TAMKANG JOURNAL OF MATHEMATICS Volume 38, Number 4, 341-345, Winter 2007

DOMINATING SETS IN CAYLEY GRAPHS ON Z_n

T. TAMIZH CHELVAM AND I. RANI

Abstract. A Cayley graph is a graph constructed out of a group Γ and its generating set A. In this paper we attempt to find dominating sets in Cayley graphs constructed out of Z_n . Actually we find the value of domination number for $Cay(Z_n, A)$ and a minimal dominating set when |A| is even and further we have proved that $Cay(Z_n, A)$ is excellent. We have also shown that $Cay(Z_n, A)$ is 2-excellent, when n = t(|A| + 1) + 1 for some integer t, t > 0.

1. Introduction

Let Γ be a finite group with e as the identity. A generating set of the group Γ is a subset A such that every element of Γ can be expressed as the product of finitely many elements of A. Assume that $e \notin A$ and $a \in A$ implies $a^{-1} \in A$. The Cayley graph G = (V, E), where $V(G) = \Gamma$ and $E(G) = \{(x, y)_a | x, y \in V(G), \text{ there exists } a \in A \text{ such}$ that $y = xa\}$ and it is denoted by $Cay(\Gamma, A)$. The exclusion of e from A eliminates the possibility of loops in the graph. The inclusion of the inverse in A for every element of A means that an edge is in the graph regardless of which end vertex is considered. For $x, y \in V(G)$, there exists $g \in \Gamma$ such that y = xg. One can express g as product of $a_1, a_2, \ldots, a_n \in A$. Then y and x are connected by a path through $a_1, a_2, \ldots, a_n \in A$. Hence G is connected and |A| is the degree of $Cay(\Gamma, A)$.

Suppose G is a graph, the open neighbourhood N(v) of a vertex $v \in V(G)$ consists of the set of vertices adjacent to v. The closed neighbourhood of v is $N[v] = N(v) \cup \{v\}$. For a set $S \subseteq V$, the open neighbourhood N(S) is defined to be $\cup_{v \in S} N(v)$, and the closed neighbourhood of S is $N[S] = N(S) \cup S[1]$. A set $S \subseteq V$, of vertices in a graph G = (V, E) is called a dominating set if every vertex $v \in V$ is either an element of S or is adjacent to an element of S[1]. A dominating set S is a minimal dominating set if no proper subset is a dominating set. The domination number $\gamma(G)$ of a graph G is the minimum cardinality of a dominating set in G[1] and the corresponding dominating set is called a γ -set. A graph G is said to be excellent if each vertex u of G is contained in some γ -set of G. The graph G is said to be k-excellent, if every subset S of V(G) with |S| = k is contained in some γ -set of G.

Throughout this paper, n is a fixed positive integer, $Z_n = \{0, 1, 2, ..., n-1\}$ and $G = Cay(Z_n, A)$, where A is a generating set. Unless otherwise specified A stands for

2000 Mathematics Subject Classification. 05C.

Received December 7, 2005; revised September 28, 2006.

Key words and phrases. Cayley graphs, dominating sets, excellent graphs.

the set $\{1, n-1, 2, n-2, \ldots, k, n-k\}$ where $1 \le k \le (n-1)/2$. Hereafter + stands for modulo n addition in Z_n . We use the following theorem to find the value of $\gamma(G)$.

Theorem 1.1.([1]) For any graph G with n vertices and maximum degree Δ , we have $\lceil n/(\Delta(G)+1) \rceil \leq \gamma(G) \leq n - \Delta(G).$

2. Main Results

Theorem 2.1. Let $G = Cay(Z_n, A)$ where $A = \{1, n - 1, 2, n - 2, ..., k, n - k\}$ and n, k are positive integers with $1 \le k \le (n - 1)/2$. Then $\gamma(G) = \lceil n/(|A| + 1) \rceil$.

Proof. Note that |A| = 2k and let $\ell = \lceil n/(|A|+1) \rceil = \lceil n/(2k+1) \rceil$. Consider the set $D = \{0, (2k+1), 2(2k+1), 3(2k+1), \dots, (\ell-1)(2k+1)\}.$

Claim: D is a dominating set of G.

It is always true that $\bigcup_{i=0}^{\ell-1} N[(2k+1)i] \subset V(G)$ and so it is enough to prove that $V(G) \subseteq \bigcup_{i=0}^{\ell-1} N[(2k+1)i]$. Let $c \in V(G)$. By division algorithm, one can write c = (2k+1)i + h for some *i* and *h* satisfying $0 \le i \le (\ell-1)$ and $0 \le h \le 2k$. Note that, for any $j, N[(2k+1)j] = \{(2k+1)j, (2k+1)j+1, (2k+1)j+(n-1), (2k+1)j+2, (2k+1)j+(n-2), \ldots, (2k+1)j+k, (2k+1)j+(n-k)\}.$

We have the following cases:

Case(i): Suppose $0 \le h \le k$, then it is easy to see that $c \in N[(2k+1)i]$.

