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OSCILLATION OF THE SOLUTIONS OF

SYSTEMS OF NONLINEAR PARABOLIC EQUATIONS

WITH FUNCTIONAL ARGUMENTS

YUTAKA SHOUKAKU

Abstract. In the present paper the oscillatory properties of the solutions of systems of parabolic

equations are investigated and oscillation criteria is derived for every solution of boundary value

problems to be oscillatory or satisfies some limit condition. Our approach is to reduce the

multi-dimensional problem to a one-dimensional problem for nonlinear functional differential

inequalities.

1. Introduction

We are concerned with systems of parabolic equations with functional arguments

(E)
∂

∂t

(

ur(x, t) +

l
∑

i=1

hi(t)ur(x, ρi(t))

)

−ar(t)∆ur(x, t) −

k
∑

i=1

bri(t)∆ur(x, τi(t))

+

m
∑

i=1

N
∑

j=1

qrji(x, t)ϕi(uj(x, σi(t))) = 0,

(x, t) ∈ G × (0,∞) ≡ Ω, r = {1, 2, . . . , N},

where ∆ is the Laplacian in R
n and G is a bounded domain in R

n with piecewise smooth
boundary ∂G.

We assume throughout this paper that :
(H1) hi(t) ∈ C1([0,∞); [0,∞)) (i = 1, 2, . . . , l),

ar(t) ∈ C([0,∞); [0,∞)),
bri(t) ∈ C([0,∞); [0,∞)) (i = 1, 2, . . . , k) ;

(H2) ρi(t) ∈ C1([0,∞); R), lim
t→∞

ρi(t) = ∞ (i = 1, 2, . . . , l),

τi(t) ∈ C([0,∞); R), lim
t→∞

τi(t) = ∞ (i = 1, 2, . . . , k),

σi(t) ∈ C([0,∞); R), lim
t→∞

σi(t) = ∞ (i = 1, 2, . . . , m) ;
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(H3) qrji(x, t) ∈ C(Ω; [0,∞)),

qi(x, t) = min
1≤r≤N

{

qrri(x, t) −

N
∑

j=1,j 6=r

qjri(x, t)
}

≥ 0,

qi(t) = min{qi(x, t); x ∈ G} ;
(H4) ϕi(s) ∈ C(R; R), ϕi(−s) = −ϕi(s), ϕi(s) > 0 for s > 0 and ϕi(s) are convex in

(0,∞) (i = 1, 2, . . . , m).

We consider two kinds of boundary conditions:

(B1) ur(x, t) = 0 on ∂G × [0,∞),

(B2)
∂ur

∂ν
(x, t) + µr(x, t)ur(x, t) = 0 on ∂G × [0,∞),

where ν is the unit exterior normal vector to ∂G and µr(x, t) ∈ C(∂G×[0,∞); [0,∞)) (r =
1, 2, . . . , N).

The first eigenvalue λ0 of the eigenvalue problem

∆w + λw = 0 in G,

w = 0 on ∂G

is positive and the corresponding eigenfunction Φ(x) may be chosen so that Φ(x) > 0 in
G.

Definition 1. By vector solution of system (E) we mean a function u(x, t) = {u1(x, t),
u2(x, t), . . . , uN(x, t)}T ∈ C2(G× [t−1,∞); R) ∩C1(G× [t̂−1,∞); R) ∩C(G× [t̃−1,∞); R)
which satisfies (E), where

t−1 = min

{

0, min
1≤i≤k

{

inf
t≥0

τi(t)

}}

,

t̂−1 = min

{

0, min
1≤i≤l

{

inf
t≥0

ρi(t)

}}

,

t̃−1 = min

{

0, min
1≤i≤m

{

inf
t≥0

σi(t)

}}

.

Definition 2. The vector solution u(x, t) = {u1(x, t), u2(x, t), . . . , uN(x, t)}T is said
to be oscillatory in Ω if at least one of its nontrivial component has arbitrarily zeros.
Otherwise, the vector solution u(x, t) is said to be nonoscillatory.

There is much interest in oscillation problems for systems of parabolic equations with
functional arguments. In 1990, Gopalsamy [9] introduced the approach of oscillation
criteria for systems of parabolic equations with neutral terms. There are several papers

dealing with the same approach in [9], see, for example [3–8]. However, it seems that there
does not exist known oscillation results for systems of nonlinear parabolic equations.

