GENERALIZED VECTOR VALUED DOUBLE SEQUENCE SPACE USING MODULUS FUNCTION

ANINDITA BASU AND P. D. SRIVASTAVA

IIIIII

Abstract

In this paper, we introduce a generalized vector valued paranormed double sequence space $F^{2}(E, p, f, s)$, using modulus function f, where $p=\left(p_{n k}\right)$ is a sequence of non-negative real numbers, $s \geq 0$ and the elements are chosen from a seminormed space (E, q_{E}). Results regarding completeness, normality, K_{2}-space, co-ordinatewise convergence etc. are derived. Further, a study of multiplier sets, ideals, notion of statistical convergence and ($p_{n k}$)-Cesáro summability in the space $F^{2}(E, p, f, s)$ is also made.

1. Introduction \& Motivation

Ratha and Srivastava 12] and Ghosh and Srivastava [6] introduced and studied generalized classes of composite vector valued single sequence spaces $\mathrm{F}\left(E_{k}, \Lambda\right)$ and $\mathrm{F}\left(E_{k}, f\right)$ respectively, which are defined as

$$
F\left(E_{k}, \Lambda\right)=\left\{x=\left(x_{k}\right): x_{k} \in E_{k} \text { for each } k \text { and }\left(g_{E_{k}}\left(v_{k} x_{k}\right)\right) \in F\right\}
$$

and

$$
F\left(E_{k}, f\right)=\left\{x=\left(x_{k}\right): x_{k} \in E_{k} \text { and the sequence }\left(f\left(g_{E_{k}}\left(x_{k}\right)\right) \in F\right\}\right.
$$

where F is a normal sequence space with a monotone paranorm $g_{F},\left(E_{k}, g_{E_{k}}\right)$ is Banach space over the field of complex numbers \mathbf{C}, f is a modulus function and $\Lambda(z)=\sum_{k} \frac{z^{k}}{\nu_{k}}$, $\nu=\left(\nu_{k}\right)$ is a sequence of non-zero complex numbers satisfying

$$
\nu=\liminf _{k \rightarrow \infty}\left|\nu_{k}\right|^{\frac{1}{k}}, 0<\nu \leq \infty
$$

With suitable topologies, the authors have investigated various topological properties for these spaces. The study of these spaces includes many known spaces as particular cases. For example, by specifying $F, E \& f$, one can obtain $w_{0}(f) \& w_{\infty}(f)$ of Maddox 7], $w_{0}(f, p) \& w_{\infty}(f, p)$ of Bilgin [3], $w(f)$ of Öztürk \& Bilgin 11] and others.

To continue the study, we introduce a new space $F^{2}(E, p, f, s)$ of vector valued double sequences which unifies some of the earlier classes on double sequences as particular cases.

[^0]Also, some important results have been derived on various aspects of double sequences which can be treated as generalization of the results derived by Gökhan et al. (5] [4]) and Mursaleen et al. [9].

2. Sequence space $\boldsymbol{F}^{2}(E, p, f, s)$

Let $\left(\mathrm{E}, q_{E}\right)$ be a seminormed space over the complex field \mathbb{C}. Let $S_{2}(E)$ denote the linear space of all double sequences $x=\left(x_{n k}\right)$ with $x_{n k} \in E$ under the usual coordinatewise addition and scalar multiplication. Let F^{2} be a normal scalar double sequence space with monotone paranorm $g_{F^{2}}$ such that co-ordinatewise convergence implies convergence in paranorm $g_{F^{2}}$, i.e.,

$$
\begin{equation*}
a_{n k}^{j, l} \rightarrow 0(j, l \rightarrow \infty) \text { for each } \mathrm{n}, \mathrm{k} \Longrightarrow g_{F^{2}}\left(a^{j, l}\right) \rightarrow 0(j, l \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

where $\left(a_{n k}^{j, l}\right)=a^{j, l} \in F^{2}$ for each j and $l \in \mathbb{N}$.
Throughout this chapter, by a convergent double sequence we mean a convergent in Pringsheim's sense. ${ }^{1}$

Let f be a modulus function and $\mathrm{p}=\left(p_{n k}\right)$ be a sequence of strictly positive real numbers and $s \geq 0$. We introduce a new class $F^{2}(E, p, f, s)$ of vector valued double sequences as follows:

$$
\begin{align*}
F^{2}(E, p, f, s)= & \left\{x=\left(x_{n k}\right) \in S_{2}(E): x_{n k} \in E \text { for each } n, k \in N\right. \text { and the sequence } \\
& \left.\left((n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right) \in F^{2}\right\} \tag{2.2}
\end{align*}
$$

Further, we define a topology on $F^{2}(E, p, f, s)$ by a paranorm g which is given by

$$
\begin{equation*}
g(x)=g_{F^{2}}\left[(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k} / M}\right], \text { for } x=\left(x_{n k}\right) \in F^{2}(\mathrm{E}, \mathrm{p}, \mathrm{f}, \mathrm{~s}) \tag{2.3}
\end{equation*}
$$

where $\mathrm{M}=\max (1, H), H=\sup _{n, k} p_{n k}<\infty$ and $\inf p_{n k}>0$.
It is seen that $F^{2}(E, p, f, s)$ turns out to be a complete paranormed space of vector valued double sequences.

It can also be seen that for suitable choice of the sequence space F^{2}, E and the modulus function f , the space $F^{2}(E, p, f, s)$ includes many of the known scalar as well as vector valued sequence spaces as particular cases.

Application:

1. If we take $E=\mathbb{C}, f(x)=x, s=0$ and $F^{2}=\ell_{2}^{\infty}$, the space $F^{2}(E, p, f, s)$ gives rise the space $\ell_{2}^{\infty}(p)$ of Gökhan et al. 5].
2. If we take $E=\mathbb{C}, f(x)=x, s=0$ and $F^{2}=c_{2}$, the space $F^{2}(E, p, f, s)$ gives rise the space $c_{2}^{P}(p)$ of Gökhan et al. [4].

[^1]3. If we take $E=\mathbb{C}, f(x)=x, s=0$ and $F^{2}=c_{2} \cap \ell_{2}^{\infty}$, the space $F^{2}(E, p, f, s)$ gives rise the space $c_{2}^{P B}(p)$ of Gökhan et al. 4].
4. If we take $E=\mathbb{C}, f(x)=x, s=0, p_{n k} \equiv 1$ and $F^{2}=w^{2}(p), \ell_{2}^{\infty}, c_{2}, c_{0}^{2}$, the space $F^{2}(E, p, f, s)$ gives rise the spaces of Tripathy 13].

3. Main Results

Theorem 3.1. $F^{2}(E, p, f, s)$ is a linear space, where $p=\left(p_{n k}\right)$ is a bounded sequence of strictly positive real numbers $\mathcal{E} \inf p_{n k}>0$.

Proof. Let $\mathrm{x}=\left(x_{n k}\right), \mathrm{y}=\left(y_{n k}\right) \in F^{2}(E, p, f, s)$ and $\lambda, \mu \in \mathbb{C}$. Then

$$
\begin{aligned}
(n k &)^{-s}\left\{f\left(q_{E}\left(\lambda x_{n k}+\mu y_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq(n k)^{-s}\left\{f\left(q_{E}\left(\lambda x_{n k}\right)+q_{E}\left(\mu y_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq(n k)^{-s}\left\{f\left(q_{E}\left(\lambda x_{n k}\right)\right)+f\left(q_{E}\left(\mu y_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq D(n k)^{-s}\left[\left\{f\left(|\lambda| q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}+\left\{f\left(|\mu| q_{E}\left(y_{n k}\right)\right)\right\}^{p_{n k}}\right] \\
& \leq D(1+[|\lambda|])^{H}(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right\}^{p_{n k}}+D(1+[|\mu|])^{H}(n k)^{-s}\left\{f\left(q_{E}\left(y_{n k}\right)\right\}^{p_{n k}}\right.\right.
\end{aligned}
$$

where $\mathrm{D}=\max \left(1,2^{H-1}\right)$. Since F^{2} is normal, $\lambda x+\mu y \in F^{2}(E, p, f, s)$.
Theorem 3.2. $F^{2}(E, p, f, s)$ is a paranormed space under the paranorm g given by (2.3), where $p=\left(p_{n k}\right)$ is a bounded sequence of strictly positive real numbers \mathcal{B} $\inf p_{n k}>0$.

