the disk D(R). If $0 \le a < b \le R$, then

$$\frac{1}{\pi(b^2 - a^2)} \iint_{a \le r \le b} f(x, y) \, dx \, dy \ge C_f\left(\frac{2(a^2 + ab + b^2)}{3(a + b)}\right)$$
$$\frac{1}{\pi(b^2 - a^2)} \iint_{a \le r \le b} f(x, y) \, dx \, dy \le \frac{2a + b}{3(a + b)} C_f(a) + \frac{a + 2b}{3(a + b)} C_f(b)$$

 \Box

YIN CHEN

Proof. For any $\theta \in [0, 2\pi]$, $F(r, \theta)$ is a convex function of r on [0, R]. So there is a constant $A(\theta)$ not depending on r such that

$$F(r,\theta) \ge F(r_0,\theta) + A(\theta)(r-r_0),$$

where $r_0 = \frac{2(a^2+ab+b^2)}{3(a+b)}$. Therefore

$$\begin{split} \iint_{a \le r \le b} f(x, y) \, dx \, dy &= \int_0^{2\pi} \int_a^b F(r, \theta) r \, dr \, d\theta \\ &\ge \int_0^{2\pi} \int_a^b F(r_0, \theta) r \, dr \, d\theta + \int_0^{2\pi} \int_a^b A(\theta) (r^2 - r_0 r) \, dr \, d\theta \\ &= \frac{b^2 - a^2}{2} \int_0^{2\pi} F(r_0, \theta) \, d\theta + \int_0^{2\pi} 0 \, d\theta \\ &= \pi (b^2 - a^2) C_f(r_0). \end{split}$$

This proves the first inequality.

To show the second inequality, we first note that

$$F(r,\theta) \le \frac{b-r}{b-a}F(a,\theta) + \frac{r-a}{b-a}F(b,\theta),$$

for any $r : a \le r \le b$ and any $\theta \in [0, 2\pi]$, since $F(r, \theta)$ is convex function of r. It follows that

$$\frac{1}{\pi(b^2-a^2)} \iint_{a \le r \le b} f(x,y) \, dx \, dy$$

$$\leq \frac{1}{\pi(b^2-a^2)} \int_0^{2\pi} \int_a^b \left[\frac{b-r}{b-a} rF(a,\theta) + \frac{r-a}{b-a} rF(b,\theta) \right] \, dr \, d\theta$$

$$\leq \frac{2a+b}{3(a+b)} C_f(a) + \frac{a+2b}{3(a+b)} C_f(b).$$

This completes the proof.

Letting $a \rightarrow 0$, we have Hadamard's inequalities on a disk.

Corollary 2.3. *Let* f *be a convex function on* D(R) *and* $0 \le b < R$ *. Then*

$$C_f(\frac{2}{3}b) \le B_f(b) \le \frac{1}{3}f(0,0) + \frac{2}{3}C_f(b).$$
 (12)

By Theorem (2.1), we know that $f(0,0) \leq C_f(b)$, thus Corollary (2.3) implies and improves the following Hadamard's inequality on a disk, obtained by Dragomir [3] and also by Chen [2].

Corollary 2.4. Let f be a convex function on [0, R]. Then

$$f(0,0) \le C_f(\frac{2}{3}b) \le B_f(b) \le C_f(b) \le M_f(b).$$
(13)

Let $f(x, y) = \sqrt{x^2 + y^2}$. Then *f* is a convex function on \mathbb{R}^2 . It is easy to find $M_f(r) = r$, $C_f(r) = r$ and $B_f(r) = \frac{2}{3}r$. Therefore the constant $\frac{2}{3}$ on both sides of (12) is the best possible.

3. Hadamrad's inequalities and centroid

Let (\bar{x}, \bar{y}) be the centroid of a convex set *D* in **R**². Let us compare the average value of *f* on *D* with the value of f at the centroid.