The purpose of this paper is to obtain oscillation criteria for solution of the boundary
value problems for (E), (Bi) (i = 1, 2) by referring results of paper [10–12].
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2. Reduction to scalar functional differential inequalities

In this section we reduce the multi-dimensional oscillation problems to certain one-

dimensional oscillation problems for scalar nonlinear functional differential inequalities.

Theorem 1. Assume that (H1)–(H4) hold. If the differential inequality

d

dt

(

y(t) +

l
∑

i=1

hi(t)y(ρi(t))

)

+

m
∑

i=1

qi(t)ϕi(y(σi(t))) ≤ 0 (1)

has no eventually positive solution, then every solution u of the problem (E), (B1) is

oscillatory in Ω.

Proof. Suppose to the contrary that there is a nonoscillatory solution u(x, t) =

{u1(x, t), u2(x, t), . . . , uN(x, t)}T of the problem (E), (B1). We assume that |ur(x, t)| > 0

in G × [t0,∞) for some t0 > 0. Set

θr = sgnur(x, t)

and

zr(x, t) = θrur(x, t),

then we see that zr(x, t) > 0 in G×[t0,∞). The hypothesis (H2) implies that ur(x, ρi(t)) >

0 (i = 1, 2, . . . , l), ur(x, τi(t)) > 0 (i = 1, 2, . . . , k) and ur(x, σi(t)) > 0 (i = 1, 2, . . . , m)

in G × [t1,∞) for some t1 ≥ t0. Therefore, we have

∂

∂t

(

θrzr(x, t) +
l
∑

i=1

hi(t)θrzr(x, ρi(t))

)

−θrar(t)∆zr(x, t) − θr

k
∑

i=1

bri(t)∆zr(x, τi(t))

+

m
∑

i=1

N
∑

j=1

θjqrji(x, t)ϕi(zj(x, σi(t))) = 0, t ≥ t1.

It is easy to see that

∂

∂t

(

zr(x, t) +

l
∑

i=1

hi(t)zr(x, ρi(t))

)

−ar(t)∆zr(x, t) −
k
∑

i=1

bri(t)∆zr(x, τi(t))

+

m
∑

i=1

N
∑

j=1

θj

θr

qrji(x, t)ϕi(zj(x, σi(t))) = 0, t ≥ t1,
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and so

∂

∂t

(

zr(x, t) +

l
∑

i=1

hi(t)zr(x, ρi(t))

)

−ar(t)∆zr(x, t) −

k
∑

i=1

bri(t)∆zr(x, τi(t))

+

m
∑

i=1







qrri(x, t)ϕi(zr(x, σi(t))) −

N
∑

j=1,j 6=r

qrji(x, t)ϕi(zj(x, σi(t)))







≤0, t≥ t1. (2)

Dividing (2) by N and summing both sides of (2) for r = 1, 2, . . . , N , we obtain

∂

∂t

(

z(x, t) +
l
∑

i=1

hi(t)z(x, ρi(t))

)

−
N
∑

r=1

ar(t)

N
∆zr(x, t) −

N
∑

r=1

k
∑

i=1

bri(t)

N
∆zr(x, τi(t))

+

m
∑

i=1

{

1

N

N
∑

r=1

[

qrri(x, t)ϕi(zr(x, σi(t)))

−

N
∑

j=1,j 6=r

qrji(x, t)ϕi(zj(x, σi(t)))











≤ 0, t ≥ t1, (3)

where

z(x, t) =

∑N
r=1 zr(x, t)

N
.

We note that

N
∑

r=1



qrri(x, t)ϕi(zr(x, σi(t))) −
N
∑

j=1,j 6=r

qrji(x, t)ϕi(zj(x, σi(t)))





=



q11i(x, t)ϕi(z1(x, σi(t))) −
N
∑

j=1,j 6=1

q1ji(x, t)ϕi(zj(x, σi(t)))





+



q22i(x, t)ϕi(z2(x, σi(t))) −
N
∑

j=1,j 6=2

q2ji(x, t)ϕi(zj(x, σi(t)))





+ · · ·+



qNNi(x, t)ϕi(zN (x, σi(t))) −

N
∑

j=1,j 6=N

qNji(x, t)ϕi(zj(x, σi(t)))




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=



q11i(x, t) −

N
∑

j=1,j 6=1

qj1i(x, t)



ϕi(z1(x, σi(t)))

+



q22i(x, t) −

N
∑

j=1,j 6=2

qj2i(x, t)



ϕi(z2(x, σi(t)))

+ · · ·+



qNNi(x, t) −

N
∑

j=1,j 6=N

qjNi(x, t)



ϕi(zN (x, σi(t)))

≥ min
1≤r≤N







qrri(x, t) −

N
∑

j=1,j 6=r

qjri(x, t)







N
∑

r=1

ϕi(zr(x, σi(t)))

= qi(x, t)

N
∑

r=1

ϕi(zr(x, σi(t))), t ≥ t1.

