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ON THE GEOMETRIC PROPERTIES OF

NEW TYPE MODULAR SPACE

MEHMET ŞENGÖNÜL

Abstract. In this paper, using a modular, we have defined the modular space Mm∗ (p) and
we have shown that the sequence space Mm∗(p) equipped with the Luxemburg norm is
rotund and possesses H-property (or Kadec-Klee property) when p = (pk ) is bounded
with pk > 1 for all k ∈N.

1. Introduction and Preliminaries

Recently, Sanhan and Suantai[11] have generalized normed Cesàro sequence spaces to

paranormed sequence spaces by making use of the Köthe sequence spaces. They have de-

fined and studied modular structure and some geometrical properties of these generalized

sequence spaces.

As they have done, we have investigated the Mm∗(p)- modular sequence space and we

have shown that Mm∗(p)- modular sequence space equipped with the Luxemburg norm is

rotund and possess H-property (or Kadec-Klee property) when p = (pk ) is bounded with pk >

1 for all k ∈N.

Now, let’s give some well-known descriptions to understand the subject better.

Let us denote the set of all real numbers and the set of all natural numbers R and N,

respectively. A sequence space is linear subspace of w , where w = {x = (xk )k∈N : x : N →

R, k → xk = x(k)}. An F K - space whose topology is normable is called a BK - space [3].

Let λ be a subset space of w . For a Banach space λ we denote by S(λ) and B (λ) the unit

sphere and unit ball of λ, respectively. A point x0 ∈ S(λ) is called:

a) an extreme point if for every x, y ∈ S(λ) the equality 2x0 = x + y implies x = y ;

b) an H-point if for any sequence (xn) in λ such that ∥ x ∥→ 1 as n →∞, the weak conver-

gence of (xn) to x0 implies that ∥ xn −x ∥→ 0 as n →∞.

A Banach space λ is said to be rotund, if every point of S(λ) is an extreme point. A Banach

space λ is said to possess H-property(or Kadec-Klee property) provided every point of S(λ) is

an H-point.
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Let λ be an arbitrary vector space over C. In this case:

(a) A functional m :λ→ [0,∞] is called modular if the following conditions hold:

(M1) m(x) = 0 ⇔ x = 0,

(M2) m(r x)= m(x) for r ∈R (or C) with |r | = 1, for all x ∈λ,

(M3) m(r x + s y)≤m(x)+m(y) if r, s ≥ 0, r + s = 1, for all x, y ∈λ.

(b) If M3 is replaced by;

(M4) m(r x + s y) = r µm(x)+ sµm(y) if r, s ≥ 0, r µ + sµ = 1, with an µ ∈ [0,1] then the

modular m is called an µ-convex modular, and if µ= 1, m is called a convex modular.

(c) modular m defines the corresponding modular space, i.e, the space λm given by λm =

{x ∈ w : m(t x)→ 0 as t →∞} .

Recall that for given any ǫ > 0 a sequence (xn) is said to be an ǫ-separated sequence if

sep(xn) = inf{∥ xn −xk ∥: n 6= k} > ǫ. We say a Banach space λ has β-property if for every ǫ> 0

such that, for each element x0 ∈ B (λ) and each sequence (xn) ∈ B (λ) with sep(xn) ≥ ǫ, there

exists an index k such that ∥
x0 +xk

2
∥≤ 1−δ.

The Nakano sequence space ℓ(p) is defined by

ℓ(p) = {x = (xk )∈ w : m(t x)<∞ for some t > 0} ,

where m(x) =
∑

k |xk |
pk and p = (pk ) is a sequence of positive real numbers with pk ≥ 1 for all

k ∈N . The space ℓ(p) is a Banach space with the norm

∥ x ∥ℓ(p)= inf
{

t > 0 : m(
x

t
) ≤ 1

}

.

If p = (pk ) is bounded, we have

ℓ(p)=

{

x = (xk ) ∈ w :
∑

k

|xk |
pk <∞

}

.

Also, some geometric properties of ℓ(p) were studied in [2] and [4].

