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GENERALIZED VECTOR VALUED DOUBLE SEQUENCE

SPACE USING MODULUS FUNCTION

ANINDITA BASU AND P. D. SRIVASTAVA

Abstract. In this paper, we introduce a generalized vector valued paranormed double sequence

space F 2(E, p, f, s), using modulus function f , where p = (pnk) is a sequence of non-negative real

numbers, s ≥ 0 and the elements are chosen from a seminormed space (E, qE). Results regarding

completeness, normality, K2-space, co-ordinatewise convergence etc. are derived. Further, a

study of multiplier sets, ideals, notion of statistical convergence and (pnk)-Cesáro summability

in the space F 2(E, p, f, s) is also made.

1. Introduction & Motivation

Ratha and Srivastava [12] and Ghosh and Srivastava [6] introduced and studied gen-
eralized classes of composite vector valued single sequence spaces F(Ek, Λ) and F(Ek, f)
respectively, which are defined as

F (Ek, Λ) =
{

x = (xk) : xk ∈ Ek for each k and (gEk
(vkxk)) ∈ F

}

and
F (Ek, f) =

{

x = (xk) : xk ∈ Ek and the sequence (f(gEk
(xk)) ∈ F

}

,

where F is a normal sequence space with a monotone paranorm gF , (Ek, gEk
) is Banach

space over the field of complex numbers C, f is a modulus function and Λ(z) =
∑

k
zk

νk
,

ν = (νk) is a sequence of non-zero complex numbers satisfying

ν = lim inf
k→∞

|νk|
1
k , 0 < ν ≤ ∞.

With suitable topologies, the authors have investigated various topological properties for
these spaces. The study of these spaces includes many known spaces as particular cases.
For example, by specifying F , E & f , one can obtain w0(f) & w∞(f) of Maddox [7],
w0(f, p) & w∞(f, p) of Bilgin [3], w(f) of Öztürk & Bilgin [11] and others.

To continue the study, we introduce a new space F 2(E, p, f, s) of vector valued double
sequences which unifies some of the earlier classes on double sequences as particular cases.
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Also, some important results have been derived on various aspects of double sequences
which can be treated as generalization of the results derived by Gökhan et al. ([5] [4])
and Mursaleen et al. [9].

2. Sequence space F 2(E, p, f, s)

Let (E, qE) be a seminormed space over the complex field C. Let S2(E) denote the
linear space of all double sequences x = (xnk) with xnk ∈ E under the usual coordinate-
wise addition and scalar multiplication. Let F 2 be a normal scalar double sequence space
with monotone paranorm gF 2 such that co-ordinatewise convergence implies convergence
in paranorm gF 2 , i.e.,

aj,l
nk → 0(j, l → ∞) for each n, k =⇒ gF 2(aj,l) → 0(j, l → ∞) (2.1)

where (aj,l
nk) = aj,l ∈ F 2 for each j and l ∈ N.

Throughout this chapter, by a convergent double sequence we mean a convergent in
Pringsheim’s sense.1

Let f be a modulus function and p=(pnk) be a sequence of strictly positive real
numbers and s ≥ 0. We introduce a new class F 2(E, p, f, s) of vector valued double
sequences as follows:

F 2(E, p, f, s) =
{

x = (xnk) ∈ S2(E) : xnk ∈ E for each n, k ∈ N and the sequence
(

(nk)−s
{

f
(

qE(xnk)
)}pnk

)

∈ F 2
}

. (2.2)

Further, we define a topology on F 2(E, p, f, s) by a paranorm g which is given by

g(x) = gF 2

[

(nk)−s
{

f
(

qE(xnk)
)}pnk/M]

, for x = (xnk) ∈ F 2(E,p,f,s) (2.3)

where M=max(1, H), H = supn,k pnk < ∞ and inf pnk > 0.
It is seen that F 2(E, p, f, s) turns out to be a complete paranormed space of vector valued
double sequences.

It can also be seen that for suitable choice of the sequence space F 2, E and the
modulus function f, the space F 2(E, p, f, s) includes many of the known scalar as well as
vector valued sequence spaces as particular cases.

Application:

1. If we take E = C, f(x) = x, s = 0 and F 2 = ℓ∞2 , the space F 2(E, p, f, s) gives rise
the space ℓ∞2 (p) of Gökhan et al. [5].

2. If we take E = C, f(x) = x, s = 0 and F 2 = c2, the space F 2(E, p, f, s) gives rise
the space cP

2 (p) of Gökhan et al. [4].

1see section 1.6 of Chapter 1.
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3. If we take E = C, f(x) = x, s = 0 and F 2 = c2 ∩ ℓ∞2 , the space F 2(E, p, f, s) gives

rise the space cPB
2 (p) of Gökhan et al.[4].

4. If we take E = C, f(x) = x, s = 0, pnk ≡ 1 and F 2 = w2(p), ℓ∞2 , c2, c2
0, , the

space F 2(E, p, f, s) gives rise the spaces of Tripathy [13].

3. Main Results

Theorem 3.1. F 2(E, p, f, s) is a linear space, where p = (pnk) is a bounded sequence

of strictly positive real numbers & inf pnk > 0.

