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EIGENFUNCTIONS OF THE LAPLACE-BELTRAMI

OPERATOR ON HYPERBOLOIDS

AMRITANSHU PRASAD AND M. K. VEMURI

Abstract. Eigenfunctions of the Laplace-Beltrami operator on a hyperboloid are studied in the spirit of the treatment

of the spherical harmonics by Stein and Weiss. As a special case, a simple self-contained proof of Laplace’s integral

for a Legendre function is obtained.

In [2, Chapter IV, Section 2], Stein and Weiss described the spectral decomposition of the

Laplace-Beltrami operator on the unit sphere. Their approach was to identify the eigenfunc-

tions with homogeneous harmonic functions on Euclidean space.

In this article the eigenfunctions of the Laplace-Beltrami operator on a hyperboloid are

identified with homogeneous harmonic functions (with respect to a Laplacian of type (p, q))

on an open cone. In the case treated by Stein and Weiss, Liouville’s theorem implies that

the degree of homogeneity must be a non-negative integer, whereas here the degree of ho-

mogeneity can be any complex number. This identification is used to compute spherical

functions for O(1, q), and consequently Laplace’s integral formula for Legendre functions is

obtained. Laplace’s integral formula can also be obtained by using the residue theorem [3,

§15.23]. Spherical functions for semisimple Lie groups in general are obtained using different

methods (see, e.g., [1, Chapter IV]).

Let n = p + q . Let Rp,q denote the space of real n-dimensional vectors equipped with the

indefinite scalar product of signature (p, q):

x ·y = t xQy

where Q is the diagonal matrix with p 1’s followed by q (−1)’s along the diagonal. Write |x|2

for x ·x. There should be no confusion with the usual positive definite dot product and norm

as they are never used in this paper.

Let R
p,q
+ denote the subset of Rp,q consisting of those vectors for which |x|2 > 0. For x ∈

R
p,q
+ , let |x| denote the positive square root of |x|2. Let O(p, q) denote the group consisting of

matrices such that t AQ A = Q . Denote by O(p, q)0 the connected component of the identity

element of O(p, q). Let Sp,q denote the connected component of (1, 0, . . . ,0) in the hyperboloid

{x : |x| = 1, x1 > 0}.
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Let ρ be any complex number. Let Pρ denote the space of all functions f ∈ C 2(R
p,q
+ ) which

are homogeneous of degree ρ, i.e., functions such that

f (λx) = λρ f (x) for all x ∈ R
p,q
+ ,λ> 0.

Denote by ∆ the differential operator |∇|2 = ∇·∇ (using the indefinite dot product), where ∇
is the gradient operator

∇=
( ∂

∂x1
, . . . ,

∂

∂xn

)

.

Thus,

∆=
( ∂2

∂x2
1

+·· ·+
∂2

∂x2
p

)

−
( ∂2

∂x2
p+1

+·· ·+
∂2

∂x2
n

)

.

Define

Hρ = { f ∈Pρ :∆ f = 0}.

A function u ∈C 2(Sp,q ) is called a spherical harmonic1 of degree ρ if u is the restriction to Sp,q

of a function in Hρ . Let Hρ denote the space of spherical harmonics of degree ρ:

Hρ = { f |Sp,q : f ∈Hρ}.

The Laplace-Beltrami operator∆Sp,q on Sp,q is defined by

∆Sp,q u =∆ũ|Sp,q ,

where ũ : R
p,q
+ → C is defined by ũ(x) = u(x/|x|) (the degree zero homogeneous extension of u).

Let x# =Qx. The following is easily verified:

Lemma 1. Let x ∈ R
p,q
+ . Then

∇|x| = x#/|x|. (1)

∇|x|ρ = ρ|x|ρ−2x#. (2)

|x#| = |x|. (3)

x# ·∇ũ(x) = 0 f or any u ∈C 1(Sp,q ). (4)

∇·x# = n. (5)

Lemma 2. If u ∈ Hρ then ∆Sp,q u =−ρ(ρ+n−2)u.

Proof. Since u ∈ Hρ , |x|ρ ũ(x)∈Hρ . Therefore (using the formulas in Lemma 1),

0 = ∆(|x|ρ ũ(x))

= ∇· (∇(|x|ρ ũ(x)))

= ∇· (ρ|x|ρ−2x#ũ(x)+|x|ρ∇ũ(x))

1Perhaps a more apt name would be hyperboloidal harmonic.
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= (∇(ρ|x|ρ−2ũ(x)) ·x# +ρ|x|ρ−2ũ(x)(∇·x#)+|x|ρ∆ũ(x)

= ρ(ρ−2)|x|ρ−4ũ(x)|x#|2 +ρ|x|ρ−2∇ũ(x) ·x# +nρ|x|ρ−2ũ(x)+∆ũ(x)

= ρ(ρ−2)|x|ρ−4ũ(x)|x|2 +nρ|x|ρ−2ũ(x)+∆ũ(x).

Setting |x| = 1 in the result of the above calculation yields

0= ρ(ρ−2+n)ũ(x)+∆ũ(x),

from which the lemma follows.

