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DOMINATING SETS IN CAYLEY GRAPHS ON Zn

T. TAMIZH CHELVAM AND I. RANI

Abstract. A Cayley graph is a graph constructed out of a group Γ and its generating set A. In

this paper we attempt to find dominating sets in Cayley graphs constructed out of Zn. Actually

we find the value of domination number for Cay(Zn, A) and a minimal dominating set when

|A| is even and further we have proved that Cay(Zn, A) is excellent. We have also shown that

Cay(Zn, A) is 2−excellent, when n = t(|A| + 1) + 1 for some integer t, t > 0.

1. Introduction

Let Γ be a finite group with e as the identity. A generating set of the group Γ is a

subset A such that every element of Γ can be expressed as the product of finitely many
elements of A. Assume that e /∈ A and a ∈ A implies a−1 ∈ A. The Cayley graph

G = (V, E), where V (G) = Γ and E(G) = {(x, y)a|x, y ∈ V (G), there exists a ∈ A such
that y = xa} and it is denoted by Cay(Γ, A). The exclusion of e from A eliminates the

possibility of loops in the graph. The inclusion of the inverse in A for every element of
A means that an edge is in the graph regardless of which end vertex is considered. For
x, y ∈ V (G), there exists g ∈ Γ such that y = xg. One can express g as product of

a1, a2, . . . , an ∈ A. Then y and x are connected by a path through a1, a2, . . . , an ∈ A.
Hence G is connected and |A| is the degree of Cay(Γ, A).

Suppose G is a graph, the open neighbourhood N(v) of a vertex v ∈ V (G) consists
of the set of vertices adjacent to v. The closed neighbourhood of v is N [v] = N(v)∪{v}.

For a set S ⊆ V , the open neighbourhood N(S) is defined to be ∪v∈SN(v), and the
closed neighbourhood of S is N [S] = N(S) ∪ S[1]. A set S ⊆ V , of vertices in a graph

G = (V, E) is called a dominating set if every vertex v ∈ V is either an element of S
or is adjacent to an element of S[1]. A dominating set S is a minimal dominating set if
no proper subset is a dominating set. The domination number γ(G) of a graph G is the

minimum cardinality of a dominating set in G[1] and the corresponding dominating set
is called a γ-set. A graph G is said to be excellent if each vertex u of G is contained in

some γ-set of G. The graph G is said to be k-excellent, if every subset S of V (G) with
|S| = k is contained in some γ-set of G.

Throughout this paper, n is a fixed positive integer, Zn = {0, 1, 2, . . . , n − 1} and
G = Cay(Zn, A), where A is a generating set. Unless otherwise specified A stands for
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the set {1, n− 1, 2, n− 2, . . . , k, n − k} where 1 ≤ k ≤ (n − 1)/2. Hereafter + stands for
modulo n addition in Zn. We use the following theorem to find the value of γ(G).

Theorem 1.1.([1]) For any graph G with n vertices and maximum degree ∆, we have

⌈n/(∆(G) + 1)⌉ ≤ γ(G) ≤ n − ∆(G).

2. Main Results

Theorem 2.1. Let G = Cay(Zn, A) where A = {1, n − 1, 2, n− 2, . . . , k, n − k} and

n, k are positive integers with 1 ≤ k ≤ (n − 1)/2. Then γ(G) = ⌈n/(|A| + 1)⌉.

Proof. Note that |A| = 2k and let ℓ = ⌈n/(|A| + 1)⌉ = ⌈n/(2k + 1)⌉. Consider the
set D = {0, (2k + 1), 2(2k + 1), 3(2k + 1), . . . , (ℓ − 1)(2k + 1)}.

Claim: D is a dominating set of G.

It is always true that
⋃ℓ−1

i=0 N [(2k + 1)i] ⊂ V (G) and so it is enough to prove that

V (G) ⊆
⋃ℓ−1

i=0 N [(2k + 1)i]. Let c ∈ V (G). By division algorithm, one can write c =
(2k + 1)i + h for some i and h satisfying 0 ≤ i ≤ (ℓ − 1) and 0 ≤ h ≤ 2k. Note that, for
any j, N [(2k + 1)j] = {(2k + 1)j, (2k + 1)j + 1, (2k + 1)j + (n − 1), (2k + 1)j + 2, (2k +
1)j + (n − 2), . . . , (2k + 1)j + k, (2k + 1)j + (n − k)}.