Proof. Let x=(xnk), y=(ynk) ∈ F 2(E, p, f, s) and λ, µ ∈ C. Then

(nk)−s
{

f
(

qE(λxnk + µynk)
)}pnk

≤ (nk)−s
{

f
(

qE(λxnk) + qE(µynk)
)}pnk

≤ (nk)−s
{

f
(

qE(λxnk)
)

+ f
(

qE(µynk)
)}pnk

≤ D(nk)−s
[{

f
(

|λ|qE(xnk)
)}pnk

+
{

f
(

|µ|qE(ynk)
)}pnk

]

≤ D(1 + [|λ|])H(nk)−s
{

f
(

qE(xnk

)}pnk

+ D(1 + [|µ|])H(nk)−s
{

f
(

qE(ynk

)}pnk

where D=max(1, 2H−1). Since F2 is normal, λx + µy ∈ F 2(E, p, f, s).

Theorem 3.2. F 2(E, p, f, s) is a paranormed space under the paranorm g given

by (2.3), where p = (pnk) is a bounded sequence of strictly positive real numbers &

inf pnk > 0.

Proof. It is clear from the definition of g that g(θ̄) = 0 and g(x) = g(−x), where

θ̄ is the null element. Again taking λ = 1, µ = 1 in the Theorem 3.1 and the fact that

gF 2 is a monotone paranorm on F 2, we get g(x+y)≤ g(x)+g(y). It is left to prove the

continuity of scalar multiplication under g.

Suppose {λm} is a sequence of scalars such that λm → λ as m → ∞ and let xj,l g
→

x as j, l → ∞. To show g(λmxj,l − λx) → 0 as j, l → ∞ where xj,l = (xj,l
nk) ∈

F 2(E, p, f, s).

Let

ajm
nk = (nk)−s

{

f
(

|λm − λ|qE(xnk)
)}pnk/M

. (3.1)

As λm → λ as m → ∞, for sufficiently large m, we can assume that |λm − λ| < 1.
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Consider

g(λmxj,l − λx) = gF 2

[(

(nk)−s
{

f
(

qE

[

λmxj,l
nk − λxnk

])}pnk/M)]

≤ gF 2

[(

(nk)−s
{

f
(

qE

[

(λm − λ)(xj,l
nk − xnk)

+ λ(xj,l
nk − xnk) + (λm − λ)xnk

])}pnk/M)]

≤ gF 2

[(

(nk)−s
{

f
(

qE

[

(λm − λ)(xj,l
nk − xnk)

])}pnk/M)]

+ gF2

[

(nk)−s
{

f
(

qE

[

λ(xj,l
nk − xnk)

])}pnk/M]

+ gF 2

[(

(nk)−s
{

f
(

qE

[

(λm − λ)xnk

])}pnk/M)]

= gF 2

[(

(nk)−s
{

f
(

|λm − λ|qE

[

xj,l
nk − xnk

])}pnk/M)]

+ gF 2

[(

(nk)−s
{

f
(

|λ|qE

[

xj,l
nk − xnk

])}pnk/M)]

+ gF 2

[(

(nk)−s
{

f
(

|λm − λ|qE

[

xnk

])}pnk/M)]

≡ I+II+III. (3.2)

Since λm → λ as m → ∞, so

I ≡ gF 2

[(

(nk)−s
{

f
(

|λm − λ|qE

[

xj,l
nk − xnk

])}pnk/M)]

≤ gF 2

[(

(nk)−s
{

f
(

qE

[

xj,l
nk − xnk

])}pnk/M)]

= g(xj,l − x).

Again since f(λ) < (1 + [|λ|])f(1), so as m → ∞

II ≡ gF 2

[(

(nk)−s
{

f
(

|λ|qE

[

xj,l
nk − xnk

])}pnk/M)]

≤ gF 2

[(

(nk)−s
{

(1 + [|λ|])f
(

qE

[

xj,l
nk − xnk

])}pnk/M)]

= (1 + [|λ|])g(xj,l − x).

Hence from (3.2) using (3.1) we get

g(λmxj,l − λx)

= g(xj,l − x) + (1 + [|λ|])g(xj,l − x) +
[

gF 2(am
nk)

]

Also, since

f
(

|λm − λ|qE(xnk)
)

< f
(

qE(xnk)
)
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holds because |λm −λ| < 1 for sufficiently large m and F 2 is normal so am = (am
nk) ∈ F 2

for sufficiently large m. Obviously for each n, k, am
nk → 0 as m → ∞. So by the

condition (2.1), we get gF 2(am
nk) → 0 for sufficiently large m. Again II and III tend to

zero as j, l → ∞ & m → ∞, because λm → λ & xj,l g
→ x. Hence we get

g(λmxj,l − λx) → 0 as m → ∞ and j, l → ∞.

Hence the proof.

Theorem 3.3. F 2(E,p,f,s) is a K2-space if F 2 is a K2-space.

Proof. Define Pnk : F 2(E, p, f, s) → E as Pnk(x) = xnk, n, k = 1, 2, 3, . . ., where
x = (xnk) ∈ F 2(E, p, f, s). To show Pnk is continuous.

Let (xj,l) = ((xj,l
nk)) be a sequence in F 2(E,p,f,s) such that

g(xj,l) → 0 as j, l → ∞.

Since F 2 is a K2-space, g(xj,l) → 0 as j, l → ∞ implies that

(nk)−s
{

f
(

qE(xj,l
nk)

)}pnk/M

→ 0 as j, l → ∞, for each n,k.

We claim that qE(xj,l
nk) → 0 as j, l → ∞, because f is continuous and increasing. This

implies

qE

(

Pnk(xj,l)
)

= qE

(

xj,l
nk

)

→ 0 for j, l → ∞.

Hence the proof.
Theorem 3.4. F 2(E,p,f,s) is a normal space.

Proof. The proof is straightforward, so we omit it.

