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MULTI-DIMENSIONAL HADAMARD’S INEQUALITIES

YIN CHEN

Abstract. In this paper, Hadamard’s inequalities are extended to a convex function on a
convex set in R2 or R3. In particular, it is proved that the average of convex function on
a disc of radius r is between the average of the function on the circle of radius r and that
on the circle of 2r

3 .

1. Introduction

Let f be a convex function defined on [a,b]. Then we have the following inequalities,

which are called Hermite-Hadamard’s inequalities, or simply Hadamard’s inequalities,

f

(

a +b

2

)

≤
1

b −a

∫b

a
f (x)d x ≤

f (a)+ f (b)

2
. (1)

We want to extend Hadamard’s inequalities to a convex function of several variables. Re-

call that a function defined on a convex domain D of a vector space is convex if for any non-

negative constant α ∈ [0,1] and any two points x1, x2 ∈ D, the following inequality holds

f (αx1 + (1−α)x2) ≤α f (x1)+ (1−α) f (x2).

Let us consider a function f (x, y) on a convex subset D of R2. Note that if f (x, y) is a convex

function on D, then it is convex on any line segment in D and in particular, it is convex of both

x and y .

Hadamard’s inequalities deal with a convex function on [a,b]. It states that the average

of a convex function f on [a,b] is between the values of f at the midpoint x = a+b
2 and the

average of the values of f at the endpoints a and b. Let us consider a convex function f on

a disk. A nature question is to ask if the similar inequalities hold for the function f on an

annulus (contained in the disk): a ≤ r ≤ b where r =
√

x2 + y2. We show that we do have

such similar inequalities. A particular case of these inequalities improves an inequality of

Hadamard’s type on a disk obtained by Chen [2] or Dragomir [3]. We also get some similar

inequalities of Hadamard’s type for a convex function on a regular polygon. We extend our
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results then to a convex function on a ball of R3. The reader is referred to [5] and [6] for the

original papers on Hadamard’s inequality, and [1], [4], [7], [8], [9], [10] or [13] for some new

developments on this topic.

2. Hadamard’s inequality on an annulus

In this section, we will fix the following notations

D(r ) = {(x, y) : x2
+ y2

≤ r 2}

and

L(r ) = {(x, y) : x2
+ y2

= r 2}.

We will always consider a convex function on a disk centred at (0,0). It is easy to see that our

inequalities will be true for a convex function on a disk centred at any point in R2. Let f be a

convex function on D(R). For 0 ≤ r ≤ R , we define

F (r,θ) = f (r cosθ,r sinθ), (2)

M f (r ) = sup{ f (x, y) : x2
+ y2

= r 2}, (3)

C f (r ) =
1

2πr

∫

L(r )
f (x, y)d s, (4)

and

B f (r ) =
1

πr 2

∫∫

D(r )
f (x, y)d xd y. (5)

Clearly

C f (r ) =
1

2π

∫2π

0
F (r,θ)dθ, (6)

and

B f (r ) =
1

π

∫1

0

∫2π

0
F (r t ,θ) t dθd t (7)

= 2
∫1

0
C f (r t ) t d t . (8)

The following theorem is an analogue of Theorem 2.6.8 of [11] for the convex functions.

Theorem 2.1. Let f be a convex function on D(R). Then the functions M f (r ), C f (r ) and B f (r )

are all increasing convex functions of r on [0,R].

Proof. We first observe that F (r,θ) is a convex function of r on [0,R] for any θ ∈ [0,2π]. Thus

for any nonnegative constants α1 and α2 with α1 +α2 = 1 and for any r1,r2 ∈ [0,R], we have

F (α1r1 +α2r2,θ) ≤α1F (r1,θ)+α2F (r2,θ). (9)
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Taking the supremum for θ over [0,2π] on both sides of the above inequality gives the con-

vexity of M f (r ). If we integrate both sides of (9) for θ over [0,2π], and then divide both sides

by 2π, we know that C f (r ) is convex. If we replace r1 and r2 by r1t and r2t in (9), multiply t
π

on both sides, and then integrate both sides for t over [0,1] and for θ over [0,2π], we will have

that B f (r ) is also convex.

Let r1,r2 be two constants such that 0 ≤ r1 ≤ r2 ≤ R . Note that

r1 =

(

1

2
+

r1

2r2

)

r2 +

(

1

2
−

r1

2r2

)

(−r2). (10)

Since the three points (r2,θ), (r1,θ) and (r2,θ+π) are on the same line and f is convex on the

line, by (10), we have

F (r1,θ) ≤

(

1

2
+

r1

2r2

)

F (r2,θ)+

(

1

2
−

r1

2r2

)

F (r2,θ+π). (11)

Taking supremum on both sides of (11) for θ ∈ [0,2π] gives that

M f (r1) ≤

(

1

2
+

r1

2r2

)

M f (r2)+

(

1

2
−

r1

2r2

)

M f (r2) = M f (r2).