Proof. It is clear from the definition of g that $g(\bar{\theta})=0$ and $g(x)=g(-x)$, where $\bar{\theta}$ is the null element. Again taking $\lambda=1, \mu=1$ in the Theorem 3.1 and the fact that $g_{F^{2}}$ is a monotone paranorm on F^{2}, we get $\mathrm{g}(\mathrm{x}+\mathrm{y}) \leq \mathrm{g}(\mathrm{x})+\mathrm{g}(\mathrm{y})$. It is left to prove the continuity of scalar multiplication under g.

Suppose $\left\{\lambda_{m}\right\}$ is a sequence of scalars such that $\lambda_{m} \rightarrow \lambda$ as $m \rightarrow \infty$ and let $x^{j, l} \xrightarrow{g}$ x as $j, l \rightarrow \infty$. To show $g\left(\lambda_{m} x^{j, l}-\lambda x\right) \rightarrow 0$ as $j, l \rightarrow \infty$ where $x^{j, l}=\left(x_{n k}^{j, l}\right) \in$ $F^{2}(E, p, f, s)$.

Let

$$
\begin{equation*}
a_{n k}^{j m}=(n k)^{-s}\left\{f\left(\left|\lambda_{m}-\lambda\right| q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k} / M} \tag{3.1}
\end{equation*}
$$

As $\lambda_{m} \rightarrow \lambda$ as $m \rightarrow \infty$, for sufficiently large m, we can assume that $\left|\lambda_{m}-\lambda\right|<1$.

Consider

$$
\begin{align*}
g\left(\lambda_{m} x^{j, l}-\lambda x\right) & =g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(q_{E}\left[\lambda_{m} x_{n k}^{j, l}-\lambda x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& \leq g_{F^{2}}\left[\left((n k) ^ { - s } \left\{f \left(q _ { E } \left[\left(\lambda_{m}-\lambda\right)\left(x_{n k}^{j, l}-x_{n k}\right)\right.\right.\right.\right.\right. \\
& \left.\left.\left.\left.\left.+\lambda\left(x_{n k}^{j, l}-x_{n k}\right)+\left(\lambda_{m}-\lambda\right) x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& \leq g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(q_{E}\left[\left(\lambda_{m}-\lambda\right)\left(x_{n k}^{j, l}-x_{n k}\right)\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& +g_{F_{2}}\left[(n k)^{-s}\left\{f\left(q_{E}\left[\lambda\left(x_{n k}^{j, l}-x_{n k}\right)\right]\right)\right\}^{p_{n k} / M}\right] \\
& +g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(q_{E}\left[\left(\lambda_{m}-\lambda\right) x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& =g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(\left|\lambda_{m}-\lambda\right| q_{E}\left[x_{n k}^{j, l}-x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& +g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(|\lambda| q_{E}\left[x_{n k}^{j, l}-x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& +g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(\left|\lambda_{m}-\lambda\right| q_{E}\left[x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& \equiv \mathrm{I}+\mathrm{II}+\mathrm{III} . \tag{3.2}
\end{align*}
$$

Since $\lambda_{m} \rightarrow \lambda$ as $m \rightarrow \infty$, so

$$
\begin{aligned}
\mathrm{I} & \equiv g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(\left|\lambda_{m}-\lambda\right| q_{E}\left[x_{n k}^{j, l}-x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& \leq g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(q_{E}\left[x_{n k}^{j, l}-x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right]=g\left(x^{j, l}-x\right) .
\end{aligned}
$$

Again since $f(\lambda)<(1+[|\lambda|]) f(1)$, so as $m \rightarrow \infty$

$$
\begin{aligned}
\mathrm{II} & \equiv g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(|\lambda| q_{E}\left[x_{n k}^{j, l}-x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& \leq g_{F^{2}}\left[\left((n k)^{-s}\left\{(1+[|\lambda|]) f\left(q_{E}\left[x_{n k}^{j, l}-x_{n k}\right]\right)\right\}^{p_{n k} / M}\right)\right] \\
& =(1+[|\lambda|]) g\left(x^{j, l}-x\right) .
\end{aligned}
$$

Hence from (3.2) using (3.1) we get

$$
\begin{aligned}
& g\left(\lambda_{m} x^{j, l}-\lambda x\right) \\
= & g\left(x^{j, l}-x\right)+(1+[|\lambda|]) g\left(x^{j, l}-x\right)+\left[g_{F^{2}}\left(a_{n k}^{m}\right)\right]
\end{aligned}
$$

Also, since

$$
f\left(\left|\lambda_{m}-\lambda\right| q_{E}\left(x_{n k}\right)\right)<f\left(q_{E}\left(x_{n k}\right)\right)
$$

holds because $\left|\lambda_{m}-\lambda\right|<1$ for sufficiently large m and F^{2} is normal so $a^{m}=\left(a_{n k}^{m}\right) \in F^{2}$ for sufficiently large m . Obviously for each $\mathrm{n}, \mathrm{k}, a_{n k}^{m} \rightarrow 0$ as $m \rightarrow \infty$. So by the condition (2.1), we get $g_{F^{2}}\left(a_{n k}^{m}\right) \rightarrow 0$ for sufficiently large m. Again II and III tend to zero as $j, l \rightarrow \infty \& m \rightarrow \infty$, because $\lambda_{m} \rightarrow \lambda \& x^{j, l} \xrightarrow{g} x$. Hence we get

$$
g\left(\lambda_{m} x^{j, l}-\lambda x\right) \rightarrow 0 \text { as } m \rightarrow \infty \text { and } j, l \rightarrow \infty
$$

Hence the proof.
Theorem 3.3. $F^{2}(\mathrm{E}, \mathrm{p}, \mathrm{f}, \mathrm{s})$ is a K_{2}-space if F^{2} is a K_{2}-space.
Proof. Define $P_{n k}: F^{2}(E, p, f, s) \rightarrow E$ as $P_{n k}(x)=x_{n k}, n, k=1,2,3, \ldots$, where $x=\left(x_{n k}\right) \in F^{2}(E, p, f, s)$. To show $P_{n k}$ is continuous.

Let $\left(x^{j, l}\right)=\left(\left(x_{n k}^{j, l}\right)\right)$ be a sequence in $F^{2}(\mathrm{E}, \mathrm{p}, \mathrm{f}, \mathrm{s})$ such that

$$
g\left(x^{j, l}\right) \rightarrow 0 \text { as } j, l \rightarrow \infty .
$$

Since F^{2} is a K_{2}-space, $g\left(x^{j, l}\right) \rightarrow 0$ as $j, l \rightarrow \infty$ implies that

$$
(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k} / M} \rightarrow 0 \text { as } j, l \rightarrow \infty, \text { for each } \mathrm{n}, \mathrm{k}
$$

We claim that $q_{E}\left(x_{n k}^{j, l}\right) \rightarrow 0$ as $j, l \rightarrow \infty$, because f is continuous and increasing. This implies

$$
q_{E}\left(P_{n k}\left(x^{j, l}\right)\right)=q_{E}\left(x_{n k}^{j, l}\right) \rightarrow 0 \text { for } j, l \rightarrow \infty
$$

Hence the proof.
Theorem 3.4. $F^{2}(E, p, f, s)$ is a normal space.
Proof. The proof is straightforward, so we omit it.
Theorem 3.5. $F^{2}(E, p, f, s)$ is complete with respect to the paranorm g if $\left(E, q_{E}\right)$ is complete, and F^{2} is normal K_{2}-space, where $\left(p_{n k}\right)$ is bounded sequence of strictly positive real numbers such that $\inf p_{n k}>0$.