Applying Jensen’s inequality, we obtain

N
∑

r=1

1

N
ϕi(zr(x, σi(t))) ≥

N
∑

r=1

1

N
· ϕi













N
∑

r=1

1

N
zr(x, σi(t))

N
∑

r=1

1

N













= ϕi

(

∑N
r=1 zr(x, σi(t))

N

)

= ϕi(z(x, σi(t))), t ≥ t1. (4)

Combining (3) with (4) yields

∂

∂t

(

z(x, t) +

l
∑

i=1

hi(t)z(x, ρi(t))

)

−

N
∑

r=1

ar(t)

N
∆zr(x, t) −

N
∑

r=1

k
∑

i=1

bri(t)

N
∆zr(x, τi(t))

+

m
∑

i=1

qi(x, t)ϕi(z(x, σi(t))) ≤ 0, t ≥ t1. (5)

Multiplying (5) by Φ(x)(
∫

G
Φ(x))−1 and then integrating over G, we obtain

d

dt

(

Z(t) +

l
∑

i=1

hi(t)Z(ρi(t))

)

−

N
∑

r=1

ar(t)

N
KΦ

∫

G

∆zr(x, t)Φ(x)dx

−
N
∑

r=1

k
∑

i=1

bri(t)

N
KΦ

∫

G

∆zr(x, τi(t))Φ(x)dx

+

m
∑

i=1

KΦ

∫

G

qi(x, t)ϕi(z(x, σi(t)))Φ(x)dx ≤ 0, t ≥ t1, (6)
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where

Z(t) = KΦ

∫

G

z(x, t)Φ(x)dx,

(7)

KΦ =

(∫

G

Φ(x)dx

)−1

.

From Green’s formula it follows that
∫

G

∆zr(x, t)Φ(x)dx =

∫

G

zr(x, t)∆Φ(x)dx

= −λ1

∫

G

zr(x, t)Φ(x)dx ≤ 0, t ≥ t1. (8)

Analogously we obtain
∫

G

∆zr(x, τi(t))Φ(x)dx = −λ1

∫

G

zr(x, τi(t))Φ(x)dx ≤ 0, t ≥ t1. (9)

An application of Jensen’s inequality shows that

KΦ

∫

G

qi(x, t)ϕi(z(x, σi(t)))Φ(x)dx ≥ qi(t)KΦ

∫

G

ϕi(z(x, σi(t)))Φ(x)dx

≥ qi(t)ϕi

(

Z(σi(t))
)

, t ≥ t1. (10)

Combining (6)–(10) yields

d

dt

(

Z(t) +

l
∑

i=1

hi(t)Z(ρi(t))

)

+

m
∑

i=1

qi(t)ϕi

(

Z(σi(t))
)

≤ 0, t ≥ t1. (11)

Hence, Z(t) is a positive solution of (1) on [t1,∞). This contradicts the hypothesis and
completes the proof.

Theorem 2. Assume that (H1)–(H4) hold. If the differential inequality (1) has no

eventually positive solution, then every solution u of the problem (E), (B2) is oscillatory

in Ω.

Proof. Suppose that there exists a nonoscillatory solution u(x, t) = {u1(x, t),
u2(x, t), . . . , uN(x, t)}T of the problem (E), (B2). We assume that |ur(x, t)| > 0 in
G × [t0,∞) for some t0 > 0. By the same arguments as were used in Theorem 1, we
obtain the inequality (5). Dividing (5) by |G| and then integrating over G yields

d

dt

(

Z̃(t) +

l
∑

i=1

hi(t)Z̃(ρi(t))

)

−
N
∑

r=1

ar(t)

N |G|

∫

G

∆zr(x, t)dx −
N
∑

r=1

k
∑

i=1

bri(t)

N |G|

∫

G

∆zr(x, τi(t))dx

+

m
∑

i=1

1

|G|

∫

G

qi(x, t)ϕi(z(x, σi(t)))dx ≤ 0, t ≥ t1, (12)
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where

Z̃(t) =
1

|G|

∫

G

z(x, t)dx, (13)

|G| =

∫

G

dx

for some t1 ≥ t0. From Green’s formula it follows that
∫

G

∆zr(x, t)dx =

∫

∂G

(

∂zr(x, t)