For 1 ≤ p <∞, the Cesàro sequence space is defined by

cesp =







x = (xk ) ∈ w :

(

∑

n

(
1

n

n
∑

k=1

|xk |)
p

)
1
p

<∞







(1.1)

equipped with the norm

∥ x ∥=

(

∑

n

(
1

n

n
∑

k=1

|xk |)
p

)
1
p

.
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This space was introduced by Shue [12]. Some geometric properties of sequence spaces

cesp and ℓ(p) have been thoroughly discussed by many mathematicians in the literature. It

is known that cesp is locally uniform rotund and possess H-property [8]. Cui and Hudzik [4]

proved that cesp has the Banach- Saks of type p if p > 1, and it was shown in [5] that cesp has

β-property. Also, we know that Nakano sequence spaces are special cases of Musielak- Orlicz

sequence spaces. Some results in this paper may give some ideas of how geometric properties

of general Musielak- Orlicz sequence spaces can be obtained. In this paper, we extend the

study to another sequence space which we have described below. The space ces(p) [10] is

defined by

ces(p)=
{

x ∈ w : ρ(t x)<∞ for some t > 0
}

, (1.2)

where ρ(x) =
∑

n

( 1
n+1

∑n
k=0 |xk |

)pn . The space ces(p) is a Banach space with the norm

∥ x ∥= inf
{

t > 0 : ρ(
x

t
) ≤ 1

}

and if p = (pn) is bounded then we have

ces(p)=

{

x ∈ w :
∑

n

(

1

n +1

n
∑

k=0

|xk |

)pn

<∞

}

.

Several geometric properties of ces(p) have already been studied in [10].

Subsequently the relation between modular sequence spaces and the sequence spaces

defined by Orlicz function have been discussed by various authors: (Lindenstrauss, J. and

Tzafriri, L.,[7], Y. Altin; M. Et and B.C. Tripathy [1], B. C. Tripathy and S. Mahanta [14], M. Et; Y.

Altin; B. Choudhary and B.C. Tripathy [6], B.C. Tripathy, Y. Altin and M. Et [15], B.C. Tripathy

and B. Sarma [16], B.C. Tripathy and S. Borgogain [17], B.C. Tripathy and B. Sarma [18], B.C.

Tripathy and H. Dutta [19], B.C. Tripathy and B. Hazarika: [20], B.C. Tripathy and B. Sarma

[21], B.C. Tripathy and P. Chandra [22])

Quite recently, Şimşek and Karakaya [13] have defined the sequence space ℓρ(u, v, p) as

ℓρ(u, v, p)= {x ∈ w : ρ(λx)≤∞, for some λ> 0}

where

ρ(x)=
∑

k

(

uk

k
∑

j=0

v j |x j |

)pk

and u, v ∈ U = {u ∈ w : uk > 0 f or al l k ∈ N}. In[13], they investigated some geometric

and topological properties of the space ℓρ(u, v, p) such as Kadec-Klee property and modular

structure of ℓρ(u, v, p), uniform opial property, etc.
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In the same way we can introduce the new type modular sequence space Mm∗(p) as fol-

lows:

Mm∗(p) = {x = (xk ) ∈ w : m∗(λx) <∞, for some λ> 0} (1.3)

where

m∗(x) =
∑

k

(
uk

vk

k
∑

j=0

w j |x j |)
pk (1.4)

and u, v, w ∈U . The so-called Luxemburg norm on the sequence space Mm∗(p) is defined as

follows:

∥ x ∥Mm∗ (p)= inf
{

t > 0 : m∗(
x

t
) ≤ 1

}

. (1.5)

If p = (pk ) is bounded, then we have

Mm∗ (p)=

{

x ∈ w :
∑

k

(
uk

vk

k
∑

j=0

w j |x j |)
pk <∞

}

.

The purpose of this note is to define and to investigate the Mm∗(p)- modular sequence

space and show that Mm∗(p)- modular sequence space equipped with the Luxemburg norm

is rotund and possesses H-property (or Kadec-Klee property) when p = (pk ) is bounded with

pk > 1 for all k ∈N. Furthermore, throughout this paper we assume that p = (pi ) is bounded

with pi > 1 for all i ∈N and H = supi pi and K = max{1,2H−1}.

Clearly, in the special case (vk ) = (e) = (1,1,1, . . . ,1, . . .) we have Mm∗(p) = ℓρ(u, v, p) [13]

normed by

||x|| = inf

{

λ> 0 :
∑

k

(

uk

k
∑

j=0

v j |
x j

λ
|

)pk

≤ 1

}

(1.6)

and if we take (vk ) = (k +1), (uk ) = (wk ) = (e) for all k ∈N then the space Mm∗(p) reduces to

the modular space C es(p)[9] normed by

||x||Ces(p) = inf

{

λ> 0 :
∑

k

(

1

k +1

k
∑

j=0

|
x j

λ
|

)pk

≤ 1

}

. (1.7)

Furthermore, if we take (uk )= (e), (wk ) = (pk ), (vk) = (Pk ) and Pk =
∑k

i=0 pi for all i , j ∈N then

the space Mm∗(p) reduces to the modular space Nρ(p) [23] normed by

||x|| = inf

{

λ> 0 :
∑

k

(

1

Pk

k
∑

j=0

p j |
x j

λ
|

)pk

≤ 1

}

, (1.8)
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i.e., the spaces ℓρ(u, v, p), Nρ(p) and C es(p) are very special cases of the modular space

Mm∗(p).