Case(ii): Suppose $(k+1) \le h \le 2k$ and $0 \le i \le \ell-2$. In this case c = (2k+1)i+h = (2k+1)(i+1) + (n - (2k - h + 1)). By the assumption on $h, 1 \le 2k - h + 1 \le k$. This implies that $c \in N[(2k+1)(i+1)]$.

Case(iii): Assume that $k + 1 \le h \le 2k$ and $i = \ell - 1$.

Subcase(i): Suppose (2k + 1) divides *n*. In this case $c = (2k + 1)(\ell - 1) + h = n - (2k - h + 1) \in N[0]$.

Subcase(ii): When (2k + 1) does not divide n, we have $c = (2k + 1)(\ell - 1) + h$ = $(2k + 1)\ell + (n - (2k - h + 1)) > (2k + 1)(n/(2k + 1)) + (n - (2k - h + 1))$. That is, c > n - (2k - h + 1). Since $c \le n - 1, n - (2k - h + 1) < c \le (n - 1)$. Suppose $k + 1 \le h < 2k$, we have $(2k - h + 1) \le k$ and hence $c \in N[0]$. When h = 2k, we get a contradiction.

In all the above cases, we have proved that if $c \in V(G)$, then $c \in N[(2k+1)i]$, for some $i, 0 \leq i \leq (\ell - 1)$. Hence D is a dominating set of G and so $\gamma(G) \leq |D| = \ell = \lceil n/(|A|+1) \rceil$. Since |A| = 2k, by Theorem 1.1 we have $\ell \leq \gamma(G) \leq (n-2k)$ and we get that $\gamma(G) = \ell = \lceil n/(|A|+1) \rceil$.

Remark 2.2. When |A| = n - 1, then $G = Cay(Z_n, A)$ is complete and hence $\gamma(G) = 1$.

Remark 2.3. |A| is odd. For example, consider $Cay(Z_8, A)$ where |A| = 3. Note that the only generating sets of cardinality 3 are $\{1, 4, 7\}$ and $\{3, 4, 5\}$. When $A = \{1, 4, 7\}$, $\gamma(Cay(Z_8, A)) = 3 = \lceil 8/(3+1) \rceil + 1$ and as well as when $A = \{3, 4, 5\}$, $\gamma(Cay(Z_8, A)) = 3 = \lceil 8/(3+1) \rceil + 1$.

342

Remark 2.4. $\gamma(Cay(Z_n, A))$ depends upon A, the generating set of Z_n . For example, consider $Cay(Z_{10}, A)$) where |A| = 4. It is obvious that $\{1, 2, 8, 9\}$ and $\{1, 4, 6, 9\}$ are generating sets. When $A = \{1, 2, 8, 9\}, \gamma(Cay(Z_{10}, A)) = 2$ and when $A = \{1, 4, 6, 9\}, \gamma(Cay(Z_{10}, A)) = 3$.

Remark 2.5. When n is even and $|A| \ge n/2$ then $\gamma(G) = \lceil n/(|A|+1) \rceil \le \lceil n/((n/2)+1) \rceil \le \lceil 2n/(n+2) \rceil \le 2$. When n is odd and $|A| \ge \lfloor n/2 \rfloor, \gamma(G) = \lceil n/(|A|+1) \rceil \le 2$.

Corollary 2.6. For $n \ge 3, 1 \le \gamma(G) \le \lceil n/3 \rceil$.

Proof. When $n \ge 3$, we have $2 \le |A| \le (n-1)$. When $|A| = n-1, \gamma(G) = 1$. Further, when |A| = 2, by the Theorem 2.1, we have $\gamma(G) = \lceil n/3 \rceil$.

In the following Lemma, we identify another γ -set for $Cay(Z_n, A)$ apart from the one identified in the proof of Theorem 2.1.

Lemma 2.7. For any fixed k, if $n = (2k+1)t + h, 1 \le h \le 2k$ and $\ell = \lceil n/(2k+1) \rceil$ then $D = \{0, h, h+2k+1, h+2(2k+1), \ldots, h+(\ell-2)(2k+1)\}$ is a γ -set for G.

Proof. Note that any element v of V(G), could be written as v - h = (2k + 1)i + r for some i and r with $0 \le i \le \ell - 1$ and $0 \le r \le 2k$.

The following cases arise:

Case (i).Suppose v = h + (2k+1)i + r, $0 \le i \le (\ell - 2)$ and $0 \le r \le k$ then $v \in N[h + (2k+1)i]$. Further when $i = \ell - 1$ and $0 \le r \le k, v \in N[0]$.