We have the following cases:
Case(i): Suppose 0 ≤ h ≤ k, then it is easy to see that c ∈ N [(2k + 1)i].
Case(ii): Suppose (k+1) ≤ h ≤ 2k and 0 ≤ i ≤ ℓ−2. In this case c = (2k+1)i+h =

(2k + 1)(i + 1) + (n − (2k − h + 1)). By the assumption on h, 1 ≤ 2k − h + 1 ≤ k. This
implies that c ∈ N [(2k + 1)(i + 1)].

Case(iii): Assume that k + 1 ≤ h ≤ 2k and i = ℓ − 1.
Subcase(i): Suppose (2k + 1) divides n. In this case c = (2k + 1)(ℓ − 1) + h =

n − (2k − h + 1) ∈ N [0].
Subcase(ii): When (2k + 1) does not divide n, we have c = (2k + 1)(ℓ − 1) + h

= (2k + 1)ℓ + (n − (2k − h + 1)) > (2k + 1)(n/(2k + 1)) + (n − (2k − h + 1)). That
is, c > n − (2k − h + 1). Since c ≤ n − 1, n − (2k − h + 1) < c ≤ (n − 1). Suppose
k + 1 ≤ h < 2k, we have (2k − h + 1) ≤ k and hence c ∈ N [0]. When h = 2k, we get a
contradiction.

In all the above cases, we have proved that if c ∈ V (G), then c ∈ N [(2k + 1)i], for
some i, 0 ≤ i ≤ (ℓ − 1). Hence D is a dominating set of G and so γ(G) ≤ |D| = ℓ =
⌈n/(|A| + 1)⌉. Since |A| = 2k, by Theorem 1.1 we have ℓ ≤ γ(G) ≤ (n − 2k) and we get
that γ(G) = ℓ = ⌈n/(|A| + 1)⌉.

Remark 2.2. When |A| = n − 1, then G = Cay(Zn, A) is complete and hence
γ(G) = 1.

Remark 2.3. |A| is odd. For example, consider Cay(Z8, A) where |A| = 3. Note that
the only generating sets of cardinality 3 are {1, 4, 7} and {3, 4, 5}. When A = {1, 4, 7},
γ(Cay(Z8, A)) = 3 = ⌈8/(3+1)⌉+1 and as well as when A = {3, 4, 5}, γ(Cay(Z8, A)) =
3 = ⌈8/(3 + 1)⌉ + 1.
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Remark 2.4. γ(Cay(Zn, A)) depends upon A, the generating set of Zn. For example,

consider Cay(Z10, A)) where |A| = 4. It is obvious that {1, 2, 8, 9} and {1, 4, 6, 9} are

generating sets. When A = {1, 2, 8, 9}, γ(Cay(Z10, A)) = 2 and when A = {1, 4, 6, 9},

γ(Cay(Z10, A)) = 3.

Remark 2.5. When n is even and |A| ≥ n/2 then γ(G) = ⌈n/(|A|+1)⌉ ≤ ⌈n/((n/2)+

1)⌉ ≤ ⌈2n/(n + 2)⌉ ≤ 2. When n is odd and |A| ≥ ⌊n/2⌋, γ(G) = ⌈n/(|A| + 1)⌉ ≤ 2.

Corollary 2.6. For n ≥ 3, 1 ≤ γ(G) ≤ ⌈n/3⌉.

Proof. When n ≥ 3, we have 2 ≤ |A| ≤ (n − 1). When |A| = n − 1, γ(G) = 1.

Further, when |A| = 2, by the Theorem 2.1, we have γ(G) = ⌈n/3⌉.

In the following Lemma, we identify another γ-set for Cay(Zn, A) apart from the one

identified in the proof of Theorem 2.1.

Lemma 2.7. For any fixed k, if n = (2k + 1)t + h, 1 ≤ h ≤ 2k and ℓ = ⌈n/(2k + 1)⌉

then D = {0, h, h + 2k + 1, h + 2(2k + 1), . . . , h + (ℓ − 2)(2k + 1)} is a γ-set for G.

Proof. Note that any element v of V (G), could be written as v − h = (2k + 1)i + r

for some i and r with 0 ≤ i ≤ ℓ − 1 and 0 ≤ r ≤ 2k.

The following cases arise:

Case (i).Suppose v = h + (2k + 1)i + r, 0 ≤ i ≤ (ℓ − 2) and 0 ≤ r ≤ k then

v ∈ N [h + (2k + 1)i]. Further when i = ℓ − 1 and 0 ≤ r ≤ k, v ∈ N [0].

Case (ii). Suppose v = h + (2k + 1)i + r with 0 ≤ i ≤ (ℓ − 1) and k + 1 ≤ r ≤ 2k.