2. Modular structure of Mm∗(p)

Let us begin by proving the following theorem which about isomorphism:

Theorem 2.1. The sequence spaces Mm∗(p) is linearly isomorphic to the space ℓ(p).

Proof. We should show the existence of a linear bijection between the spaces Mm∗(p) and

ℓ(p). Consider the transformation T define from Mm∗(p) to ℓ(p) by T : Mm∗(p) → ℓ(p), x →

T x = y, y = (yk ), yk =
uk

vk

k
∑

j=0

w j x j , (i ∈N). The linearity of T is clear. Further, it is trivial

that x = 0 whenever T x = 0 and hence T is injective. Let y ∈ ℓ(p) and define the sequence

x = (xk ) by

xk =
1

wk

[
vk

uk

yk −
vk−1

uk−1
yk−1] (k ∈N).

Then

‖x‖Mm∗ (p) = inf
{

t > 0 : m∗(
x

t
) ≤ 1

}

= inf

{

t > 0 :
∑

k

(
uk

vk

k
∑

j=0

w j

t
|x j |)

pk ≤ 1

}

= inf

{

t > 0 :
∑

k

(
uk

vk

k
∑

j=0

w j

t
|

1

w j
[

v j

u j
y j −

v j−1

u j−1
y j−1]|)pk ≤ 1

}

= inf

{

t > 0 :
∑

k

(|
yk

t
|)pk ≤ 1

}

= ‖y‖ℓ(p)

Thus, we have that x ∈ Mm∗(p) and consequently T is surjective. Hence, T is linear bijec-

tion which therefore says us that the spaces Mm∗(p) and ℓ(p) are linearly isomorphic. This

completes proof. ���

Theorem 2.2. The functional m∗ on the sequence space Mm∗(p) is a convex modular.

Proof. Let x, y ∈ Mm∗(p). It is clear that m∗(x) = 0 ⇔ x = 0 and m∗(r x) = m∗(x) for all scalar

r with |r | = 1, so we omit it. Again, let’s suppose that x, y ∈ Mm∗(p) and r ≥ 0, s ≥ 0 with

r + s = 1. By the convexity of the function u →|u|pn ; n ∈N, we have:

m∗(r x + s y)=
∑

k

(
uk

vk

k
∑

j=0

w j |r x j + s y j |)
pk

≤
∑

k

(

σk

k
∑

j=0

uk v j |r x j |+
uk

vk

k
∑

j=0

w j |s y j |

)pk
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=
∑

k

|r |pk

(

uk

vk

k
∑

j=0

w j |x j |

)pk

+
∑

k

|s|pn

(

uk

vk

k
∑

j=0

w j |s y j |

)pk

≤ r
∑

k

(

uk

vk

k
∑

j=0

w j |x j |

)pk

+ s
∑

k

(

uk

vk

k
∑

j=0

w j |y j |

)pk

= r m∗(x)+ sm∗(y). ���

Theorem 2.3. For x ∈ Mm∗(p) the modular m∗ on Mm∗(p) satisfies the following properties:

1. If 0 < t < 1 then t K m∗(
x j

t ) ≤ m∗(x) and m∗(t x)≤ t m∗(x),

2. If t > 1, then m∗(x) ≤ t K m∗(
x j

t ),

3. If t ≥ 1, then m∗(x) ≤ t m∗(x) ≤m∗(t x).

Proof.

1. If 0 < t < 1 then we have

m∗(x) =
∑

k

(

uk

vk

k
∑

j=0

w j |x j |

)pk

=
∑

k

(

t
uk

vk

k
∑

j=0

w j |
x j

t
|

)pk

=
∑

k

t pk

(

uk

vk

k
∑

j=0

w j |
x j

t
|

)pk

≥
∑

k

t K

(

uk

vk

k
∑

j=0

w j |
x j

t
|

)pk

= t K
∑

k

(

uk

vk

k
∑

j=0

w j |
x j

t
|

)pk

= t K m∗(
x j

t
),

and if we consider convexity of m∗ then we see that m∗(t x)≤ t m∗(x). Hence 1 is satisfied.