Proof. Let $x^{j, l}=\left(x_{n k}^{j, l}\right)$ be a Cauchy sequence in $F^{2}(\mathrm{E}, \mathrm{p}, \mathrm{f}, \mathrm{s})$. So

$$
g\left(x^{j, l}-x^{r, t}\right) \rightarrow 0 \text { as } j, l, r, t \rightarrow \infty
$$

i.e.,

$$
g_{F_{2}}\left[\left((n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}^{r, t}\right)\right)\right\}^{p_{n k} / M}\right)\right] \rightarrow 0 \text { as } j, l, r, t \rightarrow \infty
$$

Since $F_{2}(\mathrm{E}, \mathrm{p}, \mathrm{f}, \mathrm{s})$ is a K_{2} space and f is continuous, so for each n, k

$$
(n k)^{-s / M} q_{E}\left(x_{n k}^{j, l}-x_{n k}^{r, t}\right) \rightarrow 0 \text { as } j, l, r, t \rightarrow \infty
$$

Hence for fixed n, k

$$
q_{E}\left(x_{n k}^{j, l}-x_{n k}^{r, t}\right) \rightarrow 0 \text { as } j, l, r, t \rightarrow \infty
$$

This implies that for fixed $\mathrm{n}, \mathrm{k},\left(x_{n k}^{j, l}\right)$ behaves as a Cauchy sequence in E. But $\left(E, q_{E}\right)$ is complete, so there exist $x=\left(x_{n k}\right) \in \mathrm{E}$ such that

$$
q_{E}\left(x_{n k}^{j, l}-x_{n k}\right) \rightarrow 0 \text { as } j, l \rightarrow \infty
$$

So

$$
a_{n k}^{j, l} \rightarrow 0(\text { as } j, l \rightarrow \infty) \text { for each } n, k \text { (since } f \text { is continuous) }
$$

where

$$
\begin{equation*}
a_{n k}^{j, l}=(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}\right)\right)\right\}^{p_{n k} / M}, n, k=1,2, \ldots \tag{3.3}
\end{equation*}
$$

Since for each $\mathrm{n}, \mathrm{k}, a_{n k}^{j, l} \rightarrow 0$ as $j, l \rightarrow \infty$, so choose $\delta_{n k}^{j, l}$ such that

$$
\begin{equation*}
a_{n k}^{j, l} \leq \delta_{n k}^{j, l}(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k} / M} \text { where } 0<\delta_{n k}^{j, l}<1 \tag{3.4}
\end{equation*}
$$

Clearly $a^{j, l} \in F^{2}$, for each m, because F^{2} is normal.
Hence,

$$
g_{F_{2}}\left[\left((n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}\right)\right)\right\}^{p_{n k} / M}\right)\right] \rightarrow 0 \text { as } j, l \rightarrow \infty
$$

i.e., $g\left(x^{j, l}-x\right) \rightarrow 0$ as $j, l \rightarrow \infty$.

Now using (3.3) and (3.4) we get

$$
(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k} / M} \leq\left(\delta_{n k}^{j, l}+1\right)(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k} / M}
$$

Since F^{2} is normal space and $x^{j, l} \in F^{2}(\mathrm{E}, \mathrm{p}, \mathrm{f}, \mathrm{s}), x=\left(x_{n k}\right) \in F^{2}(\mathrm{E}, \mathrm{p}, \mathrm{f}, \mathrm{s})$. Hence the proof.

Theorem 3.6. Let f be a modulus function such that $f(u v)=f(u) f(v)$ where u, v are positive scalars. Let E be a commutative normal sequence algebra under \circ, where $x_{n k} \circ y_{n k}=x_{n k} y_{n k}$ and F^{2} is a normal sequence algebra under the multiplication \circ^{\prime}, defined as $\left(a_{n k}\right) \circ^{\prime}\left(b_{n k}\right)=\left(a_{n k} b_{n k}\right)$, where $\left(a_{n k}\right),\left(b_{n k}\right) \in F^{2}$. Then $F^{2}(E, p, f, s)$ is a commutative sequence algebra.

Proof. Let $x=\left(x_{n k}\right)$ and $y=\left(y_{n k}\right) \in F^{2}(E, p, f, s)$. Consider

$$
\begin{aligned}
(n k &)^{-2 s}\left\{f\left(q_{E}\left(x_{n k} \circ y_{n k}\right)\right)\right\}^{p_{n k}} \\
& =(n k)^{-2 s}\left\{f\left(q_{E}\left(x_{n k} y_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq(n k)^{-2 s}\left\{f\left(q_{E}\left(x_{n k}\right) q_{E}\left(y_{n k}\right)\right)\right\}^{p_{n k}}(\text { since E is a normed algebra) } \\
& =(n k)^{-2 s}\left\{f\left(q_{E}\left(x_{n k}\right)\right) f\left(q_{E}\left(y_{n k}\right)\right)\right\}^{p_{n k}}(\text { by given condition) } \\
& =(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}(n k)^{-s}\left\{f\left(q_{E}\left(y_{n k}\right)\right)\right\}^{p_{n k}} \in F^{2}
\end{aligned}
$$

as $x, y \in F^{2}(E, p, f, s)$, which implies $\left(x_{n k} y_{n k}\right) \in F^{2}(E, p, f, s)$. So $F^{2}(E, p, f, s)$ is a sequence algebra. Further, it can be seen easily that $F^{2}(E, p, f, s)$ is a commutative sequence algebra as E is commutative.

Remark 3.1. The condition $\inf p_{n k}>0$ is not required when $F^{2} \equiv c_{0}^{2}, c^{2}, \ell_{p}^{2}, p \geq 1$. But for $F^{2} \equiv \ell_{\infty}^{2}$ the condition $\inf p_{n k}>0$ is required. For the sake of completeness we have chosen this condition in general.

Now, we prove the following lemma which will be used in sequel:
Lemma 3.1. Let f_{1}, f_{2} be modulus functions and $0<\delta<1$. Let $f_{1}(t)>\delta$ for $t \geq 0$, then

$$
\left(f_{2} \circ f_{1}\right)(t) \leq \frac{2 f_{2}(1)}{\delta} f_{1}(t)
$$

Proof. Since for $f_{1}(t)>\delta$,

$$
f_{1}(t)<\frac{f_{1}(t)}{\delta}<1+\left[\frac{f_{1}(t)}{\delta}\right]
$$

we have

$$
\left(f_{2} \circ f_{1}\right)(t) \leq\left(1+\left[\frac{f_{1}(t)}{\delta}\right]\right) f_{2}(1) \leq 2 \frac{f_{1}(t)}{\delta} f_{2}(1)
$$

Some inclusion relations which are known for single sequence spaces are extended analogously to double sequence spaces as follows:

Theorem 3.7. Let F^{2} be a normal sequence space. Then the following inequalities hold:

1. If $\sup _{t>0} \frac{f_{1}(t)}{f_{2}(t)}<\infty$, then $F^{2}\left(E, p, f_{2}, s\right) \subseteq F^{2}\left(E, p, f_{1}, s\right)$.
2. $F^{2}\left(E, p, f_{1}, s\right) \bigcap F^{2}\left(E, p, f_{2}, s\right) \subseteq F^{2}\left(E, p, f_{1}+f_{2}, s\right)$.
3. $F^{2}\left(E, p, f_{1}, s\right) \subseteq F^{2}\left(E, p, f_{2} \circ f_{1}, s\right)$ if $(n k)^{-s} \in F^{2}$, where $\left(f_{2} \circ f_{1}\right)(t)=f_{2}\left(f_{1}(t)\right)$ and $\inf p_{n k}>0 \xi^{3} \sup p_{n k}<\infty$.
4. If $s_{1} \leq s_{2}$, then $F^{2}\left(E, p, f_{1}, s_{1}\right) \subseteq F^{2}\left(E, p, f_{1}, s_{2}\right)$.

Proof (i). Let $x=\left(x_{n k}\right) \in F^{2}\left(E, p, f_{2}, s\right)$.
Since $\sup _{t>0} \frac{f_{1}(t)}{f_{2}(t)}<\infty$ is given, $\exists L>0$ such that $f_{1}(t) \leq L f_{2}(t)$ for all $\mathrm{t}>0$ and hence
$(n k)^{-s}\left\{f_{1}\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \leq \max \left(1, L^{H}\right)(n k)^{-s}\left\{f_{2}\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}$ for each n and k .
Since F^{2} is normal, so the result follows.