Theorem 3.1. Let f be a convex function on a convex region $D \subset \mathbf{R}^2$. Then

$$f(\bar{x}, \bar{y}) \le \frac{1}{A(D)} \iint_D f(x, y) \, dx \, dy \tag{14}$$

where (\bar{x}, \bar{y}) is the centroid of D and A(D) is the area of D.

Proof. Since (\bar{x}, \bar{y}) is the centroid of *D*, we have

$$\bar{x} = \frac{\iint_D x \, dx \, dy}{\iint_D dx \, dy}, \quad \bar{y} = \frac{\iint_D y \, dx \, dy}{\iint_D dx \, dy}.$$

It follows that

$$\iint_{D} (x - \bar{x}) dx \, dy = 0, \quad \iint_{D} (y - \bar{y}) dx \, dy = 0.$$
(15)

f being a convex function on *D* implies that *f* has support at (\bar{x}, \bar{y}) ([12], page 108), that is

$$f(x, y) \ge f(\bar{x}, \bar{y}) + A(x - \bar{x}) + B(y - \bar{y})$$

for some constants *A* and *B* and for any $(x, y) \in D$. Therefore

$$\begin{split} \iint_D f(x,y) \, dx \, dy &\geq \iint_D \left(f(\bar{x}, \bar{y}) + A(x - \bar{x}) + B(y - \bar{y}) \right) \, dx \, dy \\ &= \iint_D f(\bar{x}, \bar{y}) \, dx \, dy \quad (by \ (15)) \\ &= f(\bar{x}, \bar{y}) A(D), \end{split}$$

which completes the proof.

4. Hadamrad's inequality on a regular polygon

We now give an application to Theorem (3.1).

We see in section 2 that the average of a convex function on a disk is between the average of the function on the boundary and the average of the function on a shrunk curve to $\frac{2}{3}$ size of the boundary. We will show that this is true too for a convex function on a regular polygon.

First we need a lemma for the convex function on a triangle. Let Δ be a triangle and A, B, C be three vertices. Take points *E* and *F* on line segments *AB* and *AC* respectively such that $|AE| = \frac{2}{3}|AB|$ and $|AF| = \frac{2}{3}|AC|$. Then

 \Box

YIN CHEN

Lemma 4.1.

$$\frac{1}{A(\Delta)} \iint_{\Delta} f(x, y) \, dx \, dy \ge \frac{1}{|EF|} \int_{EF} f(x, y) \, ds \tag{16}$$

$$\frac{1}{A(\Delta)} \iint_{\Delta} f(x, y) \, dx \, dy \le \frac{1}{3} f(x_A, y_A) + \frac{2}{3|BC|} \int_{BC} f(x, y) \, ds \tag{17}$$

where (x_A, y_A) is the coordinates of point A, and $A(\Delta)$ is the area of Δ .

Proof. Without loss of generality, let us consider a triangle *ABC* such that *B* is at (0,0), *C* is at (p,0) with p > 0 and *A* is at (x_A, y_A) . Let *n* be a positive integer larger than 2. Let D_0 be the point *B*, D_n be the point *C* and D_i be the points $(\frac{i}{n}p,0)$ for i = 1,2,...,n-1. Clearly for i = 1,2,...,n-1. Clearly for i = 1,2,...,n, the small triangle $AD_{i-1}D_i$ has the area $\frac{A(\Delta)}{n}$ and has the centroid $(\frac{2i-1}{3n}p + \frac{x_A}{3}, \frac{y_A}{3})$. Applying Theorem (3.1) on each triangle $AD_{i-1}D_i$, we have

$$\frac{n}{A(\Delta)} \iint_{\Delta(AD_{i-1}D_i)} f(x,y) \, dx \, dy \ge f\left(\frac{2i-1}{3n}p + \frac{x_A}{3}, \frac{y_A}{3}\right).$$