2. Let t > 1 then,

m∗(x) =
∑

k

(

uk

vk

k
∑

j=0

w j |x j |

)pk

=
∑

k

t pk

(

uk

vk

k
∑

j=0

w j |
x j

t
|

)pk

≤ t K
∑

k

(

uk

vk

k
∑

j=0

w j |
x j

t
|

)pk

= t K m∗(
x j

t
)

so 2 is obtained.

3. It is obvious that 3 is satisfied by the convexity of m∗. ���

Now, let’s talk about the relationships between the Luxemburg norm and the modular

m∗ on the space modular sequence space Mm∗(p).

Theorem 2.4. For any x ∈ Mm∗(p), if p = (pn) is bounded, we have

4. If ∥ x ∥Mm∗ (p)< 1 then m∗(x) ≤∥ x ∥Mm∗ (p)

5. If ∥ x ∥Mm∗ (p)> 1 then m∗(x) ≥∥ x ∥Mm∗ (p)
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6. ∥ x ∥Mm∗ (p)= 1 if and only if m∗(x) = 1

7. ∥ x ∥Mm∗ (p)< 1 if and only if m∗(x) < 1

8. ∥ x ∥Mm∗ (p)> 1 if and only if m∗(x) > 1

9. If 0 < r < 1 and ∥ x ∥Mm∗ (p)> r then m∗(x) > r K

10. If r ≥ 1 and ∥ x ∥Mm∗ (p)< r then m∗(x) < r K

Proof.

4. Let ǫ > 0 be such that 0 < ǫ < 1− ∥ x ∥Mm∗ (p)⇒∥ x ∥Mm∗ (p) +ǫ < 1. From definition of

∥ . ∥Mm∗ (p) there exists t > 0 such that ∥ x ∥Mm∗ (p) +ǫ > t and accordingly
∥x∥Mm∗ (p)+ǫ

t
> 1 and

m∗(t−1x) ≤ 1. From Theorem 2.3 (1. and 3.) we have

m∗(x) ≤ m∗
(

(∥ x ∥Mm∗ (p) +ǫ)t−1x
)

≤ (∥ x ∥Mm∗ (p) +ǫ)m∗
(

t−1x
)

≤∥ x ∥Mm∗ (p) +ǫ

which implies that m∗(x) ≤∥ x ∥Mm∗ (p). So 4 is satisfied.

5. If 0 < ǫ < (∥ x ∥Mm∗ (p) −1) ∥ x ∥−1
Mm∗ (p) then 1 < (1− ǫ) ∥ x ∥Mm∗ (p)<∥ x ∥Mm∗ (p) and by

definition of ∥ . ∥Mm∗ (p) with by part 1 of Theorem2.3 we have

1 < m∗(x[(1−ǫ) ∥ x ∥Mm∗ (p)]−1) ≤ [(1−ǫ) ∥ x ∥Mm∗ (p)]−1m∗(x).

So (1− ǫ) ∥ x ∥Mm∗ (p)< m∗(x) for all ǫ ∈ (0, (∥ x ∥Mm∗ (p) −1) ∥ x ∥−1
Mm∗ (p)). This implies that ∥

x ∥Mm∗ (p)≤m∗(x), hence 5 is obtained.

6. We have that m∗(x) = 1 implies that ∥ x ∥Mm∗ (p)= 1. Let’s suppose that ∥ x ∥Mm∗ (p)= 1. By

the definition of ∥ x ∥Mm∗ (p) we have that for any ǫ> 0 there exists µ> 0 such that 1+ǫ >µ>∥

x ∥Mm∗ (p) and m∗(xµ−1) ≤ 1. By part 2 of Theorem 2.3, we have

m∗(x) ≤µK m∗(xµ−1) ≤µK < (1+ǫ)K .

By this way (m∗(x))K −1
< 1+ ǫ for all ǫ > 0, which implies m∗(x) ≤ 1. If m∗(x) < 1, then we

can choose r ∈ (0,1) such that m∗(x) < r K < 1. If we consider 1 of Theorem 2.3, we have

m∗(r−1x) ≤ (r K )−1m∗(x) < 1. Hence, ∥ x ∥Mm∗ (p)≤ r < 1 which is a contradiction. Therefore

m∗(x) = 1.