So M f (r ) is increasing.

If we take integral on both sides of (11) for θ ∈ [0,2π] and multiply both sides by 1
2π , we

have

C f (r1) ≤

(

1

2
+

r1

2r2

)

C f (r2)+

(

1

2
−

r1

2r2

)

C f (r2) =C f (r2).

This shows that C f (r ) are increasing on [0,R].

If we replace r1 and r2 by t r1 and t r2 in (11), multiply both sides by t
π , and then do the

integrals for t over [0,1] and for θ over [0,2π], we have

B f (r1) ≤

(

1

2
+

r1

2r2

)

B f (r2)+

(

1

2
−

r1

2r2

)

B f (r2) = B f (r2).

This shows that B f (r ) is also increasing. ���

Now let us consider Hadamard’s inequalities over a ≤ r ≤ b.

Theorem 2.2. Let f (x, y) be a convex function on the disk D(R). If 0 ≤ a < b ≤ R, then

1

π(b2 −a2)

∫∫

a≤r≤b
f (x, y)d x d y ≥ C f

(

2(a2 +ab +b2)

3(a +b)

)

1

π(b2 −a2)

∫∫

a≤r≤b
f (x, y)d x d y ≤

2a +b

3(a +b)
C f (a)+

a +2b

3(a +b)
C f (b).
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Proof. For any θ ∈ [0,2π], F (r,θ) is a convex function of r on [0,R]. So there is a constant A(θ)

not depending on r such that

F (r,θ)≥ F (r0,θ)+ A(θ)(r − r0),

where r0 =
2(a2+ab+b2)

3(a+b) . Therefore

∫∫

a≤r≤b
f (x, y)d x d y =

∫2π

0

∫b

a
F (r,θ)r dr dθ

≥

∫2π

0

∫b

a
F (r0,θ)r dr dθ+

∫2π

0

∫b

a
A(θ)(r 2

− r0r )dr dθ

=
b2 −a2

2

∫2π

0
F (r0,θ)dθ+

∫2π

0
0dθ

= π(b2
−a2)C f (r0).

This proves the first inequality.

To show the second inequality, we first note that

F (r,θ) ≤
b − r

b −a
F (a,θ)+

r −a

b −a
F (b,θ),

for any r : a ≤ r ≤ b and any θ ∈ [0,2π], since F (r,θ) is convex function of r . It follows that

1

π(b2 −a2)

∫∫

a≤r≤b
f (x, y)d x d y

≤
1

π(b2 −a2)

∫2π

0

∫b

a

[

b − r

b −a
r F (a,θ)+

r −a

b −a
r F (b,θ)

]

dr dθ

≤
2a +b

3(a +b)
C f (a)+

a +2b

3(a +b)
C f (b).

This completes the proof. ���

Letting a → 0, we have Hadamard’s inequalities on a disk.

Corollary 2.3. Let f be a convex function on D(R) and 0 ≤ b <R. Then

C f (
2

3
b)≤ B f (b)≤

1

3
f (0,0)+

2

3
C f (b). (12)

By Theorem (2.1), we know that f (0,0) ≤C f (b), thus Corollary (2.3) implies and improves

the following Hadamard’s inequality on a disk, obtained by Dragomir [3] and also by Chen [2].

Corollary 2.4. Let f be a convex function on [0,R]. Then

f (0,0) ≤C f (
2

3
b)≤ B f (b)≤C f (b) ≤ M f (b). (13)
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Let f (x, y) =
√

x2 + y2. Then f is a convex function on R2. It is easy to find M f (r ) = r ,

C f (r ) = r and B f (r ) = 2
3 r . Therefore the constant 2

3 on both sides of (12) is the best possible.

3. Hadamrad’s inequalities and centroid

Let (x̄, ȳ) be the centroid of a convex set D in R2. Let us compare the average value of f

on D with the value of f at the centriod.

Theorem 3.1. Let f be a convex function on a convex region D ⊂ R2. Then

f (x̄, ȳ) ≤
1

A(D)

∫∫

D
f (x, y)d x d y (14)

where (x̄, ȳ) is the centroid of D and A(D) is the area of D.

Proof. Since (x̄, ȳ) is the centroid of D, we have

x̄ =

∫∫

D x d x d y
∫∫

D d x d y
, ȳ =

∫∫

D y d x d y
∫∫

D d x d y
.