Adding both sides for i = 1, 2, ..., n, we have

$$\frac{n}{A(\Delta)} \iint_{\Delta} f(x, y) \, dx \, dy \ge \sum_{i=1}^{n} f\left(\frac{2i-1}{3n}p + \frac{x_A}{3}, \frac{y_A}{3}\right),$$

or

$$\begin{split} \frac{1}{A(\Delta)} \iint_{\Delta} f(x,y) \, dx \, dy &\geq \sum_{i=1}^{n} \frac{1}{n} f\left(\frac{2i-1}{3n}p + \frac{x_A}{3}, \frac{y_A}{3}\right) \\ &= \frac{3}{2p} \sum_{i=1}^{n} \frac{2p}{3n} f\left(\frac{2i-1}{3n}p + \frac{x_A}{3}, \frac{y_A}{3}\right) \\ &= \frac{1}{|EF|} \sum_{i=1}^{n} \frac{2p}{3n} f\left(\frac{2i-1}{3n}p + \frac{x_A}{3}, \frac{y_A}{3}\right). \end{split}$$

As $n \to \infty$, clearly last sum goes to the integral of *f* on *EF*

$$\lim_{n \to \infty} \frac{1}{|EF|} \sum_{i=1}^{n} \frac{2p}{3n} f\left(\frac{2i-1}{3n}p + \frac{x_A}{3}, \frac{y_A}{3}\right) = \frac{1}{|EF|} \int_{\frac{x_A}{3}}^{\frac{x_A+2p}{3}} f(x, \frac{y_A}{3}) dx$$
$$= \frac{1}{|EF|} \int_{EF} f(x, y) ds.$$

This proves (16).

To prove (17), we will use a theorem in [1] that says the average of a convex function on a triangle is less than or equal to the average of the values of the function at the three vertices. Applying this theorem on each small triangle $AD_{i-1}D_i$ for i = 1, 2, ..., n, we have

$$\frac{n}{A(\Delta)} \iint_{\Delta(AD_{i-1}D_i)} f(x, y) \, dx \, dy \le \frac{f(x_A, y_A) + f(\frac{i-1}{n}p, 0) + f(\frac{i}{n}p, 0)}{3}$$

Adding all these inequalities yields

$$\frac{n}{A(\Delta)} \iint_{\Delta} f(x, y) \, dx \, dy \le \sum_{i=1}^{n} \frac{f(x_A, y_A) + f(\frac{i-1}{n}p, 0) + f(\frac{i}{n}p, 0)}{3},$$

or

$$\begin{aligned} \frac{1}{A(\Delta)} \iint_{\Delta} f(x,y) \, dx \, dy &\leq \sum_{i=1}^{n} \frac{f(x_A, y_A) + f(\frac{i-1}{n}p, 0) + f(\frac{i}{n}p, 0)}{3n} \\ &= \frac{f(x_A, y_A)}{3} + \sum_{i=1}^{n} \frac{f(\frac{i-1}{n}p, 0) + f(\frac{i}{n}p, 0)}{3n} \\ &= \frac{f(x_A, y_A)}{3} + \frac{f(0, 0) - f(p, 0)}{3n} + \frac{2}{3p} \sum_{i=1}^{n} \frac{p}{n} f(\frac{i}{n}p, 0) \end{aligned}$$

Clearly, as $n \to \infty$, the above sum has a limit

$$\lim_{n \to \infty} \sum_{i=1}^{n} \frac{1}{n} f(\frac{i}{n}p, 0) = \int_{0}^{p} f(x, 0) dx = \int_{BC} f(x, y) ds$$

This proves (17).

Now we will extend these inequalities to a convex function on a regular polygon.