7. The proof is clear from 4. and 6.

8. The proof is obvious from 6. and 7.

9. Suppose 0 < r < 1 and ∥ x ∥Mm∗ (p)> r. Then ∥ xr−1 ∥Mm∗ (p)> 1. By 5 we have m∗(xr−1) > 1.

Hence, from 1 of Theorem 2.3, we obtain that m∗(x) ≥ r K m∗(r−1x) > r K .

10. Suppose that r ≥ 1 and ∥ x ∥Mm∗ (p)< r. Then ∥ xr−1 ∥Mm∗ (p)< 1. From 7 we have ∥ xr−1 ∥Mm∗ (p)<

1. If r = 1, it is obvious that m∗(x) < 1 = r K . If r > 1 then by part2 of Theorem 2.3; we obtain

that m∗(x) ≤ r K m∗(r−1x)< r K . ���
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Theorem 2.5. Let (xn) be a sequence in Mm∗(p), where p = (pk ) is bounded. Then;

11. If ∥ xn ∥Mm∗ (p)→ 1 as n →∞, then m∗(xn) → 1 as n →∞.

12. If m∗(xn) → 0 as n →∞, then ∥ xn ∥Mm∗ (p)→ 0 as n →∞.

Proof.

11. Let’s suppose that ∥ x ∥Mm∗ (p)→ 1 as n →∞ and let ǫ ∈ (0,1). Then there exists N ∈N such

that 1−ǫ<∥ xn ∥Mm∗ (p)< 1+ǫ for all n ∈N. By Theorem 2.4 we have (1−ǫ)K < m∗(xn) < (1+ǫ)K

for all n ≥ N which implies m∗(xn) → 1 as n →∞.

12. Now, let us suppose that ∥ xn ∥Mm∗ (p)→ 0 as n →∞. Then there must be an ǫ ∈ (0,1) and a

subsequence (xnk
) of (xn) such that ∥ xnk

∥Mm∗ (p)> ǫ for all k ∈N. By part 9. of Theorem 2.4 we

have m∗(xnk
) > ǫK for all k ∈N. This implies m∗(xnk

) → 0 as n →∞. ���

Theorem 2.6. The Mm∗ (p)-Nakano sequence space is a Banach space with the norm defined

by (1.5).

Proof.

Clearly, (1.5) is a norm on the space Mm∗(p) and the remaining portion of the work can be

proved by using the techniques similar to those used in Theorem 2.4. of Şimşek and Karakaya

[13]. ���

3. Kadec Klee property of the space Mm∗(p)

Let us now give the following interesting theorem which we will use about the Kadec-Klee

property of the space Mm∗(p).

Theorem 3.7. Let x ∈ Mm∗(p) and (xk ) ⊆ Mm∗(p). If limk m∗(xn) =m∗(x) and limn xn
i
= xi for

all i ∈N then limn xn = x in Mm∗ (p), that is ∥ xn −x ∥Mm∗ (p)→ 0 as n →∞.

Proof. Let ǫ> 0 be given. Then there is n0 ∈N such that

∞
∑

k=n0+1

(
uk

vk

k
∑

j=0

w j |x j |)
pk < ǫ(6K )−1 (3.1)

since m∗(x) =
∑

k

(
uk

vk

k
∑

j=0

w j |x j |)
pk <∞. Since

lim
n

[

m∗(xn)−
n0
∑

k=0

(

uk

vk

k
∑

j=0

w j |x
n
j |

)pk
]

=m∗(x)−
n0
∑

k=0

(

uk

vk

k
∑

j=0

w j |x j |

)pk

and limn xn
j
= x j , ∀ j ∈N, there is n0 ∈N such that

∣

∣

∣

∣

∣

∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x
n
j |

)pk

−
∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x j |

)pk
∣

∣

∣

∣

∣

< (3K )−1 (3.2)
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and

k0
∑

k=0

(

uk

vk

k
∑

j=0

w j |x
n
j −x j |

)pk

< 3−1ǫ. (3.3)

That for n ≥ n0 and from (3.1), (3.2) and (3.3)

m∗(xn −x) =
∞
∑

k=0

(
uk

vk

k
∑

j=0

w j |x
n
j −x j |)

pk =

k0
∑

k=0

(

uk

vk

k
∑

j=0

w j |x
n
j −x j |

)pk

+
∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x
n
j −x j |

)pk

< 3−1ǫ+K

[

∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x
n
j |

)pk

+
∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x j |

)pk
]

