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ON THE GEOMETRIC PROPERTIES OF
NEW TYPE MODULAR SPACE

MEHMET SENGONUL

Abstract. In this paper, using a modular, we have defined the modular space M,,+ (p) and
we have shown that the sequence space M- (p) equipped with the Luxemburg norm is
rotund and possesses H-property (or Kadec-Klee property) when p = (py) is bounded
with py > 1forall ke N.

1. Introduction and Preliminaries

Recently, Sanhan and Suantai[11] have generalized normed Cesaro sequence spaces to
paranormed sequence spaces by making use of the Kothe sequence spaces. They have de-
fined and studied modular structure and some geometrical properties of these generalized
sequence spaces.

As they have done, we have investigated the M- (p)- modular sequence space and we
have shown that M,,: (p)- modular sequence space equipped with the Luxemburg norm is
rotund and possess H-property (or Kadec-Klee property) when p = (py) is bounded with pj >
1forall keN.

Now, let’s give some well-known descriptions to understand the subject better.

Let us denote the set of all real numbers and the set of all natural numbers R and N,
respectively. A sequence space is linear subspace of w, where w = {x = (Xp)ren: X:N—
R, k— x; = x(k)}. An FK- space whose topology is normable is called a BK- space [3].

Let A be a subset space of w. For a Banach space A we denote by S(A) and B(A) the unit
sphere and unit ball of A, respectively. A point xy € S(A) is called:

a) an extreme point if for every x, y € S(A) the equality 2xy = x + y implies x = y;

b) an H-point if for any sequence (x;) in A such that || x [[— 1 as n — oo, the weak conver-
gence of (x,) to xo implies that || x, —x |- 0 as n — oco.

A Banach space A is said to be rotund, if every point of S(1) is an extreme point. A Banach

space A is said to possess H-property(or Kadec-Klee property) provided every point of S(A) is
an H-point.
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Let A be an arbitrary vector space over C. In this case:

(a) Afunctional m: A — [0,00] is called modular if the following conditions hold:

(MI) mx)=0< x=0,

M2) m(rx)=m(x)forreR (or C)with |r|=1,forall xe A,

(M3) m(rx+sy)smx)+m(y)ifr, s=0, r+s=1,forall x,ye .
(b) If M3is replaced by;

(M4) m(rx+sy) =rtmx)+stm(y)ifr, s=0, r*+s* =1, with an y € [0,1] then the

modular m is called an pu-convex modular, and if u = 1, m is called a convex modular.

(c) modular m defines the corresponding modular space, i.e, the space A,, given by 1, =

{xew:m(tx)—0 as t— oo}.

Recall that for given any € > 0 a sequence (x;) is said to be an e-separated sequence if
sep(x;,) = inf{|| x, — xi ||: n # k} > €. We say a Banach space A has -property if for everye > 0
such that, for each element xy € B(1) and each sequence (x,) € B(1) with sep(x;) = €, there

Xo+

X
exists an index k such that || % l=1-6.

The Nakano sequence space ¢(p) is defined by
l(p)={x=(xp) e w: m(tx) <oo forsome >0},

where m(x) =Y i |x;|”* and p = (py) is a sequence of positive real numbers with pj =1 for all
k € N . The space ¢(p) is a Banach space with the norm

. x
I xllep)= 1nf{t> 0:m(2) = 1},

If p = (py) is bounded, we have
l(p) = {x= (xp) € w:Zkal”k <oo},
k

Also, some geometric properties of £(p) were studied in [2] and [4].

For 1 < p < oo, the Cesaro sequence space is defined by

|~

n P
cesp= {x =(xp) Ew: (Z(% > kal)p) <oo} (1.1)
n =1

equipped with the norm

Y
||x||=(Z(— Z kal)p) .
n =1
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This space was introduced by Shue [12]. Some geometric properties of sequence spaces
ces, and ¢(p) have been thoroughly discussed by many mathematicians in the literature. It
is known that ces,, is locally uniform rotund and possess H-property [8]. Cui and Hudzik [4]
proved that ces), has the Banach- Saks of type p if p > 1, and it was shown in [5] that cesp has
B-property. Also, we know that Nakano sequence spaces are special cases of Musielak- Orlicz
sequence spaces. Some results in this paper may give some ideas of how geometric properties
of general Musielak- Orlicz sequence spaces can be obtained. In this paper, we extend the
study to another sequence space which we have described below. The space ces(p) [10] is
defined by

ces(p)={xew:p(tx)<oo forsome >0}, (1.2)
where p(x) = ¥, (55 X1_, Ixkl)”". The space ces(p) is a Banach space with the norm
, x
I x||:1nf{t>0.p(7) < 1}

and if p = (p;,) is bounded then we have

Pn
1 n
ces(p) = {xe w:Z(m Y kal) <OO}.
n k=0

Several geometric properties of ces(p) have already been studied in [10].