∂ν

)

dS

= −

∫

∂G

(

µr(x, t)zr(x, t)
)

dS ≤ 0, t ≥ t1. (14)

Analogously we obtain
∫

G

∆zr(x, τi(t)) = −

∫

∂G

(

µr(x, τi(t))zr(x, τi(t))
)

dS ≤ 0, t ≥ t1. (15)

Applying of Jensen’s inequality, we have

1

|G|

∫

G

qi(x, t)ϕi(z(x, σi(t))) ≥ qi(t)ϕi

(

Z̃(σi(t))
)

, t ≥ t1. (16)

Combining (12)–(16) yields

d

dt

(

Z̃(t) +

l
∑

i=1

hi(t)Z̃(ρi(t))

)

+

m
∑

i=1

qi(t)ϕi

(

Z̃(σi(t))
)

≤ 0, t ≥ t1.

Hence, Z̃(t) is a positive solution of (1) on [t1,∞). This contradicts the hypothesis and
completes the proof.

Applying the results of [10, 11], we obtain the following corollaries.

The following notation will be used :

U1(t) = U(t) +

l
∑

i=1

hi(t)U(ρi(t)),

(17)

U2(t) = Ũ(t) +
l
∑

i=1

hi(t)Ũ(ρi(t)),

where U(t) = KΦ

∫

G
u(x, t)Φ(x)dx and Ũ(t) = 1

|G|

∫

G
u(x, t)dx.

Corollary 1. Assume that (H1)–(H4) hold, and that :

(H5)

l
∑

i=1

hi(t) ≤ 1 ;
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(H6) t ≤ ρi(t) (i = 1, 2, . . . , l) ;

(H7) there is a integer j0 ∈ {1, 2, . . . , m} such that ϕj0(s1s2) ≥ ϕ̃j01(s1)ϕ̃j02(s2) for

s1 ≥ 0, s2 > 0, where ϕ̃j01(s1) ≥ 0, ϕ̃j02(s2) > 0 and ϕ̃j02(s2) is nondecreasing for

s2 > 0.

If every eventually positive solution y(t) of the differential inequality

y′(t) + qj0(t)ϕ̃j01

(

1 −
l
∑

i=1

hi(σj0 (t))

)

ϕ̃j02(y(σj0 (t))) ≤ 0 (18)

satisfies lim
t→∞

y(t) = 0, then every solution u of the problem (E), (B1) is oscillatory in Ω

or satisfies

lim
t→∞

U1(t) = 0. (19)

Proof. Suppose that the assertion is not true, that is, that there is a nonoscillatory

solution u(x, t) = {u1(x, t), u2(x, t), . . . , uN (x, t)}T which does not satisfy (19). Arguing

as in the proof of Theorem 1, we observe that the inequality (11) holds for some t1 ≥ t0.

Setting

Y (t) = Z(t) +
l
∑

i=1

hi(t)Z(ρi(t)),

then we see that

Y ′(t) ≤ −qj0(t)ϕj0

(

Z(σj0(t))
)

≤ 0, t ≥ t1

for some j0 ∈ {1, 2, . . . , m} and hence Y (t) is nonincreasing and Y (t) > 0 for t ≥ t1.

Therefore we obtain

Z(t) ≥

[

1 −
l
∑

i=1

hi(t)

]

Y (t), t ≥ t1.

We easily see that

Y ′(t) + qj0(t)ϕj0

((

1 −

l
∑

i=1

hi(σj0 (t))

)

Y (σj0 (t))

)

≤ 0, t ≥ t1.

Using the hypothesis (H7), we have

Y ′(t) + qj0(t)ϕ̃j01

(

1 −

l
∑

i=1

hi(σj0 (t))

)

ϕ̃j02

(

Y (σj0 (t))

)

≤ 0, t ≥ t1.
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From (17) it follows that

0 ≤ |U1(t)| ≤ KΦ

∫

G

|u(x, t)|Φ(x)dx +

l
∑

i=1

hi(t)KΦ

∫

G

|u(x, ρi(t))|Φ(x)dx

= Z(t) +

l
∑

i=1

hi(t)Z(ρi(t)) = Y (t).

Hence, Y (t) is a positive solution of (18) on [t1,∞) which does not satisfy lim
t→∞

Y (t) = 0.

This contradicts the hypothesis and completes the proof.