Theorem 3.5. F 2(E,p,f,s) is complete with respect to the paranorm g if (E, qE) is

complete, and F 2 is normal K2-space, where (pnk) is bounded sequence of strictly positive

real numbers such that inf pnk > 0.

Proof. Let xj,l = (xj,l
nk) be a Cauchy sequence in F 2(E, p, f, s). So

g(xj,l − xr,t) → 0 as j, l, r, t → ∞

i.e.,

gF2

[(

(nk)−s
{

f
(

qE(xj,l
nk − xr,t

nk)
)}pnk/M)]

→ 0 as j, l, r, t → ∞.

Since F2(E,p,f,s) is a K2 space and f is continuous, so for each n,k

(

nk
)−s/M

qE

(

xj,l
nk − xr,t

nk

)

→ 0 as j, l, r, t → ∞.
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Hence for fixed n, k

qE

(

xj,l
nk − xr,t

nk

)

→ 0 as j, l, r, t → ∞.

This implies that for fixed n, k, (xj,l
nk) behaves as a Cauchy sequence in E. But (E, qE)

is complete, so there exist x = (xnk) ∈ E such that

qE

(

xj,l
nk − xnk

)

→ 0 as j, l → ∞.

So
aj,l

nk → 0( as j, l → ∞) for each n, k (since f is continuous)

where

aj,l
nk = (nk)−s

{

f
(

qE(xj,l
nk − xnk)

)}pnk/M

, n, k = 1, 2, . . . (3.3)

Since for each n, k, aj,l
nk → 0 as j, l → ∞, so choose δj,l

nk such that

aj,l
nk ≤ δj,l

nk(nk)−s
{

f
(

qE(xj,l
nk)

)}pnk/M

where 0 < δj,l
nk < 1. (3.4)

Clearly aj,l ∈ F 2, for each m, because F 2 is normal.
Hence,

gF2

[(

(nk)−s
{

f
(

qE(xj,l
nk − xnk)

)}pnk/M)]

→ 0 as j, l → ∞

i.e., g(xj,l − x) → 0 as j, l → ∞.
Now using (3.3) and (3.4) we get

(nk)−s
{

f
(

qE(xnk)
)}pnk/M

≤ (δj,l
nk + 1)(nk)−s

{

f
(

qE(xj,l
nk)

)}pnk/M

.

Since F 2 is normal space and xj,l ∈ F 2(E,p,f,s), x = (xnk) ∈ F 2(E,p,f,s). Hence the
proof.

Theorem 3.6. Let f be a modulus function such that f(uv) = f(u)f(v) where u,
v are positive scalars. Let E be a commutative normal sequence algebra under ◦, where
xnk ◦ ynk = xnkynk and F 2 is a normal sequence algebra under the multiplication ◦′,
defined as (ank) ◦′ (bnk) = (ankbnk), where (ank), (bnk) ∈ F 2. Then F 2(E, p, f, s) is a
commutative sequence algebra.

Proof. Let x = (xnk) and y = (ynk) ∈ F 2(E, p, f, s). Consider

(nk)−2s
{

f
(

qE(xnk ◦ ynk)
)}pnk

= (nk)−2s
{

f
(

qE(xnkynk)
)}pnk

≤ (nk)−2s
{

f
(

qE(xnk)qE(ynk)
)}pnk

(since E is a normed algebra)

= (nk)−2s
{

f
(

qE(xnk)
)

f
(

qE(ynk)
)}pnk

(by given condition)

= (nk)−s
{

f
(

qE(xnk)
)}pnk

(nk)−s
{

f
(

qE(ynk)
)}pnk

∈ F 2
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as x, y ∈ F 2(E, p, f, s), which implies
(

xnkynk

)

∈ F 2(E, p, f, s). So F 2(E, p, f, s) is a

sequence algebra. Further, it can be seen easily that F 2(E, p, f, s) is a commutative

sequence algebra as E is commutative.

Remark 3.1. The condition inf pnk > 0 is not required when F 2 ≡ c2
0, c2, ℓ2

p, p ≥ 1.

But for F 2 ≡ ℓ2
∞ the condition inf pnk > 0 is required. For the sake of completeness we

have chosen this condition in general.

Now, we prove the following lemma which will be used in sequel:

Lemma 3.1. Let f1, f2 be modulus functions and 0 < δ < 1. Let f1(t) > δ for t ≥ 0,

then

(f2 ◦ f1)(t) ≤
2f2(1)

δ
f1(t).

Proof. Since for f1(t) > δ,

f1(t) <
f1(t)

δ
< 1 +

[f1(t)

δ

]

we have

(f2 ◦ f1)(t) ≤
(

1 + [
f1(t)

δ
]
)

f2(1) ≤ 2
f1(t)

δ
f2(1).

Some inclusion relations which are known for single sequence spaces are extended anal-

ogously to double sequence spaces as follows:

Theorem 3.7. Let F 2 be a normal sequence space. Then the following inequalities

hold:

1. If supt>0
f1(t)
f2(t) < ∞, then F 2(E, p, f2, s) ⊆ F 2(E, p, f1, s).

2. F 2(E, p, f1, s)
⋂

F 2(E, p, f2, s) ⊆ F 2(E, p, f1 + f2, s).

3. F 2(E, p, f1, s) ⊆ F 2(E, p, f2 ◦ f1, s) if (nk)−s ∈ F 2, where (f2 ◦ f1)(t) = f2(f1(t))

and inf pnk > 0 & sup pnk < ∞.