Subsequently the relation between modular sequence spaces and the sequence spaces
defined by Orlicz function have been discussed by various authors: (Lindenstrauss, J. and
Tzafriri, L.,[7], Y. Altin; M. Et and B.C. Tripathy [1], B. C. Tripathy and S. Mahanta [14], M. Et; Y.
Altin; B. Choudhary and B.C. Tripathy [6], B.C. Tripathy, Y. Altin and M. Et [15], B.C. Tripathy
and B. Sarma [16], B.C. Tripathy and S. Borgogain [17], B.C. Tripathy and B. Sarma [18], B.C.
Tripathy and H. Dutta [19], B.C. Tripathy and B. Hazarika: [20], B.C. Tripathy and B. Sarma
[21], B.C. Tripathy and P. Chandra [22])

Quite recently, Simsek and Karakaya [13] have defined the sequence space ¢ p(u, v, p) as
lo(u,v,p)={x€w:p(Ax) <oo, forsome A >0}

where

Ik Pk

p)=> (uk > lele)
k j=0

and uy,veU={uew:ur>0 for all keN}. In[13], they investigated some geometric

and topological properties of the space ¢, (u, v, p) such as Kadec-Klee property and modular

structure of ¢, (u, v, p), uniform opial property, etc.
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In the same way we can introduce the new type modular sequence space M, (p) as fol-

lows:
M+ (p) ={x = (xx) € w: m* (Ax) <oo, forsome A > 0} (1.3)
where
5 U k
m*(x) =) (— Y wjlxjHP* (1.4)
k Uk j=0

and u, v, w € U. The so-called Luxemburg norm on the sequence space M- (p) is defined as
follows:

. %, X
||x||Mm*(p):1nf{t>0:m (;)sl}. (1.5)

If p = (py) is bounded, then we have

k
My (p) = {xe w:Z(% Z wilx;)Px <oo}.

k k j=0

The purpose of this note is to define and to investigate the M,,-(p)- modular sequence
space and show that M,,;: (p)- modular sequence space equipped with the Luxemburg norm
is rotund and possesses H-property (or Kadec-Klee property) when p = (py) is bounded with
pr > 1 for all k € N. Furthermore, throughout this paper we assume that p = (p;) is bounded
with p; >1foralli e Nand H =sup; p; and K = max{1,2771},

Clearly, in the special case (vg) = (e) = (1,1,1,...,1,...) we have M, (p) = Zp(u, v,p) [13]

normed by

ko oy \PF
||x||=inf{/1>0:2(uk2 uj|—’|) 51} (1.6)
\ jS A

and if we take (vi) = (k+1), (ug) = (wy) = (e) for all k € N then the space M,,-(p) reduces to
the modular space Ces(p)[9] normed by

1 k X; Pk
||x||Ces(p):inf{A>0:Z(mZ|7l) 51}. (1.7)

k =0

Furthermore, if we take (ug) = (e), (wi) = (px), (Vi) = (Py) and Py = Zf:o piforalli, j e N then
the space My,- (p) reduces to the modular space N, (p) [23] normed by

1 X X; Pk
||x||:inf{)L>0:Z(—ij|—|) 51}, (1.8)
K\ Prizo A
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i.e., the spaces Zp(u, v, p), Ny(p) and Ces(p) are very special cases of the modular space
My (P)

2. Modular structure of M,,- (p)
Let us begin by proving the following theorem which about isomorphism:

Theorem 2.1. The sequence spaces M+ (p) is linearly isomorphic to the space ¢(p).