It follows that
∫∫

D
(x − x̄)d x d y = 0,

∫∫

D
(y − ȳ)d x d y = 0. (15)

f being a convex function on D implies that f has support at (x̄, ȳ) ([12], page 108), that is

f (x, y) ≥ f (x̄, ȳ)+ A(x − x̄)+B (y − ȳ)

for some constants A and B and for any (x, y) ∈ D. Therefore
∫∫

D
f (x, y)d x d y ≥

∫∫

D
( f (x̄, ȳ)+ A(x − x̄)+B (y − ȳ))d x d y

=

∫∫

D
f (x̄, ȳ)d x d y (by (15))

= f (x̄, ȳ)A(D),

which completes the proof. ���

4. Hadamrad’s inequality on a regular polygon

We now give an application to Theorem (3.1).

We see in section 2 that the average of a convex function on a disk is between the average

of the function on the boundary and the average of the function on a shrunk curve to 2
3 size

of the boundary. We will show that this is true too for a convex function on a regular polygon.

First we need a lemma for the convex function on a triangle. Let ∆ be a triangle and

A,B ,C be three vertices. Take points E and F on line segments AB and AC respectively such

that |AE | =
2
3 |AB | and |AF | =

2
3 |AC |. Then
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Lemma 4.1.

1

A(∆)

∫∫

∆

f (x, y)d x d y ≥
1

|EF |

∫

EF
f (x, y)d s (16)

1

A(∆)

∫∫

∆

f (x, y)d x d y ≤
1

3
f (xA, y A)+

2

3|BC |

∫

BC
f (x, y)d s (17)

where (xA, y A) is the coordinates of point A, and A(∆) is the area of ∆.

Proof. Without loss of generality, let us consider a triangle ABC such that B is at (0,0), C is at

(p,0) with p > 0 and A is at (xA, y A). Let n be a positive integer larger than 2. Let D0 be the

point B , Dn be the point C and Di be the points ( i
n p,0) for i = 1,2, . . . ,n −1. Clearly for i =

1,2, . . . ,n, the small triangle ADi−1Di has the area A(∆)
n and has the centroid ( 2i−1

3n p +
xA

3 , y A

3 ).

Applying Theorem (3.1) on each triangle ADi−1Di , we have

n

A(∆)

∫∫

∆(ADi−1Di )
f (x, y)d x d y ≥ f

(

2i −1

3n
p +

xA

3
,

y A

3

)

.

Adding both sides for i = 1,2, . . . ,n, we have

n

A(∆)

∫∫

∆

f (x, y)d x d y ≥

n
∑

i=1
f

(

2i −1

3n
p +

xA

3
,

y A

3

)

,

or

1

A(∆)

∫∫

∆

f (x, y)d x d y ≥

n
∑

i=1

1

n
f

(

2i −1

3n
p +

xA

3
,

y A

3

)

=
3

2p

n
∑

i=1

2p

3n
f

(

2i −1

3n
p +

xA

3
,

y A

3

)

=
1

|EF |

n
∑

i=1

2p

3n
f

(

2i −1

3n
p +

xA

3
,

y A

3

)

.

As n →∞, clearly last sum goes to the integral of f on EF

lim
n→∞

1

|EF |

n
∑

i=1

2p

3n
f

(

2i −1

3n
p +

xA

3
,

y A

3

)

=
1

|EF |

∫
xA+2p

3

xA
3

f (x,
y A

3
))d x

=
1

|EF |

∫

EF
f (x, y)d s.

This proves (16).

To prove (17), we will use a theorem in [1] that says the average of a convex function on a

triangle is less than or equal to the average of the values of the function at the three vertices.

Applying this theorem on each small triangle ADi−1Di for i = 1,2, . . . ,n, we have

n

A(∆)

∫∫

∆(ADi−1Di )
f (x, y)d x d y ≤

f (xA , y A)+ f ( i−1
n p,0)+ f ( i

n p,0)

3
.
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Adding all these inequalities yields

n

A(∆)

∫∫

∆

f (x, y)d x d y ≤

n
∑

i=1

f (xA, y A)+ f ( i−1
n p,0)+ f ( i

n p,0)

3
,

or

1

A(∆)

∫∫

∆

f (x, y)d x d y ≤

n
∑

i=1

f (xA , yA)+ f ( i−1
n p,0)+ f ( i

n p,0)

3n

=
f (xA , yA)

3
+

n
∑

i=1

f ( i−1
n p,0)+ f ( i

n p,0)

3n

=
f (xA , yA)

3
+

f (0,0)− f (p,0)

3n
+

2

3p

n
∑

i=1

p

n
f (

i

n
p,0).

Clearly, as n →∞, the above sum has a limit

lim
n→∞

n
∑

i=1

1

n
f (

i

n
p,0) =

∫p

0
f (x,0)d x =

∫

BC
f (x, y)d s.

This proves (17). ���

Now we will extend these inequalities to a convex function on a regular polygon.