Proof (ii). Let $x=\left(x_{n k}\right) \in F^{2}\left(E, p, f_{1}, s\right) \bigcap F^{2}\left(E, p, f_{2}, s\right)$. Consider

$$
\begin{aligned}
(n k)^{-s}\left\{\left(f_{1}+f_{2}\right)\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} & =(n k)^{-s}\left[\left\{f_{1}\left(q_{E}\left(x_{n k}\right)\right)\right\}+\left\{f_{2}\left(q_{E}\left(x_{n k}\right)\right)\right\}\right]^{p_{n k}} \\
& \leq D(n k)^{-s}\left[\left\{f_{1}\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}+\left\{f_{2}\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right]
\end{aligned}
$$

for each n and k and $\mathrm{D}=\max \left(1,2^{H-1}\right)$. Result follows as F^{2} is normal sequence space.
Proof (iii). Let us choose δ such that $0<\delta<1$. Let

$$
\begin{aligned}
& N_{1}=\left\{(n, k) \in N \times N: f_{1}\left(q_{E}\left(x_{n k}\right)\right) \leq \delta\right\} \\
& N_{2}=\left\{(n, k) \in N \times N: f_{1}\left(q_{E}\left(x_{n k}\right)\right)>\delta\right\} .
\end{aligned}
$$

If $(\mathrm{n}, \mathrm{k}) \in N_{1}$, then

$$
\left(f_{2} \circ f_{1}\right)\left(q_{E}\left(x_{n k}\right)\right) \leq f_{2}(\delta)
$$

Hence

$$
\begin{equation*}
(n k)^{-s}\left(\left(f_{2} \circ f_{1}\right)\left(q_{E}\left(x_{n k}\right)\right)\right)^{p_{n k}} \leq \eta_{1}(n k)^{-s} \tag{3.5}
\end{equation*}
$$

where

$$
\eta_{1}=\max \left[\left\{f_{2}(\delta)\right\}^{\inf p_{n k}},\left\{f_{2}(\delta)\right\}^{\sup p_{n k}}\right]
$$

Again for $(\mathrm{n}, \mathrm{k}) \in N_{2}$,

$$
\begin{align*}
(n k)^{-s}\left(\left(f_{2} \circ f_{1}\right)\left(q_{E}\left(x_{n k}\right)\right)\right)^{p_{n k}} & \leq(n k)^{-s}\left[\frac{2 f_{2}(1)}{\delta} f_{1}\left(q_{E}\left(x_{n k}\right)\right)\right]^{p_{n k}} \quad(\text { by Lemma 3.1) } \\
& \leq \eta_{2}(n k)^{-s}\left[f_{1}\left(q_{E}\left(x_{n k}\right)\right)\right]^{p_{n k}} \tag{3.6}
\end{align*}
$$

where

$$
\eta_{2}=\max \left\{\left\{\frac{2 f_{2}(1)}{\delta}\right\}^{\inf p_{n k}},\left\{\frac{2 f_{2}(1)}{\delta}\right\}^{\sup p_{n k}}\right\}
$$

Let $\eta=\max \left(\eta_{1}, \eta_{2}\right)$.
From (3.5) and (3.6) we get for $(n, k) \in N_{1} \cup N_{2}$,

$$
(n k)^{-s}\left(\left(f_{2} \circ f_{1}\right)\left(q_{E}\left(x_{n k}\right)\right)\right)^{p_{n k}} \leq \eta\left[(n k)^{-s}+(n k)^{-s}\left[f_{1}\left(q_{E}\left(x_{n k}\right)\right)\right]^{p_{n k}}\right]
$$

Since $\left((n k)^{-s}\right) \in F^{2}$ and $F^{2}(\mathrm{E}, \mathrm{f}, \mathrm{p}, \mathrm{s})$ is normal, so the result follows.
Proof (iv). For $s_{1} \leq s_{2}$

$$
(n k)^{-s_{2}}\left[f\left(q_{E}\left(x_{n k}\right)\right)\right]^{p_{n k}} \leq(n k)^{-s_{1}}\left[f\left(q_{E}\left(x_{n k}\right)\right)\right]^{p_{n k}} \text { for every } \mathrm{n}, \mathrm{k}
$$

By using the normality of F^{2}, the result is obtained.

4. Multiplier set of $\boldsymbol{F}^{2}(E, p, f, s)$

This section deals with some inclusion relations between the set $F^{2}(E, p, f, s)$ and its multiplier set.

We define multiplier set of $F^{2}(E, p, f, s)$ as

$$
\begin{aligned}
& M^{2} {\left[F^{2}(E, p, f, s)\right] } \\
& \quad=\left\{a=\left(a_{n k}\right) \in E:\left(a_{n k} x_{n k}\right) \in F^{2}(E, p, f, s) \text { for all } x=\left(x_{n k}\right) \in F^{2}(E, p, f, s)\right\}
\end{aligned}
$$

where E is taken as normed algebra. Now, we prove the following theorems:
Theorem 4.1. Let E be normed algebra and F^{2} be a normal sequence space. Then

$$
\ell_{2}^{\infty}(E) \subseteq M^{2}\left[F^{2}(E, p, f, s)\right]
$$

where

$$
\ell_{2}^{\infty}(E)=\left\{a=\left(a_{n k}\right): a_{n k} \in E \text { and } \sup _{\mathrm{n}, \mathrm{k}} \mathrm{q}_{\mathrm{E}}\left(\mathrm{a}_{\mathrm{nk}}\right)<\infty\right\} .
$$

Proof. Let $a=\left(a_{n k}\right) \in \ell_{2}^{\infty}(E)$ and $x=\left(x_{n k}\right) \in F^{2}(E, p, f, s)$.
Let $\mathrm{B}=\sup _{n, k} q_{E}\left(a_{n k}\right)<\infty$. Now,

$$
\begin{aligned}
&(n k)^{-s}\left\{f\left(q_{E}\left(a_{n k} x_{n k}\right)\right)\right\}^{p_{n k}} \\
& \quad \leq(n k)^{-s}\left\{f\left(q_{E}\left(a_{n k}\right) q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \text { (since E is normed algebra) } \\
& \quad<(1+[B])^{H}(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}
\end{aligned}
$$

where $\left[B^{H}\right]$ denotes the integral part of B^{H}.
Since F^{2} is normal, this implies $\left(a_{n k} x_{n k}\right) \in F^{2}(E, p, f, s)$ and consequently $\left(a_{n k}\right) \in$ $M^{2}\left[F^{2}(E, p, f, s)\right]$. Hence the proof.

Theorem 4.2. For any modulus function satisfying $f(\alpha \beta) \leq f(\alpha)+f(\beta), \alpha, \beta \in$ $[0, \infty)$,

$$
F^{2}(E, p, f, s) \subseteq M^{2}\left[F^{2}(E, p, f, s)\right]
$$

where E is a normed algebra.
Proof. Let $x=\left(x_{n k}\right) \in F^{2}(E, p, f, s)$. We want to show that $x=\left(x_{n k}\right) \in M^{2}\left[F^{2}(E\right.$, $p, f, s)]$, i.e., to show $\left(x_{n k} y_{n k}\right) \in F^{2}(E, p, f, s)$ for all $y=\left(y_{n k}\right) \in F^{2}(E, p, f, s)$.

Consider

$$
q_{E}\left(x_{n k} y_{n k}\right) \leq q_{E}\left(x_{n k}\right) q_{E}\left(y_{n k}\right)
$$

since E is a normed algebra.