Proof. We should show the existence of a linear bijection between the spaces M,,-(p) and
¢(p). Consider the transformation T define from M- (p) to ¢(p) by T : My« (p) — €(p),x —
k
Tx=y, y=Wr), Yr= Hk Z wjxj, (i €N). The linearity of T is clear. Further, it is trivial
Uk

j=0
that x = 0 whenever Tx = 0 and hence T is injective. Let y € £(p) and define the sequence

x = (xi) by

Then

k ow;
. X . Up w
||x||Mm*(p):1nf{t>0:m*(7)sl}:mf{t>0:Z(U—ZTJIJ€j|)p’“S1}
k Yk j=0

k
:inf{t>0:2(ﬂ2—

k Vkj=o L Wj Ui Uj-
. . yk Pk —
=inf t>0.2(|—tl) <1¢=1ylep

k

Thus, we have that x € M,,-(p) and consequently T is surjective. Hence, T is linear bijec-
tion which therefore says us that the spaces M,,-(p) and ¢(p) are linearly isomorphic. This
completes proof. O

Theorem 2.2. The functional m* on the sequence space My« (p) is a convex modular.

Proof. Let x, y € M- (p). It is clear that m*(x) =0 < x =0 and m”* (rx) = m* (x) for all scalar
r with |[r] = 1, so we omit it. Again, let’s suppose that x,y € My,«(p) and r 2 0, s =0 with

r + s = 1. By the convexity of the function u — |u|”*; n €N, we have:

k
Uk
m*(rx+sy)=y (— > wjlrxj+sy;)P*
k Uk j=0
k

U
<> ok ) ukvjlrx;l -
k j=0 k

Pk

k
wilsy;l
Jj=0
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U Ik Pk m k Pk
=2 IrPE = 3" wjlx;l +Z|S|”" — ) wjlsy;l
& Vk j=o0 Vk j=o0

k Pk

< r%(j—: Y wjlle)p +SZ( Z wilyjl )

=rm*(x)+sm*(y). a

Theorem 2.3. For x € M+ (p) the modular m* on M,,,+ (p) satisfies the following properties:
LIf0< t<1then tXm*(3) = m* (x) and m* (tx) < tm* (x),
2.Ift>1, thenm* (x) < tXm* (%),

3. Ift=1, thenm*(x) < tm*(x) < m*(tx).

Proof.

1.1f0 < t < 1 then we have

U k Pk U k X Pk
j
m*(x)=Z(v—Zw]-|xj|) =Z(t— leTI)
K\ Vk j=0 v

k k j=0
k \ Pk k C\ Pk
u Xj Ui Xj
NS NS VA s
* Uk j=o 4 X Uk j=o0 r
kw ’
j j
—tKZ(—Zw,~| |) =tfm* (=),
k \ Yk j=0

and if we consider convexity of m* then we see that m™* (¢x) < tm*(x). Hence 1 is satisfied.

2.Let t > 1 then,

‘ Pk n k X Pk
m” (x) = (_ 2 wjlle) =2 (v_ 2 w]"_]')
k

Vk § kj=o ~ 1
k Pk X
T C it R
k j=0

so 2is obtained.

3. It is obvious that 3is satisfied by the convexity of m*. a

Now, let’s talk about the relationships between the Luxemburg norm and the modular

m* on the space modular sequence space M- (p).

Theorem 2.4. For any x € My« (p), if p = (py) is bounded, we have
4. Ifl x M, <1 then m*(x) |l x | m,,. (p)

5 Ifll x M, > 1 then m*(x) |l x | m,,. (p)
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6. | xlm,. =1 ifandonlyif m*(x)=1

7. 1 xlim,. <1 ifandonlyif m*(x)<1

Co

I X la1,,- (> 1 if and only if m*(x) >1
9. Ifo<r<1landl x|nm,.p>r then m*(x)> rK

10. Ifr =1 and | x | m,,. n<T then m*(x) <rX

Proof.

4. Lete > 0besuch that0<e<1-| x lp,. = X lIm,,.p +€ < 1. From definition of
X8, () +€

; > 1 and

I . lIap,,.(p there exists > 0 such that || x ||,,. » +€ > t and accordingly

m*(t~1x) < 1. From Theorem 2.3 (1. and 3.) we have
m* () = m* (| xlp,,. oy €)' x) < (Ul x I, ey +OM* (87 %) <l X I, () +€

which implies that m* (x) <[ x |[a,,. (p). SO 4 is satisfied.