4. If s1 ≤ s2, then F 2(E, p, f1, s1) ⊆ F 2(E, p, f1, s2).

Proof (i). Let x = (xnk) ∈ F 2(E, p, f2, s).

Since supt>0
f1(t)
f2(t) < ∞ is given, ∃ L > 0 such that f1(t) ≤ Lf2(t) for all t > 0 and

hence

(nk)−s
{

f1

(

qE(xnk)
)}pnk

≤ max
(

1, LH
)

(nk)−s
{

f2

(

qE(xnk)
)}pnk

for each n and k.

Since F 2 is normal, so the result follows.
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Proof (ii). Let x = (xnk) ∈ F 2(E, p, f1, s)
⋂

F 2(E, p, f2, s). Consider

(nk)−s
{

(f1 + f2)
(

qE(xnk)
)}pnk

= (nk)−s
[{

f1

(

qE(xnk)
)}

+
{

f2

(

qE(xnk)
)}]pnk

≤ D(nk)−s
[{

f1

(

qE(xnk)
)}pnk

+
{

f2

(

qE(xnk)
)}pnk

]

for each n and k and D=max(1, 2H−1). Result follows as F 2 is normal sequence space.

Proof (iii). Let us choose δ such that 0 < δ < 1. Let

N1 =
{

(n, k) ∈ N × N : f1

(

qE(xnk)
)

≤ δ
}

N2 =
{

(n, k) ∈ N × N : f1

(

qE(xnk)
)

> δ
}

.

If (n,k)∈ N1, then

(f2 ◦ f1)
(

qE(xnk)
)

≤ f2(δ).

Hence

(nk)−s
(

(f2 ◦ f1)
(

qE(xnk)
))pnk

≤ η1(nk)−s, (3.5)

where

η1 = max
[{

f2(δ)
}inf pnk

,
{

f2(δ)
}sup pnk

]

.

Again for (n,k)∈ N2,

(nk)−s
(

(f2 ◦ f1)
(

qE(xnk)
))pnk

≤ (nk)−s
[2f2(1)

δ
f1

(

qE(xnk)
)]pnk

(by Lemma 3.1)

≤ η2(nk)−s
[

f1

(

qE(xnk)
)]pnk

(3.6)

where

η2 = max
{{2f2(1)

δ

}inf pnk

,
{2f2(1)

δ

}sup pnk
}

.

Let η = max(η1, η2).

From (3.5) and (3.6) we get for (n, k) ∈ N1 ∪ N2,

(nk)−s
(

(f2 ◦ f1)
(

qE(xnk)
))pnk

≤ η
[

(nk)−s + (nk)−s
[

f1

(

qE(xnk)
)]pnk

]

.

Since ((nk)−s) ∈ F 2 and F 2(E, f, p, s) is normal, so the result follows.

Proof (iv). For s1 ≤ s2

(nk)−s2

[

f
(

qE(xnk)
)]pnk

≤ (nk)−s1

[

f
(

qE(xnk)
)]pnk

for every n, k.
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By using the normality of F 2, the result is obtained.

4. Multiplier set of F 2(E, p, f, s)

This section deals with some inclusion relations between the set F 2(E, p, f, s) and its
multiplier set.

We define multiplier set of F 2(E, p, f, s) as

M2[F 2(E, p, f, s)]

=
{

a = (ank) ∈ E :
(

ankxnk

)

∈ F 2(E, p, f, s) for all x = (xnk) ∈ F 2(E, p, f, s)
}

where E is taken as normed algebra. Now, we prove the following theorems:

Theorem 4.1. Let E be normed algebra and F 2 be a normal sequence space. Then

ℓ∞2 (E) ⊆ M2[F 2(E, p, f, s)],

where
ℓ∞2 (E) =

{

a = (ank) : ank ∈ E and sup
n,k

qE

(

ank

)

< ∞
}

.

Proof. Let a = (ank) ∈ ℓ∞2 (E) and x = (xnk) ∈ F 2(E, p, f, s).
Let B= supn,k qE(ank) < ∞. Now,

(nk)−s
{

f
(

qE(ankxnk)
)}pnk

≤ (nk)−s
{

f
(

qE(ank)qE(xnk)
)}pnk

(since E is normed algebra)

< (1 + [B])H(nk)−s
{

f
(

qE(xnk)
)}pnk

where [BH ] denotes the integral part of BH .
Since F2 is normal, this implies (ankxnk) ∈ F 2(E, p, f, s) and consequently (ank) ∈
M2[F 2(E, p, f, s)]. Hence the proof.

Theorem 4.2. For any modulus function satisfying f(αβ) ≤ f(α) + f(β), α, β ∈
[0, ∞),

F 2(E, p, f, s) ⊆ M2[F 2(E, p, f, s)],

where E is a normed algebra.

Proof. Let x = (xnk) ∈ F 2(E, p, f, s). We want to show that x = (xnk) ∈ M2[F 2(E,
p, f, s)], i.e., to show (xnkynk) ∈ F 2(E, p, f, s) for all y = (ynk) ∈ F 2(E, p, f, s).

Consider
qE(xnkynk) ≤ qE(xnk)qE(ynk)

since E is a normed algebra.
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Then

f
(

qE(xnkynk)
)

≤ f
(

qE(xnk)qE(ynk)
)

≤ f
(

qE(xnk)
)

+ f
(

qE(ynk)
)

.

Thus

(nk)−s
{

f
(

qE(xnkynk)
)}pnk

≤ (nk)−s
{

f
(

qE(xnk)
)

+ f
(

qE(ynk)
)}pnk

≤ D(nk)−s
[{

f
(

qE(xnk)
)}pnk

+
{

f
(

qE(ynk)
)}pnk

]

where D=max(1, 2H−1).