The following proposition gives a construction of spherical harmonics when p = 1:

Proposition 3. Suppose c ∈ R
1,q
+ is an isotropic vector, (meaning that |c|2 = 0) such that

c1 > 0. Then c ·x > 0 for all x ∈ S1,q . Let f (x)= (c ·x)ρ . Then f ∈Hρ .

Proof. The set of points where c ·x = 0 form a hyperplane tangential to the cone |c|2 = 0.

For fixed x, the sign of c · x can change only when c crosses this hyperplane. However, the

entire half-cone

{c : |c|2 = 0, c1 > 0}

lies on one side of the hyperplane, because the cone is quadratic. Therefore, for each x ∈ S1,q ,

it suffices to verify that c ·x> 0 for c = (1,1,0, . . . ,0). In this case, c ·x= x1−x2, which is positive

since x1 > 0 and x2
1 − x2

2 −·· ·− x2
n = 1, so that x1 > |xi | for each i > 1.

If g ∈C 2(R
p,q
+ ) and φ ∈C 2(R), then

∆(φ◦ g )(x)=φ′′(g (x))|∇g (x)|2+φ′(g (x))∆g (x).

Let g (x) = c · x, then ∇g (x) = c, so that |∇g (x)|2 = 0. Since g is linear, ∆g (x) = 0. Therefore

∆ f (x) = 0.

Let e = (1,0, . . . ,0). Then K = StabO(1,q)0 (e) is isomorphic to SO(q) and is a maximal com-

pact subgroup of O(1, q)0. The action of O(1, q)0 on S1,q is transitive, and the K -invariant

spherical harmonics on S1,q are precisely the K -invariant spherical functions for O(1, q)0. It

follows from Proposition 3 that

Proposition 4. Let c be any isotropic vector in R1,q . Then

∫

K
(kc ·x)ρdk

is a K -invariant spherical harmonic of degree ρ on S1,q .

Since K acts transitively on the slices of S1,q by the hyperplanes on which the first coor-

dinate x1 is constant, the value of a K -invariant spherical harmonic is simply a function of

x1, which will be denoted by P (x1). A K -invariant spherical harmonic may be viewed as a

solution to an ordinary differential equation in x1:
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Theorem 5. Suppose that Pρ(x1) is the value of a K -invariant spherical harmonic which is

homogeneous of degree ρ. Then Pρ is a solution to the differential equation

(1− x2
1 )P ′′

ρ (x1)+ (1−n)x1P ′(x1)+ρ(ρ−2+n)P (x1) = 0. (6)

Proof. For any f ∈C 2(S1,q ) we have

∇ f (x1/|x|) = ∇(x1/|x|) f ′(x1/|x|)

=
(∇x1)|x|− x1∇|x|

|x|2
f ′(x1/|x|)

=
e|x|− (x1/|x|)x#

|x|2
f ′(x1/|x|)

= uv,

where u = |x|−3 f ′(x1/|x|) and v = e|x|2 − x1x#. Since ∆= |∇|2,

∆ f (x1/|x|) = (∇u) ·v+u∇·v. (7)

Now,

∇u = −3|x|−5x# f ′(x1/|x|)+|x|−3∇(x1/|x|) f ′′(x1/|x|)
= −3|x|−5x# f ′(x1/|x|)+|x|−6(e|x|2 − x1x#) f ′′(x1/|x|).

and

∇·v = e ·∇|x|2 − (e ·x# +nx1) = (1−n)x1.

Suppose there exists a function P such that P (x1) = f (x) for each x such that |x| = 1. Substitut-

ing the above values of ∇u and ∇·v in (7) and then setting |x| = 1 we have,

∆S1,q f |S1,q (x) = (−3x#P ′(x1)+ (e− x1x#)P ′′(x1)) · (e− x1x#)

+(1−n)x1P ′(x1).

When |x| = 1, |e−x1x#|2 = (1−x2
1 ) and (e−x1x#) ·x# = 0 so that the above equality simplifies to

∆S1,q f |S1,q (x)= (1− x2
1)P ′′(x1)+ (1−n)x1P ′(x1).

Combining this with Lemma 2 gives (6).

Corollary 8. For n ≥ 3, there is (up to scaling) a unique K -invariant spherical function of

degree ρ given by
∫

K
(kc ·x)ρdk,

where c is any non-zero isotropic vector in R1,q .

Proof. The ordinary differential equation (6) is linear of degree 2 with a regular singular

point at x1 = 1. The indicial equation at this point is

m(m + (n−1)/2−1) = 0.
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Therefore, it has (up to scaling) at most one solution defined on [1,∞). This solution is known

by Proposition 4.

The classical integral formula due to Laplace for Legendre functions is readily derived

from the preceding analysis:

Corollary 9. Every solution of the ordinary differential equation

(1− x2)P ′′(x)−2xP ′(x)+ρ(ρ+1)P (x) = 0

that is defined on [1,∞) is a scalar multiple of

Pρ(x) =
1

2π

∫2π

0
(x +

√

x2 −1cosθ)ρdθ.

Proof. Evaluate the formula from Corollary 8 taking q = 2, c = (1,0,−1) and x = (x,0,
p

x2 −1).
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