5 Ifo<e<(lxlm,.-DIx II‘Mlm* (p then 1 < (1 —e) || x [a,. <l * lIn,,. ) and by

definition of || . || p,,. (») with by part 1 of Theorem2.3 we have
1<m*(x[(1=€) | xlm,. ] ) = (A=) | X agy,. ]~ m* (2.

So (1—¢€) || x m,,.qn< m*(x) forall e € (0,(|| x [Ip,,. ) =D I x ”1_\/11,"* (p)). This implies that ||
x || m,,« (p < m* (x), hence 5is obtained.

6. We have that m*(x) = 1 implies that || x [ a,,. (»)= 1. Let’s suppose that || x [|ps,,. ()= 1. By
the definition of || x || a,,. (» We have that for any € > 0 there exists u > 0 such that 1 +¢ > pu >||
x I m,,. (p) and m* (xu~!) < 1. By part 2 of Theorem 2.3, we have

m*(x) < ,uKm*(xp_l) < pK <1 +ek.

By this way (m”‘(x))K_1 < 1+e¢ for all € > 0, which implies m*(x) < 1. If m*(x) < 1, then we
can choose r € (0,1) such that m*(x) < rX < 1. If we consider 1 of Theorem 2.3, we have
m*(r~1x) < X5 'm*(x) < 1. Hence, || x I m,,« (=< r < 1 which is a contradiction. Therefore
m*(x)=1.

7. The proofis clear from 4. and 6.

8. The proofis obvious from 6. and 7.

9. Suppose 0<r <1and || x|, > Then | xr1 | p,,- (»)> 1. By 5 we have m*(xr~1) > 1.
Hence, from I of Theorem 2.3, we obtain that m* (x) = rXm*(r~1x) > rX.

10. Suppose thatr = 1and || x l|p,,. (5 < 7. Then | xr™! || p,,. () < 1. From 7we have | xr™! |[a,,. () <

1.If r = 1, it is obvious that m*(x) < 1 = rX. If r > 1 then by part2 of Theorem 2.3; we obtain
that m* (x) < rXm* (r~1x) < rX. O
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Theorem 2.5. Let (x,,) be a sequence in My« (p), where p = (px) is bounded. Then;

11. If | xp I m,,« (py— 1 @s n — oo, then m* (x,) — 1 as n — oco.
12. If m*(x,) — 0 as n — oo, then || Xy || m,, (p— 0 as n — oco.

Proof.

11. Let’s suppose that || x [[as,,.(p— 1 as n — oo and let € € (0, 1). Then there exists N € N such
that1—e€ <|[| xp, [ p,,. () < 1 +€ for all n € N. By Theorem 2.4 we have (1 oK <m*(x,) < 1+e)K
for all n = N which implies m* (x;,) — 1 as n — oo.

12. Now, let us suppose that || xp, [ s, (») — 0 as n — oco. Then there must be an e € (0,1) and a
subsequence (x5, ) of (x,,) such that || x,, [a,,. ) > € forall k € N. By part 9. of Theorem 2.4 we
have m* (x,,) > eX for all k € N. This implies m* (xp,) — 0as n — oo. O

Theorem 2.6. The M, (p)-Nakano sequence space is a Banach space with the norm defined
by (1.5).

Proof.

Clearly, (1.5) is anorm on the space M, (p) and the remaining portion of the work can be
proved by using the techniques similar to those used in Theorem 2.4. of Simsek and Karakaya
[13]. O

3. Kadec Klee property of the space M- (p)

Let us now give the following interesting theorem which we will use about the Kadec-Klee
property of the space M- (p).

Theorem 3.7. Let x € My« (p) and x5 < M- (p). Iflimg m* (x™) = m* (x) andhmn = x; for
all i e N thenlim,, x" = x in My (p), thatis || x" — x || m,,. (p— 0 as n — oo.