Theorem 4.2. Let f be convex on a regular n-gon P_n , C(a, b) be the center of P_n , D_n be the boundary of P_n and E_n be the boundary of the n-gon whose vertices are the points on the line segments connecting C and the vertices of P_n and $\frac{2}{3}$ of the length of the segments from C. Then

$$\frac{1}{A(P_n)} \iint_{P_n} f(x, y) \, dx \, dy \ge \frac{1}{|E_n|} \int_{E_n} f(x, y) \, ds \tag{18}$$

$$\frac{1}{A(P_n)} \iint_{P_n} f(x, y) \, dx \, dy \le \frac{1}{3} f(a, b) + \frac{2}{3|D_n|} \int_{D_n} f(x, y) \, ds \tag{19}$$

Proof. Divide the *n*-gon to *n* identical triangles and apply Lemma (4.1) to each triangle.

If $n \to \infty$ in (18) and (19), then we can get another proof for Corollary (2.3).

5. Three dimensional Hadamard's inequalities

Let B(r) and S(r) be the ball and the surface of the ball of radius r in the space, that is,

$$B(r) = \{(x, y, z) : x^2 + y^2 + z^2 \le r^2\}$$

and

$$S(r) = \{(x, y, z) : x^2 + y^2 + z^2 = r^2\}$$

Let *f* be a convex function on D(R). For $0 \le r \le R$, we define

$$F(\rho, \phi, \theta) = f(\rho \sin \phi \cos \theta, \rho \sin \phi \sin \theta, \rho \cos \phi),$$

$$\begin{split} M_f(r) &= \sup\{f(x,y,z): x^2 + y^2 + z^2 = r^2\},\\ Q_f(r) &= \frac{1}{4\pi r^2} \iint_{S(r)} f(x,y,z) \, dS, \end{split}$$

and

$$P_f(r) = \frac{3}{4\pi r^3} \iiint_{B(r)} f(x, y, z) \, dx \, dy \, dz$$

Clearly

$$Q_f(r) = \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} F(r,\phi,\theta) \sin\phi \, d\theta \, d\phi,$$

and

$$P_{f}(r) = \frac{3}{4\pi} \int_{0}^{1} \int_{0}^{\pi} \int_{0}^{2\pi} F(rt,\theta) t \sin\phi dt d\theta d\phi dt$$
$$= 3 \int_{0}^{1} Q_{f}(rt) t^{2} dt.$$

By the similar way as in the proof of Theorem (2.1), we can easily prove the following theorem.

Theorem 5.1. Let f be a convex function on B(R). Then the functions $M_f(r)$, $P_f(r)$ and $Q_f(r)$ are all increasing convex functions of r on [0, R].

Theorem 5.2. Let f be a convex function on B(R) and $0 \le b < R$. Then

$$Q_f(\frac{3}{4}b) \le P_f(b) \le \frac{1}{4}f(0,0,0) + \frac{3}{4}Q_f(b).$$

Proof. Let $\rho_0 = \frac{3}{4}b$. Since $F(\rho, \phi, \theta)$ is convex of ρ on [0, R], it follows that there is $A(\phi, \theta)$ such that

$$F(\rho,\phi,\theta) \ge F(\rho_0,\phi,\theta) + A(\phi,\theta)(\rho - \rho_0).$$
⁽²⁰⁾

Clearly

$$\int_{0}^{b} \int_{0}^{\pi} \int_{0}^{2\pi} A(\phi, \theta) (\rho - \rho_{0}) \rho^{2} \sin \phi \, d\theta \, d\phi \, d\rho = 0.$$
(21)

By (20) and (21), we will have

$$\begin{split} P_f(b) &= \frac{3}{4\pi b^3} \int_0^{\pi} \int_0^{2\pi} \int_0^b F(\rho, \phi, \theta) \, \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \\ &\geq \frac{3}{4\pi b^3} \int_0^{\pi} \int_0^{2\pi} \int_0^b F(\rho_0, \phi, \theta) \rho^2 \sin \phi \, d\rho \, d\theta \, d\phi \\ &= \frac{1}{4\pi} \int_0^{\pi} \int_0^{2\pi} F(\rho_0, \phi, \theta) \sin \phi \, d\theta \, d\phi \\ &= Q_f(\rho_0). \end{split}$$