Theorem 4.2. Let f be convex on a regular n-gon Pn , C (a,b) be the center of Pn , Dn be the

boundary of Pn and En be the boundary of the n-gon whose vertices are the points on the line

segments connecting C and the vertices of Pn and 2
3 of the length of the segments from C . Then

1

A(Pn)

∫∫

Pn

f (x, y)d x d y ≥
1

|En|

∫

En

f (x, y)d s (18)

1

A(Pn)

∫∫

Pn

f (x, y)d x d y ≤
1

3
f (a,b)+

2

3|Dn |

∫

Dn

f (x, y)d s (19)

Proof. Divide the n-gon to n identical triangles and apply Lemma (4.1) to each triangle. ���

If n →∞ in (18) and (19), then we can get another proof for Corollary (2.3).

5. Three dimensional Hadamard’s inequalities

Let B (r ) and S(r ) be the ball and the surface of the ball of radius r in the space, that is,

B (r ) = {(x, y, z) : x2
+ y2

+ z2
≤ r 2}

and

S(r ) = {(x, y, z) : x2
+ y2

+ z2
= r 2}.

Let f be a convex function on D(R). For 0 ≤ r ≤R , we define

F (ρ,φ,θ) = f (ρ sinφcosθ,ρ sinφsinθ,ρ cosφ),
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M f (r ) = sup{ f (x, y, z) : x2
+ y2

+ z2
= r 2},

Q f (r ) =
1

4πr 2

∫∫

S(r )
f (x, y, z)dS,

and

P f (r ) =
3

4πr 3

∫∫∫

B (r )
f (x, y, z)d xd yd z.

Clearly

Q f (r )=
1

4π

∫π

0

∫2π

0
F (r,φ,θ)sinφdθdφ,

and

P f (r ) =
3

4π

∫1

0

∫π

0

∫2π

0
F (r t ,θ) t sinφd t dθdφd t

= 3
∫1

0
Q f (r t ) t 2 d t .

By the similar way as in the proof of Theorem (2.1), we can easily prove the following

theorem.

Theorem 5.1. Let f be a convex function on B (R). Then the functions M f (r ),P f (r ) and Q f (r )

are all increasing convex functions of r on [0,R].

Theorem 5.2. Let f be a convex function on B (R) and 0 ≤ b <R. Then

Q f (
3

4
b)≤ P f (b) ≤

1

4
f (0,0,0)+

3

4
Q f (b).

Proof. Let ρ0 =
3
4 b. Since F (ρ,φ,θ) is convex of ρ on [0,R], it follows that there is A(φ,θ) such

that

F (ρ,φ,θ)≥ F (ρ0,φ,θ)+ A(φ,θ)(ρ−ρ0). (20)

Clearly
∫b

0

∫π

0

∫2π

0
A(φ,θ)(ρ−ρ0)ρ2 sinφdθdφdρ= 0. (21)

By (20) and (21), we will have

P f (b) =
3

4πb3

∫π

0

∫2π

0

∫b

0
F (ρ,φ,θ)ρ2 sinφdρdθdφ

≥
3

4πb3

∫π

0

∫2π

0

∫b

0
F (ρ0,φ,θ)ρ2 sinφdρdθdφ

=
1

4π

∫π

0

∫2π

0
F (ρ0,φ,θ)sinφdθdφ

= Q f (ρ0).
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On the other hand, since

ρ ≤ (1−
ρ

b
)0+

ρ

b
b,

we have

F (ρ,φ,θ) ≤ (1−
ρ

b
) f (0,0,0)+

ρ

b
F (b,φ,θ).

Thus

P f (b) ≤
3

4πb3

∫π

0

∫2π

0

∫b

0
F (ρ,φ,θ)ρ2 sinφdρdθdφ

≥
3

4πb3

∫π

0

∫2π

0

∫b

0
(1−

ρ

b
) f (0,0,0)ρ2 sinφdρdθdφ

+
3

4πb3

∫π

0

∫2π

0

∫b

0

ρ

b
F (b,φ,θ)ρ2 sinφdρdθdφ

=
1

4
f (0,0,0)+

3

4
Q f (b).

Using the same way in the proof of Theorem (3.1), we can easily see the following theo-

rem.

Theorem 5.3. Let f be a convex function on a convex domain D ⊂ R3. Then

f (x̄, ȳ , z̄) ≤
1

V (D)

∫∫∫

D
f (x, y, z)d x d y d z

where (x̄, ȳ , z̄) is the centroid of D and V (D) is the volume of D.
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[7] L. Matejíćka, Elementary proof of the left multidimensional Hermite-Hadamard inequality on certain convex
sets, J. Math. Inequal., 4 (2010), no. 2, 259-270.
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