Proof. Let € > 0 be given. Then there is ny € N such that

Z (2 Z wilx;DP* <e6K) ™ 3.1

k=np+1 Vk j=0

since m* (x) = Z(— Z wjlx;j)P* < co. Since
k Yk j=

lirlln[m*(x”) Z( ijlx I)p

k=0

=m"(x) - Z( ijlx])pk

k=0

and lim,, x]’f = xj, Vj €N, there is ng € N such that

Pk

<@3K)! (3.2)

SOl O

k=ko+1

Pl
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and
ko U Pk
> Z wj| x] -xjl| <37'e (3.3)
=0\ Vk j=

That for n = ng and from (3.1), (3.2) and (3.3)

0 pk
m*(x"-x) = Z(—Zw]x—x])p" Z( ijlx )

k=0

e 5[5 ]

k=ko+1 \ Uk j=0

<37le+K

Z ( ijlx I)pk

k=ko+1 \ Yk j=0

Pk
+ Z ( ijlx])
k= k0+1

Uk]

1 Ko (uy & P

_ 9 * oo Ny hat\] pw/

=3""¢+K|m (x") Z kawjlle
k=0 j=0

Pk
o) Up k
+ Y | wylxl
Vk j=o /

k=k0+1

<37 le+K

ko up & Pk
m*(x) Z(U—kZ w,-|xj|)

o Pk
+BK) e+ Y (ﬂZwﬂxﬂ)

00 Pk
u
=37'e+K| Y (—Zwﬂle)
k=ko+1\ Vk j=0
) 00 Up k Pk
+BK) e+ Y. |— D wjlxjl
k=ko+1 \ Yk j=0

=37le+K

k Pr
eK'+2 Z ( ijlx])
k=ko+1

Uk]()

=3¢+ K [eBK) ' +2e(6K) 7]

<3 le+37le+37le=¢

This shows that m*(x" — x) — 0 as n — co. And consequently by part 12 of Theorem 2.5 we

have that || x" — x || p,,. () — 0 as k — oo and this completes the proof. O

Theorem 3.8. The space M, (p) has the H-property (or Kadec-Klee property).
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Proof. Let x € S(My,,» (p)) and (x") € M, (p) be such that || x" || az,,. (»— 1 and x" — x weakly
as n — oo.

From Theorem 2.2, we have m* (x) = 1 so it follows from Theorem 2.3 that m* (x") — m(x)
as n — oo. Since the mapping p; : M- (p) — R, defined by p;(y) = y; is a continuous linear
functional on M,,: (p) it implies that xl.” — Xx; as n — oo for all i € N. Thus, by Theorem 3.7, we

get x"* — xas n — oco. g

Theorem 3.9. Ifp = (py) is bounded then the M- (p) is rotund .

Proof. Let x € S(M,;,+(p)) and y, z € B(M,+ (p)) with x = 271 (¥ + 2). Since convexity of m* and

from Theorem 2.4 we have
l=m*(x) <2 ' m* () +m* (@) <2711 +1D),

so that m* (x) =271 [m* (y) + m*(2)] = 1. This suggests that

Pk

U k Pk
+271 (—Z lezjl) (3.4)
J Uk j=0

Uj k P Up k
— Y wil27'yj+epl| =27 =X wilyyl
Vi =0 Vi j:O
for all n € N. We shall show that y;. = zj for all k € N. For k =0 from (3.4) we have

%0170 = 27 130170 + | z9|P0]. (3.5)

Since the mapping u — |u|? is strictly convex, from (3.5) it is implied that yy = zp. Now
assume that y; = z; foralli =1,2,...,k—1. Then y; = z; = x; foralli = 1,2,...,k— 1. From
(3.4) we have

U k » Pk LUk k Pk
(U_kaowj|2 (yj+Zj)|) 2(2 [U—kj;)wjlxj+yj|]) (3.6)
k Pk k Pk
=271 (UkZukvjlyjl) +271 (ﬂz w]'|Zj|) 3.7
j=0 Uk j=0

By the convexity of the mapping u — |u|P*, akZ;?:O uvilyjl = Ly‘—’; Z?:o wilz;| is implied.
Since y; =z foralli =1,2,..., k-1 we get that

| Vil =12kl (3.8)

If yi = 0, then we have yy = z; = 0. Suppose that yj # 0. Then z; # 0. If y;z; < 0 it follows from
(3.8) that yj + z; = 0. This implies that (3.6) and (3.8)

Uy k Pk U k U k Pk
o wilhl] = =E ) wilxjl+ -2 ) w)lyjl
Vk j=o0 Vk j=o0 Vk j=o0
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which is a contradiction. Thus, we have yjzy > 0. This shows that, by (3.5) y = z¢. Thus, from

the principle of mathematical induction, we have y; = z; forallneN, so y = z. Oa
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