Corollary 2. Assume that (H1)–(H7) hold. If every eventually positive solution y(t) of

the differential inequality (18) satisfies lim
t→∞

y(t) = 0, then every solution u of the problem

(E), (B2) is oscillatory in Ω or satisfies

lim
t→∞

U2(t) = 0. (20)

In the linear case we consider the system

(EL)
∂

∂t

(

ur(x, t) +

l
∑

i=1

hi(t)ur(x, ρi(t))

)

−ar(t)∆ur(x, t) −

k
∑

i=1

bri(t)∆ur(x, τi(t))

+

m
∑

i=1

N
∑

j=1

qrji(x, t)uj(x, σi(t)) = 0,

(x, t) ∈ Ω, r = {1, 2, . . . , N}.

By the same arguments as were used in Theorems 1–2 and Corollaries 1–2, we obtain
the following theorems.

Theorem 3.(Linear case) Assume that (H1)–(H3), (H5) and (H6) hold. If the dif-

ferential inequality

y′(t) + qj0(t)

(

1 −

l
∑

i=1

hi(σj0(t))

)

y(σj0(t)) ≤ 0 (21)

has no eventually positive solution, then every solution u of the problem (EL), (B1) is

oscillatory in Ω.

Theorem 4. (Linear case) Assume that (H1)–(H3), (H5) and (H6) hold. If the

differential inequality (21) has no eventually positive solution, then every solution u of

the problem (EL), (B2) is oscillatory in Ω.
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3. Oscillation criteria for the system

In this section we can derive the oscillation results for the systems (E), (Bi) (i = 1, 2)

and (EL), (Bi) (i = 1, 2).

By combining the results obtained in Section 2 and Kitamura and Kusano [1], we

obtain the following theorems.

Theorem 5. Assume that (H1)–(H7) hold. Every solution u of the problem (E),

(B1) is oscilllatory in Ω or satisfies (19) if

∫

R[σj0
]

qj0(t)ϕ̃j01

(

1 −

l
∑

i=1

hi(σj0(t))

)

dt = ∞, (22)

where R[σj0 ] = {t ∈ [0,∞); 0 ≤ σj0(t) ≤ t}.

Theorem 6. Assume that (H1)–(H7) hold. If (22) holds, then every solution u the

problem (E), (B2) is oscilllatory in Ω or satisfies (20).

Using the results of Section 2 and Koplatadze and Čanturija [2], we establish the

following.

Theorem 7. (Linear case) Assume that (H1)-(H3), (H5), (H6) and the following:

(H8) σj0(t) ≤ t and σj0(t) is nondecreasing on [t0,∞) for some t0 > 0 and some j0 ∈

{1, 2, . . . , m}.

Every solution u of the problem (EL), (B1) is oscillatory in Ω if

lim inf
t→∞

∫ t

σj0
(t)

qj0(s)

(

1 −
l
∑

i=1

hi(σj0 (t))

)

ds >
1

e
. (23)

Theorem 8. (Linear case) Assume that (H1)–(H3), (H5), (H6) and (H8) hold. If

(23) holds, then every solution u of the problem (EL), (B2) is oscillatory in Ω.

A special case of the system (E), (B1) is

∂

∂t

(

ur(x, t) + hur(x, t + ρ)
)

− ar(t)∆ur(x, t) (24)

+

m
∑

i=1

N
∑

j=1

qrji(x, t)
(

uj(x, t − σ)
)γj

= 0,

(x, t) ∈ (0, L) × (0,∞),

ur(0, t) = ur(L, t) = 0, t > 0, r = {1, 2, . . . , N}, (25)
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where h(< 1), ρ, σ are positive constants and γj (j = 1, 2, . . . , N) are the quotients of

odd integers.

Corollary 3. If

∫ ∞

qj0(t)dt = ∞,

then every solution of the problem (24), (25) is oscillatory in (0, L) × (0,∞) or satisfies

lim
t→∞

U1(t) = 0.

Example 1. We consider the system of parabolic equations



















































∂

∂t

(

u1(x, t) + hu1(x, t + 1)
)

−

(

L

π

)2

∆u1(x, t)

+
3

4
he−σ−1u1(x, t − σ) +

1

4
he−σu2(x, t − σ) = 0,

∂

∂t

(

u2(x, t) + hu2(x, t + 1)
)

−

(

L

π

)2

∆u2(x, t)

+
1

4
he−σ−2u1(x, t − σ) +

3

4
he−σ−1u2(x, t − σ) = 0,

(x, t) ∈ (0, L) × (0,∞),

(26)

Here n = l = m = 1, N = 2, h1(t) = h < 1, ρ1(t) = t + 1, a1(t) =
(

L
π

)2
, q111(x, t) =

3
4he−σ−1, q121(x, t) = 1

4he−σ, σ1(t) = t − σ, a2(t) =
(

L
π

)2
, q211(x, t) = 1

4he−σ−2,

q221(x, t) = 3
4he−σ−1 and γ1 = γ2 = 1. It is easy to see that q(t) = h

4 e−σ
(

3
e
− 1
)

.