Case (ii). Suppose v = h + (2k+1)i + r with $0 \le i \le (\ell - 1)$ and $k + 1 \le r \le 2k$. **Subcase (i).** When $0 \le i \le (\ell - 3)$, we can write v as v = h + (2k+1)(i+1) + (n - ((2k+1)-r)) and hence $v \in N[h + (2k+1)(i+1)]$ with $1 \le (i+1) \le (\ell - 2)$.

Subcase (ii). When $i = (\ell - 2)$, v could be written as $v = h + (2k+1)(\ell - 1) + (n - ((2k+1) - r)) = n - ((2k+1) - r)$ hence $v \in N[0]$.

Subcase (iii). Suppose $i = (\ell - 1)$, we have $v = h + (2k+1)(\ell - 1) + r = h + (n + (r - h))$, with $-k + 1 \le r - h \le 2k - 1$. When $-k + 1 \le r - h \le k$, $v \in N[h]$. When $k + 1 \le r - h \le 2k - 1$, we have $-k \le r - h - (2k + 1) \le -2$ and v could be written as v = h + (2k + 1) + (n + (r - h) - (2k + 1)) hence $v \in N[h + (2k + 1)]$. In all the cases $v \in N[D]$ and hence D is a γ -set.

Lemma 2.8. Assume that $A_1 = \{1, n - 1\}$. Suppose D is a γ -set for $G_1 = Cay(Z_n, A_1)$, then D is a dominating set for $G_2 = Cay(Z_n, A_2)$ with a generating set A_2 of the form $\{1, n - 1, 2, n - 2, \ldots\}$ and $|A_2| > 2$.

Proof. Since $A_1 \subset A_2, G_1 = Cay(Z_n, A_1)$ is a spanning subgraph of $G_2 = Cay(Z_n, A_2)$. Hence D is a dominating set of G_2 .

Theorem 2.9. The Cayley graph $G = Cay(Z_n, A)$ is excellent.

Proof. By the Theorem 2.1, we have $\gamma(G) = \lceil n/(|A|+1) \rceil = \lceil n/(2k+1) \rceil$ and $D = \{0, 2k+1, 2(2k+1), \dots, (\ell-1)(2k+1)\}$ where $\ell = \lceil n/(2k+1) \rceil$ is a γ -set. Suppose

 $c \in V(G)$, then c = (2k+1)i + h for some i and h with $0 \le i \le (\ell - 1)$ and $0 \le h \le 2k$. Consider $D + h = \{h, (2k+1) + h, 2(2k+1) + h, \dots, (\ell - 1)(2k+1) + h\}$. Clearly D + h is a γ -set containing c and hence G is excellent.

Theorem 2.10. Let $G = Cay(Z_n, A)$ with $A = \{1, n - 1, 2, n - 2, \dots, k, n - k\}$. Suppose n = (2k + 1)t + 1 for some positive integer t, then G is 2-excellent.

Proof. Let p = 2k + 1. Note that |A| = 2k. By the Theorem 2.1, $\gamma(G) = \lceil n/(|A| + 1) \rceil = \lceil ((2k+1)t+1)/(2k+1) \rceil = t+1$. Let $x, y \in V(G)$. Without loss of generality one may assume that x < y. Let us find a γ -set containing x and y.

Case(a). Suppose $y-x \leq p$. Let $D = \{x, y, y+p, \dots, y+(t-1)p\}$. Suppose we prove that D is a dominating set, then |D| = t+1 ensures that D is a γ -set containing x and y. One can easily see that the elements of V(G) are of the form $V(G) = \{y, y+1, \dots, y+2k, y+p, y+p+1, \dots, y+p+2k, \dots, y+(t-1)p, y+(t-1)p+1, \dots, y+(t-1)p+2k, y+tp\}$. Note that $N[y+ip] = \{y+ip, y+ip+1, y+ip+(n-1), \dots, y+ip+k, y+ip+(n-k)\}$. Let $v \in V(G)$.

Subcase(i). Suppose v = y + ip + c for some *i* and *c* satisfying $0 \le i \le t - 1$ and $0 \le c \le k$, then $v \in N[y + ip] \subseteq N[D]$.

Subcase(ii). Suppose v = y + ip + c for some *i* and *c* with $0 \le i \le (t-2)$ and $k+1 \le c \le 2k$, then v = y + (i+1)p - (p-c) = y + (i+1)p + (n-p+c) = y + (i+1)p + n+c' where c' = c - p and $-k \le c' \le -1$. Thus $v \in N[y + (i+1)p] \subseteq N[D]$.

Subcase(iii). When v = y + (t - 1)p + (k + 1), then $v = y + n - 1 - k \le x + (2k + 1) + n - (k + 1) = x + k$. Therefore $v \le x + k$. Since x < y and y < v, we have v > x. Hence $v \in N[x] \subseteq N[D]$.