Then

$$
f\left(q_{E}\left(x_{n k} y_{n k}\right)\right) \leq f\left(q_{E}\left(x_{n k}\right) q_{E}\left(y_{n k}\right)\right) \leq f\left(q_{E}\left(x_{n k}\right)\right)+f\left(q_{E}\left(y_{n k}\right)\right)
$$

Thus

$$
\begin{aligned}
(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k} y_{n k}\right)\right)\right\}^{p_{n k}} & \leq(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)+f\left(q_{E}\left(y_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq D(n k)^{-s}\left[\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}+\left\{f\left(q_{E}\left(y_{n k}\right)\right)\right\}^{p_{n k}}\right]
\end{aligned}
$$

where $\mathrm{D}=\max \left(1,2^{H-1}\right)$.
This implies $x y \in F^{2}(E, p, f, s)$ and hence $x \in M^{2}\left[F^{2}(E, p, f, s)\right]$.

5. Ideals of $\boldsymbol{F}^{2}(E, p, f, s)$

Let I^{2} be a normal subspace of F^{2}, where F^{2} is a sequence algebra. Let E be commutative normed algebra and $\mathrm{S}_{2}(E)$ is the linear space of all sequences $x=\left(x_{n k}\right)$ with $x_{n k} \in E$ under the usual coordinatewise addition and scalar multiplication.

$$
\begin{aligned}
& I^{2}(E, p, f, s) \\
& \quad=\left\{x=\left(x_{n k}\right): x_{n k} \in S(E) \text { for each } \mathrm{n}, \mathrm{k} \text { and }\left((n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right) \in I^{2}\right\}
\end{aligned}
$$

It is easy to check that $I^{2}(E, p, f, s)$ is a subspace of $F^{2}(E, p, f, s)$.
Theorem 5.1. If I^{2} is closed subspace of F^{2} and F^{2} is a normal K_{2}-space then for $0<p_{n k} \leq 1, I^{2}(E, p, f, s)$ is a closed subspace of $F^{2}(E, p, f, s)$.

Proof. It is easy to show that $I^{2}(E, p, f, s)$ is a subspace of $F^{2}(E, p, f, s)$. Next, to show it is closed, we take $x=\left(x_{n k}\right) \in \overline{I^{2}(E, p, f, s)}$, the closure of $I^{2}(E, p, f, s)$. This implies the existence of a sequence $x^{j, l}=\left(\left(x_{n k}^{j, l}\right)\right) \in I^{2}(E, p, f, s)$ such that

$$
g\left(x^{j, l}-x\right) \rightarrow 0 \text { as } j, l \rightarrow \infty
$$

for some $x=\left(x_{n k}\right) \in F^{2}(E, p, f, s)$.
Consequently,

$$
\begin{array}{r}
g_{F^{2}}\left[\left((n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}\right)\right)\right\}^{p_{n k}}\right)\right] \rightarrow 0 \text { as } m \rightarrow \infty . \tag{5.1}\\
\left(\text { since } \mathrm{M}=\max \left(1, \sup p_{n k}\right)=1\right)
\end{array}
$$

Since F^{2} is K_{2}-space and f is continuous at 0 , so,

$$
q_{E}\left(x_{n k}^{j, l}-x_{n k}\right) \rightarrow 0 \text { as } j, l \rightarrow \infty \text { for each } \mathrm{n}, \mathrm{k} .
$$

Consider

$$
\begin{aligned}
\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k}} & \leq\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}+x_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}\right)\right)+f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}\right)\right)\right\}^{p_{n k}}+\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\left(\text { as } 0<p_{n k} \leq 1\right)
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k}}-\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \leq\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}\right)\right)\right\}^{p_{n k}} \tag{5.2}
\end{equation*}
$$

Since F^{2} is normal and $g_{F^{2}}$ is a monotone paranorm, so (5.2) implies that

$$
\begin{equation*}
\left((n k)^{-s}\left(\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k}}-\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right)\right) \in F^{2} \tag{5.3}
\end{equation*}
$$

So we get from (5.2) and (5.3)

$$
\begin{aligned}
& g_{F^{2}}\left[(n k)^{-s}\left(\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k}}-\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right)\right] \\
\leq & g_{F^{2}}\left[(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}^{j, l}-x_{n k}\right)\right)\right\}^{p_{n k}}\right] \\
= & g\left(x^{j, l}-x\right)
\end{aligned}
$$

Using (5.1) we get,

$$
\begin{equation*}
g_{F^{2}}\left[(n k)^{-s}\left(\left\{f\left(q_{E}\left(x_{n k}^{j, l}\right)\right)\right\}^{p_{n k}}\right)-(n k)^{-s}\left(\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right)\right] \rightarrow 0 \text { as } m \rightarrow \infty . \tag{5.4}
\end{equation*}
$$

Since I^{2} is closed in F^{2}, it is clear from (5.4) that,

$$
\left((n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right) \in I^{2}
$$

Hence $x=\left(x_{n k}\right) \in I^{2}(E, p, f, s)$.
Theorem 5.2. Let I^{2} be an ideal of F^{2}. Further, let the modulus function f satisfies $f(u v)=f(u) f(v)$ where u, v are scalars. Then $I^{2}(E, p, f, s)$ is an ideal of $F^{2}(E, p, f, s)$.

Proof. For $x=\left(x_{n k}\right) \in I^{2}(E, p, f, s)$ and $r=\left(r_{n k}\right) \in F^{2}(E, f, p, s)$,

$$
\begin{aligned}
(n k)^{-2 s}\left\{f\left(q_{E}\left(r_{n k} x_{n k}\right)\right)\right\}^{p_{n k}} & \leq(n k)^{-2 s}\left\{f\left(q_{E}\left(r_{n k}\right) q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \\
& =(n k)^{-s}\left\{f\left(q_{E}\left(r_{n k}\right)\right)\right\}^{p_{n k}}(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \in I^{2}
\end{aligned}
$$

As because I^{2} is an ideal of F^{2},

$$
\left((n k)^{-s}\left\{f\left(q_{E}\left(r_{n k}\right)\right)\right\}^{p_{n k}}(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right) \in I^{2}
$$

Further normality of I^{2} implies

$$
\left((n k)^{-2 s}\left\{f\left(q_{E}\left(r_{n k} x_{n k}\right)\right)\right\}^{p_{n k}}\right) \in I^{2}
$$

and hence $r x \in I^{2}(E, p, f, s)$.
Similarly it can be shown that $x r \in I^{2}(E, f, s)$ which completes the proof.
Theorem 5.3. If I^{2} is a subspace of ℓ_{2}^{∞}, for any unbounded function $f, I^{2}(E, p, f, s)$ is an ideal of $\ell_{2}^{\infty}(E, p, f, s)$.

Proof. Let $x=\left(x_{n k}\right) \in I^{2}(E, p, f, s)$ and $\ell=\left(\ell_{n k}\right) \in \ell_{2}^{\infty}(E, p, f, s)$. So

$$
\begin{equation*}
\sup _{n, k}(n k)^{-s}\left\{f\left(q_{E}\left(\ell_{n k}\right)\right)\right\}^{p_{n k}}<\infty \tag{5.5}
\end{equation*}
$$

But f is unbounded and in order to hold (5.5), it follows that $\ell=\left(\ell_{n k}\right) \in \ell_{2}^{\infty}(E)$.
Let

$$
T=\sup _{n, k} q_{E}\left(\ell_{n k}\right) .
$$

Then

$$
\begin{aligned}
(n k)^{-s}\left\{f\left(q_{E}\left(\ell_{n k} x_{n k}\right)\right)\right\}^{p_{n k}} & \leq(n k)^{-s}\left\{f\left(q_{E}\left(\ell_{n k}\right) q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq(n k)^{-s}\left\{f\left(T q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}} \\
& \leq(1+[T])^{H}(n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}
\end{aligned}
$$

Hence by the normality of I^{2}, it follows that $\ell x \in I^{2}(E, p, f, s)$.
Similarly we can show that $x \ell \in I^{2}(E, p, f, s)$.

6. Statistical convergence and strongly $\left(p_{n k}\right)$-Cesáro summability

The concepts of Cesáro summability and strongly p-Cesáro summability for double sequences are introduced by Moricz [8] while the notion of statistical convergence for double sequences has been discussed by Mursaleen et al. [9].