On the other hand, since

$$\rho \le (1 - \frac{\rho}{b}) \, 0 + \frac{\rho}{b} \, b,$$

we have

$$F(\rho,\phi,\theta) \le (1-\frac{\rho}{b})f(0,0,0) + \frac{\rho}{b}F(b,\phi,\theta).$$

Thus

$$\begin{split} P_{f}(b) &\leq \frac{3}{4\pi b^{3}} \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{b} F(\rho,\phi,\theta) \,\rho^{2} \sin\phi \,d\rho \,d\theta \,d\phi \\ &\geq \frac{3}{4\pi b^{3}} \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{b} (1-\frac{\rho}{b}) f(0,0,0) \rho^{2} \sin\phi \,d\rho \,d\theta \,d\phi \\ &\quad + \frac{3}{4\pi b^{3}} \int_{0}^{\pi} \int_{0}^{2\pi} \int_{0}^{b} \frac{\rho}{b} F(b,\phi,\theta) \rho^{2} \sin\phi \,d\rho \,d\theta \,d\phi \\ &\quad = \frac{1}{4} f(0,0,0) + \frac{3}{4} Q_{f}(b). \end{split}$$

Using the same way in the proof of Theorem (3.1), we can easily see the following theorem.

Theorem 5.3. Let f be a convex function on a convex domain $D \subset \mathbb{R}^3$. Then

$$f(\bar{x}, \bar{y}, \bar{z}) \leq \frac{1}{V(D)} \iiint_D f(x, y, z) \, dx \, dy \, dz$$

where $(\bar{x}, \bar{y}, \bar{z})$ is the centroid of D and V(D) is the volume of D.

References

- [1] M. Bessenyei, The Hermite-Hadamard inequality on simplices, *Amer. Math. Monthly*, **115** (2008), No. 4, 339-345.
- [2] Y. Chen, Hadamard's inequality on a polygon, Tamkang J. Math., 35 (2004), No.3, 247-254.
- [3] S. S. Dragomir, On Hadamard's inequality on a disk, *JIPAM. J. Inequal. Pure Appl. Math.*, 1(2000), no. 2, Article 2, 11 pp.
- [4] B. Gavrea, On Hadamard's inequality for the convex mappings defined on a convex domain in the space, *J. Inequal. Pure Appl. Math.*, 1 (2000), Article 9.
- [5] J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, *J. Math. Pures Appl.*, **58** (1893), 171-215.
- [6] Ch. Hermite, Sur deux limites d'une integrale define, *Mathesis*, **3** (1883), 82.
- [7] L. Matejíćka, Elementary proof of the left multidimensional Hermite-Hadamard inequality on certain convex sets, J. Math. Inequal., 4 (2010), no. 2, 259-270.
- [8] D. S. Mitrinović and I. B. Lacković, Hermite and convexity, Aequationes Math., 28 (1985), 229-232.
- [9] C. P. Niculescu, The Hermite-Hadamard inequality for convex functions of a vector variable, *Math. Inequal. Appl.*, **5** (2002), 619-623.
- [10] C. P. Niculescu and L.-E. Persson, Old and new on the Hermite-Hadamard inequality, *Real Anal. Exchange*, 29 (2003/2004) 619-623.
- [11] T. Ransford, *Potential Theory In The Complex Plane*, Cambridge University Press, 1995.

YIN CHEN

- [12] A. W. Robert and D. E. Varberg, *Convex Functions*, Academic Press, New York, 1973.
- [13] T. Trif, Characterizations of convex functions of a vector variable via Hermite-Hadamard's inequality, *J. Math. Inequal.*, **1** (2008), No. 2, 37-44.

Department of Mathematical Sciences, Lakehead University, Thunder Bay, Ontario, Canada, P7B 5E1.

E-mail: yin.chen@lakeheadu.ca

10