Subcase (i). When 0 ≤ i ≤ (ℓ− 3), we can write v as v = h + (2k + 1)(i + 1) + (n−

((2k + 1) − r)) and hence v ∈ N [h + (2k + 1)(i + 1)] with 1 ≤ (i + 1) ≤ (ℓ − 2).

Subcase (ii). When i = (ℓ− 2), v could be written as v = h + (2k + 1)(ℓ− 1)+ (n−

((2k + 1) − r)) = n − ((2k + 1) − r) hence v ∈ N [0].

Subcase (iii). Suppose i = (ℓ−1), we have v = h+(2k+1)(ℓ−1)+r = h+(n+(r−h)),

with −k + 1 ≤ r − h ≤ 2k − 1. When −k + 1 ≤ r − h ≤ k, v ∈ N [h]. When k + 1 ≤

r − h ≤ 2k − 1, we have −k ≤ r − h − (2k + 1) ≤ −2 and v could be written as

v = h + (2k + 1) + (n + (r − h) − (2k + 1)) hence v ∈ N [h + (2k + 1)].

In all the cases v ∈ N [D] and hence D is a γ-set.

Lemma 2.8. Assume that A1 = {1, n − 1}. Suppose D is a γ-set for G1 =

Cay(Zn, A1), then D is a dominating set for G2 = Cay(Zn, A2) with a generating set

A2 of the form {1, n− 1, 2, n− 2, . . .} and |A2| > 2.

Proof. Since A1 ⊂ A2, G1 = Cay(Zn, A1) is a spanning subgraph of G2 = Cay(Zn, A2).

Hence D is a dominating set of G2.

Theorem 2.9. The Cayley graph G = Cay(Zn, A) is excellent.

Proof. By the Theorem 2.1, we have γ(G) = ⌈n/(|A| + 1)⌉ = ⌈n/(2k + 1)⌉ and

D = {0, 2k+1, 2(2k+1), . . . , (ℓ−1)(2k+1)} where ℓ = ⌈n/(2k+1)⌉ is a γ-set . Suppose
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c ∈ V (G), then c = (2k + 1)i + h for some i and h with 0 ≤ i ≤ (ℓ − 1) and 0 ≤ h ≤ 2k.

Consider D + h = {h, (2k + 1) + h, 2(2k + 1) + h, . . . , (ℓ− 1)(2k + 1) + h}. Clearly D + h

is a γ-set containing c and hence G is excellent.

Theorem 2.10. Let G = Cay(Zn, A) with A = {1, n − 1, 2, n − 2, . . . , k, n − k}.

Suppose n = (2k + 1)t + 1 for some positive integer t, then G is 2-excellent.

Proof. Let p = 2k + 1. Note that |A| = 2k. By the Theorem 2.1, γ(G) = ⌈n/(|A| +

1)⌉ = ⌈((2k +1)t + 1)/(2k + 1)⌉ = t + 1. Let x, y ∈ V (G). Without loss of generality one

may assume that x < y. Let us find a γ-set containing x and y.

Case(a). Suppose y−x ≤ p. Let D = {x, y, y+p, . . . , y+(t−1)p}. Suppose we prove

that D is a dominating set, then |D| = t+1 ensures that D is a γ-set containing x and y.

One can easily see that the elements of V (G) are of the form V (G) = {y, y + 1, . . . , y +

2k, y+p, y+p+1, . . . y+p+2k, . . . , y+(t−1)p, y+(t−1)p+1, . . . , y+(t−1)p+2k, y+tp}.

Note that N [y + ip] = {y + ip, y + ip+1, y + ip+(n− 1), . . . , y + ip+ k, y + ip+(n− k)}.

Let v ∈ V (G).

Subcase(i). Suppose v = y + ip + c for some i and c satisfying 0 ≤ i ≤ t − 1 and

0 ≤ c ≤ k, then v ∈ N [y + ip] ⊆ N [D].

Subcase(ii). Suppose v = y + ip + c for some i and c with 0 ≤ i ≤ (t − 2) and

k+1 ≤ c ≤ 2k, then v = y+(i+1)p−(p−c) = y+(i+1)p+(n−p+c) = y+(i+1)p+n+c′

where c′ = c − p and −k ≤ c′ ≤ −1. Thus v ∈ N [y + (i + 1)p] ⊆ N [D].

Subcase(iii). When v = y + (t − 1)p + (k + 1), then v = y + n − 1 − k ≤ x + (2k +

1) + n − (k + 1) = x + k. Therefore v ≤ x + k. Since x < y and y < v, we have v > x.

Hence v ∈ N [x] ⊆ N [D].