Mursaleen et al. 9] first introduced and extended the concept of statistical convergence for double sequences of real or complex numbers after defining the analogue concept of natural density for double sequences as follows:

Let $\mathrm{K} \subseteq \mathbb{N} \times \mathbb{N}$ be a two dimensional set of positive integers and let

$$
K(n, m)=C(\{(i, j): i \leq n \text { and } j \leq m\})
$$

where $C(A)$ denotes the cardinality of the set A.

If the sequence $\left(\frac{K(n, m)}{n m}\right)$ has a limit in Pringsheim's sense [1], then we say that K has double natural density $\delta_{2}(K)$ and is written as

$$
\delta_{2}(K)=P-\lim _{n, m} \frac{K(n, m)}{n m}
$$

Mursaleen et al. 9] defined analogously the statistical convergence and statistical Cauchy convergence for double sequences $x=\left(x_{n k}\right)$ as follows:

Definition 6.1. A real double sequence $x=\left(x_{i j}\right)$ is said to be statistically convergent to the number ℓ, if for each $\epsilon>0$, the set

$$
\left\{(i, j): i \leq n \text { and } \mathrm{j} \leq \mathrm{m}:\left|\mathrm{x}_{\mathrm{ij}}-\ell\right| \geq \epsilon\right\}
$$

has double natural density zero in the Pringsheim's sense [1], i.e.,

$$
P-\lim _{m, n} \frac{1}{m n} C\left(\left\{(i, j): i \leq n \& j \leq m,\left|x_{i j}-\ell\right| \geq \epsilon\right\}\right)=0
$$

and this is denoted as $\mathrm{st}_{2}-\lim _{i, j} x_{i j}=\ell$. We denote the set of all statistically convergent sequences (in Pringsheim's sense) by $s t_{2}$.

Definition 6.2. A real double sequence $x=\left(x_{i j}\right)$ is said to be statistically Cauchy, if for each $\epsilon>0$ there exist $A=A(\epsilon)$ and $B=B(\epsilon)$ such that for all $\mathrm{i}, \mathrm{p} \geq \mathrm{A}, \mathrm{j}, \mathrm{q} \geq \mathrm{B}$, the set

$$
\left\{(i, j): i \leq r \text { and } \mathrm{j} \leq \mathrm{s}:\left|\mathrm{x}_{\mathrm{ij}}-\mathrm{x}_{\mathrm{pq}}\right| \geq \epsilon\right\}
$$

has double natural density zero in Pringsheim's sense.
In this section, we have extended the concepts of statistical convergence and Cesárosummability to the generalized vector valued double sequence space $F^{2}(E, p, f, s)$ as follows:

Definition 6.3. A vector valued double sequence $\mathrm{x}=\left(x_{i j}\right) \in F^{2}(E, p, f, s)$ is said to be statistically convergent to L if for each $\epsilon>0$, the set

$$
\left\{(i, j), i \leq n, j \leq k:(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-L\right)\right)\right\}^{p_{i j}} \geq \epsilon\right\}
$$

has double natural density zero.
In this case we write $x_{i j} \xrightarrow{s^{2}(E, p, f, s)} L$. It is easy to check that L is unique.
Definition 6.4. Let $x=\left(x_{i j}\right)$ be a vector valued double sequence in F^{2} (E, p, f, s) and $p=\left(p_{i j}\right)$ be a sequence of strictly positive real numbers. Then $x=\left(x_{i j}\right)$ is said to be strongly $\left(p_{i j}\right)$-Cesáro-type summable to ℓ if

$$
\lim _{n, k \rightarrow \infty} \frac{1}{n k} \sum_{i=1}^{n} \sum_{j=1}^{k}\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right\}^{p_{i j}}\right]=0\right.
$$

Note 6.1. Let $s_{E, p, f, s}^{2}, w_{E, p, f, s}^{2}$ denote the space of all statistically convergent vector valued double sequences and the space of all strongly ($p_{i j}$)-Cesáro-type summable vector valued double sequences respectively.

Theorem 6.1. A vector valued double sequence $x=\left(x_{i j}\right) \in F^{2}(E, p, f, s)$ is statistically convergent to ℓ if it is strongly $\left(p_{i j}\right)$-Cesáro-type suummable to ℓ.

Proof. Let

$$
I_{1}(\epsilon)=\left\{(i, j), i \leq n, j \leq k:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\}
$$

Let us assume that $x=\left(x_{i j}\right)$ is strongly $\left(p_{i j}\right)$-Cesáro suummable to ℓ. Then

$$
\begin{aligned}
& \frac{1}{n k} \sum_{i=1}^{n} \sum_{j=1}^{k}\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \\
& \quad=\frac{1}{n k}\left[\sum_{(i, j) \in I_{1}}\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]+\sum_{(i, j) \notin I_{1}}\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]\right. \\
& \quad \geq \frac{1}{n k} \sum_{(i, j) \in I_{1}}\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \\
& \quad \geq \epsilon \frac{1}{n k} C\left(\left\{(i, j) \in \mathbb{N} \times \mathbb{N}, i \leq n, j \leq k:\left[(n k)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\}\right)
\end{aligned}
$$

implies that $x=\left(x_{i j}\right)$ is statistically convergent to ℓ.
Theorem 6.2. $w_{E, p, f, s}^{2} \cap \ell_{\infty}^{2}(E, p, f, s)=s_{E, p, f, s}^{2} \cap \ell_{\infty}^{2}(E, p, f, s)$, where $\ell_{\infty}^{2}(E, p, f, s)=\left\{x=\left(x_{n k}\right) \in S_{2}(E): x_{n k} \in E\right.$ and $\left.\left((n k)^{-s}\left\{f\left(q_{E}\left(x_{n k}\right)\right)\right\}^{p_{n k}}\right) \in \ell_{\infty}^{2}\right\}$.

Proof. Let $x=\left(x_{i j}\right) \in s_{E, p, f, s}^{2} \cap \ell_{\infty}^{2}(E, p, f, s)$ and let

$$
I_{2}(\epsilon)=\left\{(i, j), i \leq n, j \leq k:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right\}^{p_{i j}}\right)\right] \geq \frac{\epsilon}{2}\right\}
$$

Let

$$
T=\sup _{i, j}\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]
$$

Since $x=\left(x_{i j}\right)$ is bounded statistically convergent, we can choose N such that for all $n, k \geq N$,

$$
\frac{1}{n k} C\left(\left\{(i, j) i \leq n, j \leq k:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \frac{\epsilon}{2}\right\}\right)<\frac{\epsilon}{2 T}
$$

Thus

$$
\begin{aligned}
& \frac{1}{n k} \sum_{i=1}^{n} \sum_{j=1}^{k}\left[(I j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \\
& =\frac{1}{n k} \sum_{(i, j) \in I_{2}(\epsilon)}\left[(I j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]+\frac{1}{n k} \sum_{(i, j) \notin I_{2}(\epsilon)}\left[(I j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \\
& \quad<\frac{1}{n k} n k \frac{\epsilon}{2 T} T+\frac{1}{n k} n k \frac{\epsilon}{2}=\epsilon
\end{aligned}
$$

Hence $x=\left(x_{i j}\right)$ is strongly $\left(p_{i j}\right)$-Cesáro-type summable to ℓ.
We have proved more generalized form of some well known results of Mursaleen et al. [2003] regarding statistical convergence as follows:

Theorem 6.3. A vector valued double sequence $x=\left(x_{i j}\right)$ in $F^{2}(E, p, f, s)$ is statistically convergent to a number ℓ if and only if there exists a subset $R=\{(i, j)\} \subseteq N \times N$, $i, j=1,2, \ldots$ such that $\delta_{2}(R)=1$ and

$$
\lim _{\substack{i, j \rightarrow \infty \\(i, j) \in R}} q_{E}\left(x_{i j}-\ell\right)=0
$$

Proof. Let $x=\left(x_{i j}\right)$ be statistically convergent to ℓ.
Let

$$
R_{\eta}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq 1 / \eta\right\}
$$

and

$$
T_{\eta}=\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]<1 / \eta\right\}
$$

$(\eta=1,2, \ldots)$
Then $\delta_{2}\left(R_{\eta}\right)=0$. Again, $\left(T_{i}\right)$ is a sequence of sets such that $T_{i} \supseteq T_{i+1}$ and $\delta_{2}\left(T_{\eta}\right)=$ $1, \eta=1,2, \ldots$. Now, we have to show that for $(i, j) \in T_{\eta},\left(x_{i j}\right)$ is convergent to ℓ.