This implies xy ∈ F 2(E, p, f, s) and hence x ∈ M2[F 2(E, p, f, s)].

5. Ideals of F 2(E, p, f, s)

Let I2 be a normal subspace of F 2, where F 2 is a sequence algebra. Let E be

commutative normed algebra and S2(E) is the linear space of all sequences x = (xnk)

with xnk ∈ E under the usual coordinatewise addition and scalar multiplication.

I2(E, p, f, s)

=
{

x = (xnk) : xnk ∈ S(E) for each n,k and
(

(nk)−s
{

f
(

qE(xnk)
)}pnk

)

∈ I2
}

It is easy to check that I2(E, p, f, s) is a subspace of F 2(E, p, f, s).

Theorem 5.1. If I2 is closed subspace of F 2 and F 2 is a normal K2-space then for

0 < pnk ≤ 1, I2(E, p, f, s) is a closed subspace of F 2(E,p,f,s).

Proof. It is easy to show that I2(E, p, f, s) is a subspace of F 2(E, p, f, s). Next, to

show it is closed, we take x = (xnk) ∈ I2(E, p, f, s), the closure of I2(E, p, f, s). This

implies the existence of a sequence xj,l =
(

(xj,l
nk)

)

∈ I2(E, p, f, s) such that

g(xj,l − x) → 0 as j, l → ∞

for some x = (xnk) ∈ F 2(E, p, f, s).

Consequently,

gF 2

[(

(nk)−s
{

f
(

qE(xj,l
nk − xnk)

)}pnk
)]

→ 0 as m → ∞. (5.1)

(since M=max(1, sup pnk)=1)

Since F 2 is K2-space and f is continuous at 0, so,

qE(xj,l
nk − xnk) → 0 as j, l → ∞ for each n, k.
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Consider
{

f
(

qE(xj,l
nk)

)}pnk

≤
{

f
(

qE(xj,l
nk − xnk + xnk)

)}pnk

≤
{

f
(

qE(xj,l
nk − xnk)

)

+ f
(

qE(xnk)
)}pnk

≤
{

f
(

qE(xj,l
nk − xnk)

)}pnk

+
{

f
(

qE(xnk)
)}pnk

(as 0 < pnk ≤ 1)

Therefore
{

f
(

qE(xj,l
nk)

)}pnk

−
{

f
(

qE(xnk)
)}pnk

≤
{

f
(

qE(xj,l
nk − xnk)

)}pnk

. (5.2)

Since F 2 is normal and gF 2 is a monotone paranorm, so (5.2) implies that

(

(nk)−s
({

f
(

qE(xj,l
nk)

)}pnk

−
{

f
(

qE(xnk)
)}pnk

))

∈ F 2. (5.3)

So we get from (5.2) and (5.3)

gF 2

[

(nk)−s
({

f
(

qE(xj,l
nk)

)}pnk

−
{

f
(

qE(xnk)
)}pnk

)]

≤ gF 2

[

(nk)−s
{

f
(

qE(xj,l
nk − xnk)

)}pnk
]

= g(xj,l − x)

Using (5.1) we get,

gF 2

[

(nk)−s
({

f
(

qE(xj,l
nk)

)}pnk
)

− (nk)−s
({

f
(

qE(xnk)
)}pnk

)]

→ 0 as m → ∞.

(5.4)

Since I2 is closed in F 2, it is clear from (5.4) that,

(

(nk)−s
{

f
(

qE(xnk)
)}pnk

)

∈ I2.

Hence x = (xnk) ∈ I2(E, p, f, s).

Theorem 5.2. Let I2 be an ideal of F 2. Further, let the modulus function f satisfies
f(uv) = f(u)f(v) where u, v are scalars. Then I2(E, p, f, s) is an ideal of F 2(E, p, f, s).

Proof. For x = (xnk) ∈ I2(E, p, f, s) and r = (rnk) ∈ F 2(E, f, p, s),

(nk)−2s
{

f
(

qE(rnkxnk)
)}pnk

≤ (nk)−2s
{

f
(

qE(rnk)qE(xnk)
)}pnk

= (nk)−s
{

f
(

qE(rnk)
)}pnk

(nk)−s
{

f
(

qE(xnk)
)}pnk

∈ I2

As because I2 is an ideal of F 2,
(

(nk)−s
{

f
(

qE(rnk)
)}pnk

(nk)−s
{

f
(

qE(xnk)
)}pnk

)

∈ I2.
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Further normality of I2 implies

(

(nk)−2s
{

f
(

qE(rnkxnk)
)}pnk

)

∈ I2

and hence rx ∈ I2(E, p, f, s).

Similarly it can be shown that xr ∈ I2(E, f, s) which completes the proof.

Theorem 5.3. If I2 is a subspace of ℓ∞2 , for any unbounded function f , I2(E, p, f, s)

is an ideal of ℓ∞2 (E, p, f, s).

Proof. Let x = (xnk) ∈ I2(E, p, f, s) and ℓ = (ℓnk) ∈ ℓ∞2 (E, p, f, s). So

sup
n,k

(nk)−s
{

f
(

qE(ℓnk)
)}pnk

< ∞ (5.5)

But f is unbounded and in order to hold (5.5), it follows that ℓ = (ℓnk) ∈ ℓ∞2 (E).

Let

T = sup
n,k

qE(ℓnk).