= 3−1ǫ+K

[

m∗(xn)−
k0
∑

k=0

(

uk

vk

k
∑

j=0

w j |x
n
j |

)pk

+
∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x
n
j |

)pk
]

< 3−1ǫ+K

[

m∗(x)−
k0
∑

k=0

(

uk

vk

k
∑

j=0

w j |x j |

)pk

+ (3K )−1ǫ+
∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x j |

)pk
]

= 3−1ǫ+K

[

∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x j |

)pk

+(3K )−1ǫ+
∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x j |

)pk
]

= 3−1ǫ+K

[

ǫK −1
+2

∞
∑

k=k0+1

(

uk

vk

k
∑

j=0

w j |x j |

)pk
]

= 3−1ǫ+K
[

ǫ(3K )−1
+2ǫ(6K )−1]

< 3−1ǫ+3−1ǫ+3−1ǫ= ǫ

This shows that m∗(xn − x) → 0 as n →∞. And consequently by part 12 of Theorem 2.5 we

have that ∥ xn −x ∥Mm∗ (p)→ 0 as k →∞ and this completes the proof. ���

Theorem 3.8. The space Mm∗(p) has the H-property (or Kadec-Klee property).
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Proof. Let x ∈ S(Mm∗(p)) and (xn) ⊆ Mm∗(p) be such that ∥ xn ∥Mm∗ (p)→ 1 and xn → x weakly

as n →∞.

From Theorem 2.2, we have m∗(x) = 1 so it follows from Theorem 2.3 that m∗(xn) → m(x)

as n →∞. Since the mapping pi : Mm∗(p) −→ R, defined by pi (y) = yi is a continuous linear

functional on Mm∗(p) it implies that xn
i
→ xi as n →∞ for all i ∈N. Thus, by Theorem 3.7, we

get xn → x as n →∞. ���

Theorem 3.9. If p = (pk ) is bounded then the Mm∗ (p) is rotund .

Proof. Let x ∈ S(Mm∗(p)) and y, z ∈ B (Mm∗(p)) with x = 2−1(y + z). Since convexity of m∗ and

from Theorem 2.4 we have

1 = m∗(x) ≤ 2−1[m∗(y)+m∗(z)] ≤ 2−1(1+1),

so that m∗(x) = 2−1[m∗(y)+m∗(z)] = 1. This suggests that

(

uk

vk

k
∑

j=0

w j |2
−1(y j + z j )|

)pk

= 2−1

(

uk

vk

k
∑

j=0

w j |(y j )|

)pk

+2−1

(

uk

vk

k
∑

j=0

w j |z j |

)pk

(3.4)

for all n ∈N. We shall show that yk = zk for all k ∈N. For k = 0 from (3.4) we have

|x0|
p0 = 2−1[|y0|

p0 +|z0|
p0 ]. (3.5)

Since the mapping u → |u|p0 is strictly convex, from (3.5) it is implied that y0 = z0. Now

assume that yi = zi for all i = 1,2, . . . ,k − 1. Then yi = zi = xi for all i = 1,2, . . . ,k − 1. From

(3.4) we have

(

uk

vk

k
∑

j=0

w j |2
−1(y j + z j )|

)pk

=

(

2−1[
uk

vk

k
∑

j=0

w j |x j + y j |]

)pk

(3.6)

= 2−1

(

σk

k
∑

j=0

uk v j |y j |

)pk

+2−1

(

uk

vk

k
∑

j=0

w j |z j |

)pk

(3.7)

By the convexity of the mapping u → |u|pk , σk
∑k

j=0 uk v j |y j | =
uk

vk

∑k
j=0 w j |z j | is implied.

Since yk = zk for all i = 1,2, . . . ,k −1 we get that

|yk | = |zk |. (3.8)

If yk = 0, then we have yk = zk = 0. Suppose that yk 6= 0. Then zk 6= 0. If yk zk < 0 it follows from

(3.8) that yk + zk = 0. This implies that (3.6) and (3.8)

(

uk

vk

k
∑

j=0

w j |x j |

)pk

=

(

uk

vk

k
∑

j=0

w j |x j |+
uk

vk

k
∑

j=0

w j |y j |

)pk
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which is a contradiction. Thus, we have yk zk > 0. This shows that, by (3.5) yk = zk . Thus, from

the principle of mathematical induction, we have yk = zk for all n ∈N, so y = z. ���
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