Subcase(iv). Suppose v = y + (t-1)p + c for some c, with $k+2 \le c \le 2k$, then $2 \le p-c+1 \le k$. Now $v = y + (n-1) - p + c = y + n - (p-c+1) \in N[y] \subseteq N[D]$. Subcase(v). Suppose v = y + tp then $v = y + (n-1) \in N[y] \subseteq N[D]$. Hence in this case V = N[D].

Case (b). Assume that y-x > p and y-x is divisible by p. When this is the case y = x+hp for some h. Consider $D = \{x, x+p, \ldots, x+hp, x+(h+1)p, x+(h+2)p, \ldots, x+tp\}$. As in Case(a), let us prove that D is a dominating set. Elements of V(G) can be listed out as $\{x, x+1, \ldots, x+2k, x+p, x+p+1, \ldots, x+p+2k, \ldots, x+hp, x+hp+1, \ldots, x+hp+2k, x+(h+1)p, x+(h+1)p+1, \ldots, x+(h+1)p+2k, \ldots, x+(t-1)p, x+(t-1)p+1, \ldots, x+(t-1)p+2k, x+tp\}$. Let $v \in V(G)$.

Subcase(i).Suppose v = x + ip + c for some i and c satisfying $0 \le i \le t$ and $0 \le c \le k$. In this case $v \in N[x + ip] \subseteq N[D]$.

Subcase(ii). Suppose v = x + ip + c where $0 \le i \le (t-1)$ and $k+1 \le c \le 2k$ then v = x + (i+1)p + (n+c-p) = x + (i+1)p + (n+c') where c' = c-p and $-k \le c' \le -1$. Thus $v \in N[x + (i+1)p] \subseteq N[D]$ for $0 \le i \le (t-1)$.

Case(c). Suppose y - x > p and y - x is not divisible by p, then $y = x + hp + r, 1 \le r \le p-1$. Consider $D = \{x, x + p, x + 2p, \dots, x + hp, y, y + p, y + 2p, \dots, y + (t-h-1)p\}$.

As in the Cases (a) and (b), let us prove that D is a dominating set. Elements of V(G) can be listed out as $\{x, x+1, \ldots, x+2k, x+p, x+p+1, \ldots, x+p+2k, \ldots, x+hp, \ldots, x+hp+2k, x+(h+1)p, x+(h+1)p+1, \ldots, x+(h+1)p+2k, \ldots, x+(t-1)p, x+(t-1)p+1, \ldots, x+(t-1)p+2k, x+tp\}$. Let $v \in V(G)$.

Subcase(i). Suppose v = x + ip + c for some *i* and *c* satisfying $0 \le i \le h$ and $0 \le c \le k$. In this case $v \in N[x + ip] \subseteq N[D]$.

Subcase(ii). Suppose v = x + ip + c where $0 \le i \le h - 1$ and $k + 1 \le c \le 2k$ then $v = x + ip + c = x + (i + 1)p + (n + c - p) \in N[x + (i + 1)p] \subseteq N[D]$ for $0 \le i \le h - 1$.

Subcase(iii). When v = x + hp + c for some c satisfying $k + 1 \le c \le 2k$, then $-(k-1) \le c-r \le 2k-1$ and v = y + (c-r). When $-(k-1) \le c-r \le k, v \in N[y]$ and when $k+1 \le c-r \le 2k-1$, then v = y + p + (n + (c-r-p)) and $-k \le c-r-p \le -2$ implies $v \in N[y+p] \subseteq N[D]$.

Subcase(iv). Suppose v = x + ip + c, $h + 1 \le i \le t - 1$, $0 \le c \le k$, then $-2k \le c - r \le k - 1$. When $-2k \le c - r \le -(k + 1)$, $v \in N[y + (i - h - 1)p] \subset N[D]$. When $-k \le c - r \le k - 1$, $v \in N[y + (i - h)p] \subseteq N[D]$.

Subcase(v). Suppose v = x + ip + c, $h + 1 \le i \le t - 1$, $k + 1 \le c \le 2k$, then $-(k-1) \le c - r \le 2k - 1$. When $-(k-1) \le c - r \le k$, $v \in N[y + (i-h)p] \subseteq N[D]$. When $k + 1 \le c - r \le 2k - 1$ then $v \in N[y + (i - h + 1)p] \subseteq N[D]$.

Subcase(vi). Suppose $v = x + tp = x + (n-1) \in N[x] \subseteq N[D]$.

In all the cases D is a dominating set.

References

- T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.
- [2] S. Lakshmivarahan and S. K. Dhall, Parallel Computing, 25(1999), 1877-1906.

Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627 012 Tamil Nadu, India.

E-mail: tamche_59@yahoo.co.in

Department of Mathematics, Manonmaniam Sundaranar University Tirunelveli 627 012, Tamil Nadu, India.

E-mail: irvigna@rediffmail.com