Now, if possible, let $x=\left(x_{i j}\right)$ be not convergent to ℓ, for all $(i, j) \in T_{\eta}$.
Then there is a $\epsilon>0$ such that, for infinitely many i, j,

$$
\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon
$$

Let

$$
T_{\epsilon}=\left\{(i, j):\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]<\epsilon\right\}
$$

where $\epsilon>1 / \eta$. Then $\delta_{2}\left(T_{\epsilon}\right)=0$.
Since $T_{\eta} \subseteq T_{\epsilon}$, it follows that $\delta_{2}\left(T_{\eta}\right)=0$, a contradiction. Thus $x=\left(x_{i j}\right)$ is convergent to ℓ.

Conversely, suppose that there exists a subset $\mathrm{R}=\{(\mathrm{i}, \mathrm{j})\} \subseteq N \times \mathrm{N}$ such that $\delta_{2}(\mathrm{R})=1$ and

$$
\lim _{i, j \rightarrow \infty} q_{E}\left(x_{i j}-\ell\right)=0
$$

So there exists a + ve integer N_{0} such that for every $\epsilon>0$,

$$
\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]<\epsilon
$$

for all $i, j \geq N_{0}$.
Now,

$$
\begin{aligned}
R_{\epsilon} & =\left\{(i, j) \in \mathbb{N} \times \mathbb{N}:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\} \\
& \subseteq \mathbb{N} \times \mathbb{N}-\left\{\left(n_{N_{0}+1}, k_{N_{0}+1}\right),\left(n_{N_{0}+2}, k_{N_{0}+2}\right), \ldots,\right\}
\end{aligned}
$$

Then

$$
\delta_{2}\left(R_{\epsilon}\right) \leq 1-\delta_{2}\left(\left\{\left(n_{N_{0}+1}, k_{N_{0}+1}\right),\left(n_{N_{0}+2}, k_{N_{0}+2}\right), \ldots,\right\}\right)=1-1=0
$$

Consequently x is statistically convergent to ℓ.
Coroloary 6.1. If $s_{E, f, p, s}^{2}-\lim x_{i j}=\ell$, then there exists a sequence $y=\left(y_{i j}\right)$ such that $\lim _{i, j} y_{i j} \stackrel{q_{E}}{=} \ell$ and $\delta_{2}\left(\left\{(i, j): x_{i j} \neq y_{i j}\right\}\right)=1$ i.e., $x_{i j}=y_{i j}$ for all most all i, j.

Theorem 6.4. The set $s_{E, f, p, s}^{2} \cap \ell_{\infty}^{2}(E, p, f, s)$ is a closed linear subspace of the normed linear space $\ell_{\infty}^{2}(E, p, f, s)$.

Proof. Let $x^{(m n)}=\left(x_{i j}^{(m n)}\right)$ be any Cauchy sequence in the space $s_{E, f, p, s}^{2} \cap \ell_{\infty}^{2}(E, p$, $f, s)$. Let $x^{(m n)} \rightarrow x \in \ell_{\infty}^{2}(E, p, f, s)$. Since $x^{(m n)} \in s_{E, f, p, s}^{2}$, there exist $a_{m n} \in E$ such that $s_{E, f, p, s}^{2}-\lim _{i, j} x_{i j}^{(m n)}=a_{m n}$ for $m, n=1,2, \ldots$..

Since $x^{(m n)} \rightarrow x$, for every $\epsilon>0$, there exist a positive integer $n_{0} \in \mathbb{N}$ such that

$$
\begin{equation*}
g\left(x^{(m n)}-x^{(p q)}\right)<\frac{\epsilon}{3} \tag{6.1}
\end{equation*}
$$

for every $m, p \geq n_{0}, n, q \geq n_{0}$, where g denotes the norm.
By Theorem 6.3. there exist subsets K_{1} and K_{2} of $\mathbb{N} \times \mathbb{N}$ with $\delta_{2}\left(K_{1}\right)=1=\delta_{2}\left(K_{2}\right)$ and

$$
\begin{equation*}
\lim _{\substack{i, j \rightarrow \infty \\(i, j) \in K_{1}}} x_{i j}^{(m n)} \stackrel{g}{=} a_{m n} \text { and } \lim _{\substack{i, j \rightarrow \infty \\(i, j) \in K_{2}}} x_{i j}^{(p q)} \stackrel{g}{=} a_{p q} \tag{6.2}
\end{equation*}
$$

We choose $\left(k_{1}, k_{2}\right) \in K_{1} \cap K_{2}$ (where $\delta_{2}\left(K_{1} \cap K_{2}\right)=1$).
Then by (6.2) we have

$$
\begin{equation*}
g\left(x_{k_{1} k_{2}}^{(m n)}-a_{m n}\right)<\frac{\epsilon}{3} \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
g\left(x_{k_{1} k_{2}}^{(p q)}-a_{p q}\right)<\frac{\epsilon}{3} \tag{6.4}
\end{equation*}
$$

Therefore for each $m, p \geq n_{0}$ and $n, q \geq n_{0}$, using (6.1), (6.3) and (6.4) we have

$$
\begin{aligned}
g\left(a_{p q}-a_{m n}\right) & \leq g\left(x_{k_{1} k_{2}}^{(m n)}-a_{m n}\right)+g\left(x_{k_{1} k_{2}}^{(p q)}-a_{p q}\right)+g\left(x_{k_{1} k_{2}}^{(m n)}-x_{k_{1} k_{2}}^{(p q)}\right) \\
& <\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

Hence the sequence $\left(a_{m n}\right)$ is a Cauchy sequence in E. Since E is a Banach space, it is complete. Let

$$
\begin{equation*}
\lim _{m, n} q_{E}\left(a_{m n}\right)=a \tag{6.5}
\end{equation*}
$$

We will show that x is statistically convergent to a.
Since $x^{(m n)}$ is convergent to x, for every $\epsilon>0$, there exist $N_{1}(\epsilon)$ such that for $i, j \geq N_{1}(\epsilon)$,

$$
g\left(x_{i j}^{(m n)}-x_{i j}\right)<\frac{\epsilon}{3}
$$

Also since (6.5) holds, we have for every $\epsilon>0$, there exist $N_{2}(\epsilon)$ such that for $i, j \geq N_{2}(\epsilon)$,

$$
g\left(a_{m n}-a\right)<\frac{\epsilon}{3}
$$

Again since $s_{E, f, p, s}^{2}-\lim _{i, j} x_{i j}^{(m n)}=a_{m n}$, there exists a set $R=\{(i, j)\} \subseteq \mathbb{N} \times \mathbb{N}$, $i, j=1,2, \ldots$ such that $\delta_{2}(R)=1$ and for every $\epsilon>0$, there exist $N_{3}(\epsilon)$ such that for $i, j \geq N_{3}(\epsilon),(i, j) \in R$,

$$
g\left(x_{i j}^{(m n)}-a_{m n}\right)<\frac{\epsilon}{3}
$$

Let

$$
N(\epsilon)=\max \left(N_{1}(\epsilon), N_{2}(\epsilon), N_{3}(\epsilon)\right)
$$

Then for every $\epsilon>0$, there exist $N(\epsilon)$ such that for $i, j \geq N(\epsilon),(i, j) \in R$,

$$
g\left(x_{i j}-a\right) \leq g\left(x_{i j}-x_{i j}^{(m n)}\right)+g\left(x_{i j}^{(m n)}-a_{m n}\right)+g\left(a_{m n}-a\right)<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
$$

Therefore x is statistically convergent to a, i.e., $x \in s_{E, f, p, s}^{2} \cap \ell_{\infty}^{2}(E, p, f, s)$. Hence the proof.