Subcase(iv). Suppose v = y + (t − 1)p + c for some c, with k + 2 ≤ c ≤ 2k, then

2 ≤ p − c + 1 ≤ k. Now v = y + (n − 1) − p + c = y + n − (p − c + 1) ∈ N [y] ⊆ N [D].

Subcase(v). Suppose v = y + tp then v = y + (n − 1) ∈ N [y] ⊆ N [D].

Hence in this case V = N [D].

Case (b). Assume that y−x > p and y−x is divisible by p. When this is the case y =

x+hp for some h. Consider D = {x, x+p, . . . , x+hp, x+(h+1)p, x+(h+2)p, . . . , x+tp}.

As in Case(a), let us prove that D is a dominating set. Elements of V (G) can be listed

out as {x, x+1, . . . , x+2k, x+ p, x+ p+1, . . . , x+ p+2k, . . . , x+hp, x+hp+1, . . . , x+

hp + 2k, x + (h + 1)p, x + (h + 1)p + 1, . . . , x + (h + 1)p + 2k, . . . , x + (t − 1)p, x + (t −

1)p + 1, . . . , x + (t − 1)p + 2k, x + tp}. Let v ∈ V (G).

Subcase(i).Suppose v = x+ip+c for some i and c satisfying 0 ≤ i ≤ t and 0 ≤ c ≤ k.

In this case v ∈ N [x + ip] ⊆ N [D].

Subcase(ii). Suppose v = x + ip + c where 0 ≤ i ≤ (t − 1) and k + 1 ≤ c ≤ 2k then

v = x+(i+1)p+(n+ c−p) = x+(i+1)p+(n+ c′) where c′ = c− p and −k ≤ c′ ≤ −1.

Thus v ∈ N [x + (i + 1)p] ⊆ N [D] for 0 ≤ i ≤ (t − 1).

Case(c). Suppose y − x > p and y − x is not divisible by p, then y = x + hp + r, 1 ≤

r ≤ p−1. Consider D = {x, x+p, x+2p, . . . , x+hp, y, y+p, y+2p, . . . , y +(t−h−1)p}.
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As in the Cases (a) and (b) , let us prove that D is a dominating set. Elements of V (G)

can be listed out as {x, x+1, . . . , x+2k, x+p, x+p+1, . . . , x+p+2k, . . . , x+hp, . . . , x+

hp + 2k, x + (h + 1)p, x + (h + 1)p + 1, . . . , x + (h + 1)p + 2k, . . . , x + (t − 1)p, x + (t −

1)p + 1, . . . x + (t − 1)p + 2k, x + tp}. Let v ∈ V (G).
Subcase(i). Suppose v = x + ip + c for some i and c satisfying 0 ≤ i ≤ h and

0 ≤ c ≤ k. In this case v ∈ N [x + ip] ⊆ N [D].

Subcase(ii). Suppose v = x + ip + c where 0 ≤ i ≤ h − 1 and k + 1 ≤ c ≤ 2k then

v = x + ip + c = x + (i + 1)p + (n + c − p) ∈ N [x + (i + 1)p] ⊆ N [D] for 0 ≤ i ≤ h − 1.

Subcase(iii). When v = x + hp + c for some c satisfying k + 1 ≤ c ≤ 2k, then
−(k− 1) ≤ c− r ≤ 2k− 1 and v = y + (c− r). When −(k− 1) ≤ c− r ≤ k, v ∈ N [y] and

when k + 1 ≤ c− r ≤ 2k − 1, then v = y + p + (n + (c− r− p)) and −k ≤ c− r − p ≤ −2

implies v ∈ N [y + p] ⊆ N [D].

Subcase(iv). Suppose v = x + ip + c, h + 1 ≤ i ≤ t − 1, 0 ≤ c ≤ k, then
−2k ≤ c − r ≤ k − 1. When −2k ≤ c − r ≤ −(k + 1), v ∈ N [y + (i − h − 1)p] ⊂ N [D].

When −k ≤ c − r ≤ k − 1, v ∈ N [y + (i − h)p] ⊆ N [D].

Subcase(v). Suppose v = x + ip + c, h + 1 ≤ i ≤ t − 1, k + 1 ≤ c ≤ 2k, then

−(k − 1) ≤ c − r ≤ 2k − 1. When −(k − 1) ≤ c − r ≤ k, v ∈ N [y + (i − h)p] ⊆ N [D].

When k + 1 ≤ c − r ≤ 2k − 1 then v ∈ N [y + (i − h + 1)p] ⊆ N [D].
Subcase(vi). Suppose v = x + tp = x + (n − 1) ∈ N [x] ⊆ N [D].

In all the cases D is a dominating set.
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