Then

(nk)−s
{

f
(

qE(ℓnkxnk)
)}pnk

≤ (nk)−s
{

f
(

qE(ℓnk)qE(xnk)
)}pnk

≤ (nk)−s
{

f
(

TqE(xnk)
)}pnk

≤ (1 + [T ])H(nk)−s
{

f
(

qE(xnk)
)}pnk

.

Hence by the normality of I2, it follows that ℓx ∈ I2(E, p, f, s).

Similarly we can show that xℓ ∈ I2(E, p, f, s).

6. Statistical convergence and strongly (pnk)-Cesáro summability

The concepts of Cesáro summability and strongly p-Cesáro summability for double

sequences are introduced by Moricz [8] while the notion of statistical convergence for

double sequences has been discussed by Mursaleen et al. [9].

Mursaleen et al. [9] first introduced and extended the concept of statistical con-

vergence for double sequences of real or complex numbers after defining the analogue

concept of natural density for double sequences as follows:

Let K ⊆ N × N be a two dimensional set of positive integers and let

K(n, m) = C
({

(i, j) : i ≤ n and j ≤ m
})

.

where C(A) denotes the cardinality of the set A.
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If the sequence
(

K(n,m)
nm

)

has a limit in Pringsheim’s sense [1], then we say that K

has double natural density δ2(K) and is written as

δ2(K) = P − lim
n,m

K(n, m)

nm

Mursaleen et al. [9] defined analogously the statistical convergence and statistical Cauchy
convergence for double sequences x = (xnk) as follows:

Definition 6.1. A real double sequence x = (xij) is said to be statistically convergent
to the number ℓ, if for each ǫ > 0, the set

{

(i, j) : i ≤ n and j ≤ m : |xij − ℓ| ≥ ǫ
}

has double natural density zero in the Pringsheim’s sense [1], i.e.,

P − lim
m,n

1

mn
C

({

(i, j) : i ≤ n & j ≤ m, |xij − ℓ| ≥ ǫ
})

= 0

and this is denoted as st2− limi,j xij = ℓ. We denote the set of all statistically convergent
sequences (in Pringsheim’s sense) by st2.

Definition 6.2. A real double sequence x = (xij) is said to be statistically Cauchy,
if for each ǫ > 0 there exist A = A(ǫ) and B = B(ǫ) such that for all i, p ≥ A, j, q ≥ B,
the set

{

(i, j) : i ≤ r and j ≤ s : |xij − xpq| ≥ ǫ
}

has double natural density zero in Pringsheim’s sense.

In this section, we have extended the concepts of statistical convergence and Cesáro-
summability to the generalized vector valued double sequence space F 2(E, p, f, s) as
follows:

Definition 6.3. A vector valued double sequence x=(xij) ∈ F 2(E, p, f, s) is said to
be statistically convergent to L if for each ǫ > 0, the set

{

(i, j), i ≤ n, j ≤ k : (ij)−s
{

f
(

qE(xij − L)
)}pij

≥ ǫ
}

has double natural density zero.

In this case we write xij
s2(E,p,f,s)

−→ L. It is easy to check that L is unique.

Definition 6.4. Let x = (xij) be a vector valued double sequence in F 2(E, p, f, s)
and p = (pij) be a sequence of strictly positive real numbers. Then x = (xij) is said to
be strongly (pij)-Cesáro-type summable to ℓ if

lim
n,k→∞

1

nk

n
∑

i=1

k
∑

j=1

[

(ij)−s
{

f
(

qE(xij − ℓ
)}pij

]

= 0.
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Note 6.1. Let s2
E,p,f,s, w2

E,p,f,s denote the space of all statistically convergent vector

valued double sequences and the space of all strongly (pij)-Cesáro-type summable vector

valued double sequences respectively.

Theorem 6.1. A vector valued double sequence x = (xij) ∈ F 2(E, p, f, s) is statisti-

cally convergent to ℓ if it is strongly (pij)-Cesáro-type suummable to ℓ.

Proof. Let

I1(ǫ) =
{

(i, j), i ≤ n, j ≤ k :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ ǫ
}

.

Let us assume that x = (xij) is strongly (pij)-Cesáro suummable to ℓ. Then

1

nk

n
∑

i=1

k
∑

j=1

[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

=
1

nk

[

∑

(i,j)∈I1

[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

+
∑

(i,j)/∈I1

[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥
1

nk

∑

(i,j)∈I1

[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ ǫ
1

nk
C

({

(i, j) ∈ N × N, i ≤ n, j ≤ k :
[

(nk)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ ǫ
})

implies that x = (xij) is statistically convergent to ℓ.

Theorem 6.2. w2
E,p,f,s ∩ ℓ2

∞(E, p, f, s) = s2
E,p,f,s ∩ ℓ2

∞(E, p, f, s), where

ℓ2
∞(E, p, f, s) =

{

x = (xnk) ∈ S2(E) : xnk ∈ E and
(

(nk)−s
{

f
(

qE(xnk)
)}pnk

)

∈ ℓ2
∞

}

.

Proof. Let x = (xij) ∈ s2
E,p,f,s ∩ ℓ2

∞(E, p, f, s) and let

I2(ǫ) =
{

(i, j), i ≤ n, j ≤ k :
[

(ij)−s
{

f
(

qE(xij − ℓ)
}pij

)]

≥
ǫ

2

}

.

Let

T = sup
i,j

[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

.