Theorem 6.5. The set $s_{E, p, f, s}^{2} \cap \ell_{\infty}^{2}(E, p, f, s)$ is a nowhere dense in $\ell_{\infty}^{2}(E, p, f, s)$.
Proof. It is shown by T. Neubrum et al. 10] that every closed subspace of an arbitrary linear normed space S different from S is a nowhere dense set in S and using Theorem 5.5.4, it is enough to show that $s_{E, p, f, s}^{2} \cap \ell_{\infty}^{2}(E, p, f, s) \neq \ell_{\infty}^{2}(E, p, f, s)$ in order to establish our claim.

Let us take $F^{2}=\mathbb{R} \times \mathbb{R}, E=\mathbb{R}, p_{i j}=1$. Let $x=\left(x_{i j}\right)$ be such that

$$
x_{i j}= \begin{cases}1 & \text { if } i \text { and } j \text { are even } \\ 0 & \text { otherwise }\end{cases}
$$

Let $f(x)=x$ and $s=0$. Then $x=\left(x_{i j}\right)$ is not statistically convergent, but it is bounded. Hence the result.

Definition 6.5. A sequence $x=\left(x_{i j}\right)$ is said to be statistically Cauchy if for any given $\epsilon>0$, there exist $N_{1}(\epsilon)$ and $N_{2}(\epsilon)$ such that for all $i, r \geq N_{1}$ and $j, t \geq N_{2}$,

$$
\left\{(i, j), i \leq n, j \leq k:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-x_{r t}\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\}
$$

has double natural density zero.
Theorem 6.6. A sequence $x=\left(x_{i j}\right)$ in $F^{2}(E, p, f, s)$ is statistically convergent if and only if it is statistically Cauchy.

Proof. Let us assume that $x=\left(x_{i j}\right)$ in $F^{2}(E, p, f, s)$ is statistically convergent to ℓ. Then for any given $\epsilon>0$, the set

$$
\left.\left\{(i, j), n \leq u, k \leq v:\left[\left((i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right)\right]\right) \geq \epsilon\right\}
$$

has double natural density zero.
Let N_{1} and N_{2} be so chosen that

$$
\left[\left(N_{1} N_{2}\right)^{-s}\left\{f\left(q_{E}\left(x_{N_{1} N_{2}}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon
$$

Now,

$$
\begin{aligned}
& \left\{(i, j), n \leq u, k \leq v:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-x_{N_{1} N_{2}}\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\} \\
& \quad \subseteq\left\{(i, j), n \leq u, k \leq v:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\} \\
& \quad \cup\left\{(i, j), n \leq u, k \leq v:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{N_{1} N_{2}}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\}
\end{aligned}
$$

Hence

$$
\begin{aligned}
& \delta_{2}\left(\left\{(i, j), n \leq u, k \leq v:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-x_{N_{1} N_{2}}\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\}\right) \\
& \quad \leq \delta_{2}\left(\left\{(i, j), n \leq u, k \leq v:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\}\right) \\
& \quad+\delta_{2}\left(\left\{(i, j), n \leq u, k \leq v:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{N_{1} N_{2}}-\ell\right)\right)\right\}^{p_{i j}}\right] \geq \epsilon\right\}\right) \\
& \quad=0
\end{aligned}
$$

where $\delta_{2}(A)$ denotes the double natural density of the set A. Thus $x=\left(x_{i j}\right)$ is statistically Cauchy sequence.

Conversely, let $x=\left(x_{i j}\right)$ be statistically Cauchy sequence, but not statistically convergent. Then

$$
\left.\delta_{2}\left(\left\{(i, j), i \leq n, j \leq k:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-x_{N_{1} N_{2}}\right)\right)\right\}^{p_{i j}}\right]\right) \geq \epsilon\right\}\right)=0
$$

i.e.,

$$
\begin{equation*}
\left.\delta_{2}\left(\left\{(i, j), i \leq n, j \leq k:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-x_{N_{1} N_{2}}\right)\right)\right\}^{p_{i j}}\right]\right)<\epsilon\right\}\right)=1 . \tag{6.6}
\end{equation*}
$$

So, in particular,

$$
\begin{equation*}
\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-x_{N_{1} N_{2}}\right)\right)\right\}^{p_{i j}}\right] \leq 2\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]<\epsilon \tag{6.7}
\end{equation*}
$$

holds if

$$
\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]<\epsilon / 2
$$

If possible, let $x=\left(x_{i j}\right)$ be not statistically convergent. Then

$$
\left.\delta_{2}\left\{(i, j), i \leq n, j \leq k:\left[\left((i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-\ell\right)\right)\right\}^{p_{i j}}\right]\right)<\epsilon\right\}\right)=0 .
$$

Therefore the set

$$
\left.\delta_{2}\left(\left\{(i, j), i \leq n, j \leq k:\left[(i j)^{-s}\left\{f\left(q_{E}\left(x_{i j}-x_{N_{1} N_{2}}\right)\right)\right\}^{p_{i j}}\right]\right)<\epsilon\right\}\right)=0
$$

which contradicts ((6.6). Hence $x=\left(x_{i j}\right)$ is statistically convergent to ℓ.

7. Summary and Conclusion

Considering $F^{2}=\mathbb{R}^{2}, E=\mathbb{R}, p_{i j}=1, f=I, s=0$, all the results of Mursaleen et al. (9) regarding statistical convergence can be obtained from these results. Moreover, if we take $p=\left(p_{i j}\right)$ to be a sequence of constant terms, say, $p_{i j}=p$, where $0<p<1$, then $M=1$ and restricting $F^{2}=E=\mathbb{R}, f=I, s=0$, our ($p_{i j}$)-Cesáro-type summability reduces to p-Cesáro summability defined by Mursaleen et al. [9].

References

[1] A. Pringsheim, Zur Theorie der zweifach unendlichen Zahlenfolgen, Math. Ann. 53 (1900), 289-321.
[2] B. C. Tripathy, Statistically convergent double sequences, Tamkang J. Math. 34(2003), 231237.
[3] T. Bilgin, The sequence space $\ell\left(p, f^{v}, q, s\right)$, Journal of Faculty of Education, 1(1), (1994), 73-82.
[4] A. Gökhan, R. Çolak, The double sequence spaces $c_{2}^{P}(p)$ and $c_{2}^{P B}(p)$, Appl. Math. Comp. 157 (2004), 491-501.
[5] A. Gökhan and R. Çolak, Double sequence space $\ell_{2}^{\infty}(p)$, Appl. Math. Comp., 160(2005), 147-153.
[6] D. Ghosh and P. D. Srivastava, On some vector valued sequence spaces defined using a modulus function, Indian J. Pure Appl. Math, 30(1999), 819-826.
[7] I. J. Maddox, Sequence spaces defined by a modulus, Proc. Camb. Phil. Soc. 100(1986), 161-166.
[8] F. Moricz, Tauberian theorems for Cesaro summable double sequences, Studia Math. 110(1994), 83-96.
[9] E. Mursaleen and O. H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(2003), 223-231.
[10] T. Neubrum, J. Smital and T. Sàlat, On the structure of the space $M(0,1)$, Rev. Roumaine Math. Pures Appl., 13(1968), 337-386.
[11] E. Özturk and T. Bilgin, Strongly summable sequence spaces defined By a modulus, Indian J. Pure Appl. Math., 25 (2004), 621-625.
[12] A. Ratha (P. D. Srivastava), I. I. T, Kharagpur, 1993, Ph.D Thesis.
[13] Tripathy, B. C., Generalized Köthe-Toeplitz dual of some double sequence spaces, communicated, (2004).

Department of Mathematics, Indian Institute of Technology, Kharagpur-721302, India.
E-mail: abasu@maths.iitkgp.ernet.in
E-mail: pds@maths.iitkgp.ernet.in

[^0]: Received June 21, 2004; revised May 15, 2007.
 2000 Mathematics Subject Classification. 40A05, 40C05, 40D05.
 Key words and phrases. Double sequence, modulus function, statistical convergence, Cesárosummability.

[^1]: ${ }^{1}$ see section 1.6 of Chapter 1.