It is readily seen that

∫ t

t−σ

h

4
e−σ

(

3

e
− 1

)

(1 − h)ds ≤
3h

4e
·

σ

eσ
≤

1

e
,

and therefore (23) does not hold. Hence, Theorem 7 is not applicable to (26). Since

∫ ∞ h

4
e−σ

(

3

e
− 1

)

dt = ∞,

from Corollary 3 it follows that every nonoscillatory solution of the problem (25), (26)

satisfies (19). In fact u1(x, t) = e−t sin
(

π
L

)

x, u2(x, t) = e−t−1 sin
(

π
L

)

x are nonoscillatory

solutions which satisfy (19).
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Example 2. Consider the system of parabolic equations






































































∂

∂t

(

u1(x, t) +
1

2
u1(x, t + π)

)

− 2∆u1(x, t) − ∆u1

(

x, t −
3

2
π

)

+u1(x, t − π) + u2(x, t − π)

+
5

2
u1

(

x, t −
π

2

)

+ u2

(

x, t −
π

2

)

= 0,

∂

∂t

(

u2(x, t) +
1

2
u2(x, t + π)

)

− ∆u2(x, t) − 4∆u2

(

x, t −
3

2
π

)

+
1

2
u1(x, t − π) + 3u2(x, t − π)

+2u1

(

x, t −
π

2

)

+ 4u2

(

x, t −
π

2

)

= 0,

(x, t) ∈ (0, π) × (0,∞),

(27)

ui(0, t) = ui(π, t) = 0, t > 0, i = 1, 2. (28)

Here n = 1, l = k = 1, m = N = 2, h1(t) = 1
2 , ρ1(t) = t + π, a1(t) = 2, b11(t) = 1,

τ1(t) = t − 3
2π, q111(x, t) = 1, q121(x, t) = 1, q112(x, t) = 5

2 , q122(x, t) = 1, σ1(t) = t − π,
σ2(t) = t − π

2 , a2(t) = 1, b21(t) = 4, q211(x, t) = 1
2 , q221(x, t) = 3, q212(x, t) = 2,

q222(x, t) = 4. It is easy to see that q1(t) = q2(t) = 1
2 , and the conditions of Theorem 5 are

fullfilled. Thus every solutions of the problem (27), (28) are oscillatory in (0, π)× (0,∞).
In fact, u1(x, t) = sinx cos t, u2(x, t) = sinx sin t are such solutions.

Example 3. Consider the system of parabolic equations











































∂

∂t

(

u1(x, t) +
e

3
u1(x, t + 1)

)

−
1

3
∆u1(x, t)

+
2

3e
u1(x, t − 1) +

2

3e
u2(x, t − 1) = 0,

∂

∂t

(

u2(x, t) +
e

3
u2(x, t + 1)

)

−
1

6
∆u2(x, t)

+
1

3e
u1(x, t − 1) +

1

e
u2(x, t − 1) = 0,

(x, t) ∈ (0, π) × (0,∞),

(29)

∂

∂x
ui(0, t) =

∂

∂x
ui(π, t) = 0, t > 0, i = 1, 2. (30)

Here n = 1, l = k = m = 1, N = 2, h1(t) = e
3 , ρ1(t) = t + 1, a1(t) = 1

3 , a2(t) = 1
6 ,

q111(x, t) = 2
3e

, q121(x, t) = 2
3e

, σ1(t) = t − 1, q211(x, t) = 1
3e

and q221(x, t) = 1
e
. Since

∫ t

t−1

1

3e

(

1 −
e

3

)

ds =
1

3e

(

1 −
e

3

)

≤
1

e
,

∫ ∞ 1

3e

(

1 −
e

3

)

dt = ∞,

Theorem 8 does not apply but Theorem 6 does. Theorefore every solutions of the prob-
lem (29), (30) are oscillatory in (0, π) × (0,∞) or satisfy (20). For example u1(x, t) =
e−t cos2 x, u2(x, t) = e−t sin2 x are such solutions.
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