Since x = (xij) is bounded statistically convergent, we can choose N such that for all

n, k ≥ N ,

1

nk
C

({

(i, j) i ≤ n, j ≤ k :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥
ǫ

2

})

<
ǫ

2T
.
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Thus

1

nk

n
∑

i=1

k
∑

j=1

[

(Ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

=
1

nk

∑

(i,j)∈I2(ǫ)

[

(Ij)−s
{

f
(

qE(xij−ℓ)
)}pij

]

+
1

nk

∑

(i,j)/∈I2(ǫ)

[

(Ij)−s
{

f
(

qE(xij−ℓ)
)}pij

]

<
1

nk
nk

ǫ

2T
T +

1

nk
nk

ǫ

2
= ǫ

Hence x = (xij) is strongly (pij)-Cesáro-type summable to ℓ.
We have proved more generalized form of some well known results of Mursaleen et

al. [2003] regarding statistical convergence as follows:

Theorem 6.3. A vector valued double sequence x = (xij) in F 2(E, p, f, s) is statisti-
cally convergent to a number ℓ if and only if there exists a subset R = {(i, j)} ⊆ N ×N ,
i, j = 1, 2, . . . such that δ2(R)=1 and

lim
i,j→∞
(i,j)∈R

qE(xij − ℓ) = 0.

Proof. Let x = (xij) be statistically convergent to ℓ.
Let

Rη =
{

(i, j) ∈ N × N :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ 1/η
}

and
Tη =

{

(i, j) ∈ N × N :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

< 1/η
}

(η = 1, 2, . . .)
Then δ2(Rη) = 0. Again, (Ti) is a sequence of sets such that Ti ⊇ Ti+1 and δ2(Tη) =
1, η = 1, 2, . . .. Now, we have to show that for (i, j) ∈ Tη, (xij) is convergent to ℓ.

Now, if possible, let x = (xij) be not convergent to ℓ, for all (i, j) ∈ Tη.
Then there is a ǫ > 0 such that, for infinitely many i, j,

[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ ǫ

Let
Tǫ =

{

(i, j) :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

< ǫ
}

where ǫ > 1/η. Then δ2(Tǫ) = 0.
Since Tη ⊆ Tǫ, it follows that δ2(Tη) = 0, a contradiction. Thus x = (xij) is conver-

gent to ℓ.

Conversely, suppose that there exists a subset R=
{

(i,j)
}

⊆ N×N such that δ2(R)=1

and
lim

i,j→∞
qE(xij − ℓ) = 0.
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So there exists a +ve integer N0 such that for every ǫ > 0,
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

< ǫ

for all i, j ≥ N0.
Now,

Rǫ =
{

(i, j) ∈ N × N :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ ǫ
}

⊆ N × N −
{

(nN0+1, kN0+1), (nN0+2, kN0+2), . . . ,
}

.

Then

δ2(Rǫ) ≤ 1 − δ2

({

(nN0+1, kN0+1), (nN0+2, kN0+2), . . . ,
})

= 1 − 1 = 0

Consequently x is statistically convergent to ℓ.

Coroloary 6.1. If s2
E,f,p,s − lim xij = ℓ, then there exists a sequence y = (yij) such

that limi,j yij
qE
= ℓ and δ2

({

(i, j) : xij 6= yij

})

= 1 i.e., xij = yij for all most all i, j.

Theorem 6.4. The set s2
E,f,p,s ∩ ℓ2

∞(E, p, f, s) is a closed linear subspace of the
normed linear space ℓ2

∞(E, p, f, s).

Proof. Let x(mn) = (x
(mn)
ij ) be any Cauchy sequence in the space s2

E,f,p,s ∩ ℓ2
∞(E, p,

f, s). Let x(mn) → x ∈ ℓ2
∞(E, p, f, s) . Since x(mn) ∈ s2

E,f,p,s, there exist amn ∈ E such

that s2
E,f,p,s − limi,j x

(mn)
ij = amn for m, n = 1, 2, . . ..

Since x(mn) → x, for every ǫ > 0, there exist a positive integer n0 ∈ N such that

g(x(mn) − x(pq)) <
ǫ

3
(6.1)

for every m, p ≥ n0, n, q ≥ n0, where g denotes the norm.

By Theorem 6.3. there exist subsets K1 and K2 of N×N with δ2

(

K1

)

= 1 = δ2

(

K2

)

and

lim
i,j→∞
(i,j)∈K1

x
(mn)
ij

g
= amn and lim

i,j→∞
(i,j)∈K2

x
(pq)
ij

g
= apq (6.2)

We choose (k1, k2) ∈ K1 ∩ K2 (where δ2

(

K1 ∩ K2

)

= 1).

Then by (6.2) we have

g(x
(mn)
k1k2

− amn) <
ǫ

3
(6.3)

and

g(x
(pq)
k1k2

− apq) <
ǫ

3
(6.4)
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Therefore for each m, p ≥ n0 and n, q ≥ n0, using (6.1), (6.3) and (6.4) we have

g(apq − amn) ≤ g(x
(mn)
k1k2

− amn) + g(x
(pq)
k1k2

− apq) + g(x
(mn)
k1k2

− x
(pq)
k1k2

)

<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

Hence the sequence (amn) is a Cauchy sequence in E. Since E is a Banach space, it is

complete. Let

lim
m,n

qE(amn) = a (6.5)

We will show that x is statistically convergent to a.
Since x(mn) is convergent to x, for every ǫ > 0, there exist N1(ǫ) such that for

i, j ≥ N1(ǫ),

g(x
(mn)
ij − xij) <

ǫ

3

Also since (6.5) holds, we have for every ǫ > 0, there exist N2(ǫ) such that for i, j ≥ N2(ǫ),

g(amn − a) <
ǫ

3

Again since s2
E,f,p,s − limi,j x

(mn)
ij = amn, there exists a set R =

{

(i, j)
}

⊆ N × N,

i, j = 1, 2, . . . such that δ2(R) = 1 and for every ǫ > 0, there exist N3(ǫ) such that for
i, j ≥ N3(ǫ), (i, j) ∈ R,

g(x
(mn)
ij − amn) <

ǫ

3

Let

N(ǫ) = max
(

N1(ǫ), N2(ǫ), N3(ǫ)
)

Then for every ǫ > 0, there exist N(ǫ) such that for i, j ≥ N(ǫ), (i, j) ∈ R,

g(xij − a) ≤ g(xij − x
(mn)
ij ) + g(x

(mn)
ij − amn) + g(amn − a) <

ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ

Therefore x is statistically convergent to a, i.e., x ∈ s2
E,f,p,s ∩ ℓ2

∞(E, p, f, s). Hence the
proof.

Theorem 6.5. The set s2
E,p,f,s ∩ ℓ2

∞(E, p, f, s) is a nowhere dense in ℓ2
∞(E, p, f, s).

Proof. It is shown by T. Neubrum et al. [10] that every closed subspace of an

arbitrary linear normed space S different from S is a nowhere dense set in S and using
Theorem 5.5.4, it is enough to show that s2

E,p,f,s ∩ ℓ2
∞(E, p, f, s) 6= ℓ2

∞(E, p, f, s) in order
to establish our claim.

Let us take F 2 = R × R, E = R, pij = 1. Let x = (xij) be such that

xij =

{

1 if i and j are even

0 otherwise
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Let f(x) = x and s = 0. Then x = (xij) is not statistically convergent, but it is bounded.
Hence the result.

Definition 6.5. A sequence x = (xij) is said to be statistically Cauchy if for any
given ǫ > 0, there exist N1(ǫ) and N2(ǫ) such that for all i, r ≥ N1 and j, t ≥ N2,

{

(i, j), i ≤ n, j ≤ k :
[

(ij)−s
{

f
(

qE(xij − xrt)
)}pij

]

≥ ǫ
}

has double natural density zero.

Theorem 6.6. A sequence x = (xij) in F 2(E, p, f, s) is statistically convergent if
and only if it is statistically Cauchy.

Proof. Let us assume that x = (xij) in F 2(E, p, f, s) is statistically convergent to ℓ.
Then for any given ǫ > 0, the set

{

(i, j), n ≤ u, k ≤ v :
[(

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

)])

≥ ǫ
}

has double natural density zero.
Let N1 and N2 be so chosen that

[

(N1N2)
−s

{

f
(

qE(xN1N2 − ℓ)
)}pij

]

≥ ǫ.

Now,

{

(i, j), n ≤ u, k ≤ v :
[

(ij)−s
{

f
(

qE(xij − xN1N2)
)}pij

]

≥ ǫ
}

⊆
{

(i, j), n ≤ u, k ≤ v :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ ǫ
}

⋃

{

(i, j), n ≤ u, k ≤ v :
[

(ij)−s
{

f
(

qE(xN1N2 − ℓ)
)}pij

]

≥ ǫ
}

Hence

δ2

({

(i, j), n ≤ u, k ≤ v :
[

(ij)−s
{

f
(

qE(xij − xN1N2)
)}pij

]

≥ ǫ
})

≤ δ2

({

(i, j), n ≤ u, k ≤ v :
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

≥ ǫ
})

+δ2

({

(i, j), n ≤ u, k ≤ v :
[

(ij)−s
{

f
(

qE(xN1N2 − ℓ)
)}pij

]

≥ ǫ
})

= 0

where δ2(A) denotes the double natural density of the set A. Thus x = (xij) is statisti-
cally Cauchy sequence.

Conversely, let x = (xij) be statistically Cauchy sequence, but not statistically con-
vergent. Then

δ2

({

(i, j), i ≤ n, j ≤ k :
[

(ij)−s
{

f
(

qE(xij − xN1N2)
)}pij

])

≥ ǫ
})

= 0
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i.e.,

δ2

({

(i, j), i ≤ n, j ≤ k :
[

(ij)−s
{

f
(

qE(xij − xN1N2)
)}pij

])

< ǫ
})

= 1. (6.6)

So, in particular,

[

(ij)−s
{

f
(

qE(xij − xN1N2)
)}pij

]

≤ 2
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

< ǫ (6.7)

holds if
[

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

]

< ǫ/2

If possible, let x = (xij) be not statistically convergent. Then

δ2

{

(i, j), i ≤ n, j ≤ k :
[(

(ij)−s
{

f
(

qE(xij − ℓ)
)}pij

])

< ǫ
})

= 0.

Therefore the set

δ2

({

(i, j), i ≤ n, j ≤ k :
[

(ij)−s
{

f
(

qE(xij − xN1N2)
)}pij

])

< ǫ
})

= 0

which contradicts (6.6). Hence x = (xij) is statistically convergent to ℓ.

7. Summary and Conclusion

Considering F 2 = R2, E = R, pij = 1, f = I, s = 0, all the results of Mursaleen et

al. [9] regarding statistical convergence can be obtained from these results. Moreover, if

we take p = (pij) to be a sequence of constant terms, say, pij = p, where 0 < p < 1, then

M = 1 and restricting F 2 = E = R, f = I, s = 0, our (pij)-Cesáro-type summability

reduces to p-Cesáro summability defined by Mursaleen et al.[9].
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