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UNIQUENESS OF MEROMORPHIC FUNCTIONS CONCERNING
DIFFERENTIAL POLYNOMIALS

SUBHAS S. BHOOSNURMATH!, VEENA L. PUJARI2 AND ANUPAMA J. PATIL3

Abstract. In this paper, we present a different and very simple technique to handle var-
ious uniqueness problems involving three small entire functions. It also gives a new ad-
ditional insight into such problems.

1. Introduction and the Main Results

In this paper, the term ‘meromorphic’ will always mean meromorphic function in the
whole complex plane C. Let f(z) be a non-constant meromorphic function.We shall use the
following standard notations of value distribution theory T'(r, ), m(r, f), N(r, f), N(r, f), ... (see
6], [8]). We denote by S(r, f) any function satisfying S(r, f) = 0{T'(r, )}, as r — +oo0, possibly
outside of finite measure. Let a be an arbitrary complex number and k be a positive integer.
We denote by Ny, (r, ﬁ) or Ny)(r,a, f) the counting function for the zeros of f(z) — a with
multiplicity < k and by Ny, (7, a, f) the counting function for the zeros of f(z) — a with mul-
tiplicity < k, counting only once. We use Ey)(a, f) = {z/ zeros of f(z) — a with multiplicity
< k, where each zero being counted only once}. Further we denote by N, (r, ﬁ) the count-
ing function for the zeros of f(z) — a where a simple zero is counted once and a mutiple zero
is counted twice. Similarly, we can define Nx(r, f). We denote by N- (r, ﬁ) the counting
function for the zeros of f(z) — a where a simple zero and multiple zero is counted only once.

Similarly, we can define N,(r, f).

We say f and g share the value a CM if f(z) — a and g(z) — a have the same zeros with the
same multiplicities. We define

N y Uy . N- L d,
©:(a, f) =1~ limsup %,62(%1‘) =1 _llrﬁ»gp%
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Definition 1. Any expression of the type
n
P(f) — Z ai(z)fnio (f/)nil (f//)n,'2 . (f(M))n,-m ,
i=1
is called a differential polynomial in f of degree d(P), lower degree d(P) and weight I'p where

for each i = 1,2...n, n;,n;, ..., n;, are non-negative integers, a; = «;(z) are meromorphic
functions satisfying T'(r, a;) = S(r, f) and

— m m
d(P):max{Znij:lsisn}, Q(P):min{Znij:lsisn}
j=0 j=0

and

m
l“p:max{Z(j+1)n,~j:lsisn}.
j=0

In 1989, H. X. Yi [5] proved the following theorem .

Theorem A. Let fi(z) and f>(z) be non-constant meromorphic functions, b i(j =1,2,3) be three
distinct finite non-zero complex numbers, k be a positive integer or co, and n be a positive
integer satisfying

Egy(bj, f") = Eg (bj, ;"

k)( ]rf] ) k)( jrJ2 )

Furthermore, let
Ci=3(k+1)6(0, fi) +(2nk+3n+k+1)O(c0, fi) —2nk+3n+3k+4) (i=1,2).
If

min{Cl, Cz} >0,
maX{Cl, Cz} >0

then f1(2) = f>(2).

In 2007, Anupama J. Patil [1] proved the following theorem which generalises the above

result to differential polynomials in f and also improve the conditions in the above theorem.

Theorem B. Let f1(z) and f>(z) be two non-constant meromorphic functions and P(f1) and
P(f2) be non-constant differential polynomials in f| and f, respectively. Let aj(# 0,00)(j =
1,2,3) be three non-zero distinct entire small functions of P(f1) and P(f2), k1 = ks = k3 be posi-
tive integers or co and n be a positive integer satisfying

Eiy(aj, P(f1)) = Ex, (@), P(f2), i,j=1,2,3.

Furthermore, let
D;=3(k1+1)(ks+1)64+1(a, fi) — (E+ Qc))6(ky+1)+4k 1 (ks+1)] (i=1,2),
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whered = d(P(f1)(2)) = d(P(f>)(2)) = max]I ;?1:0 nisl<is n},
Q = max{n;, +2n;, +3n;, +----- +mn;,;1<i<n}, m = order of the highest derivative of f

occurringin P and c; =1-0(oo, ;). If

min(D;,D5) =0 (1)
max(Dq, D7) >0 (2)

then P(f1)(z) = P(f2)(2).

As a corollary to the above theorem, AnupamaJ. Patil [1] improve Theorem A by consider-

ing three non-zero small entire functions of f*) instead of three non-zero complex numbers.

Corollary B. Let f1(z) and f>(z) be non-constant meromorphic functions, bj(j = 1,2,3) be three
non-zero entire small functions of fl(m) and fz(m), k be a positive integer or co, and m be a
positive integer satisfying

Ek)(bj»fl(m)) :Ek)(bj;fz(m))

Furthermore, let C; =3(k+1)0(0, fi)+(2mk+3m+k+1)0(co, fi)—2mk+3m+3k+4) (i =1,2).
If

min{Cl, Cz} >0
Il’laX{Cl, Cz} >0

then f1(2) = f2(2).

In this paper,we study the uniqueness problems on meromorphic functions concerning
differential polynomials that share three entire small functions as an application of Theorem
B. Here our techniques employed are much different and relatively simple and lead to several

significant results.They also throw new light on such topics.

MAIN RESULTS

Theorem 1. Ler f and g be two non-constant meromorphic functions and « j(#0,00)(j =

1,2,3) be three non-zero distinct entire small functions, k be a positive integer or oo satisfying

where n and p are positive integers, then either f = g or

1/p 1/p

n+p+1H"™ -1
_ p  f=

| m+ DRI — )

(n+p+1)hP(R"1! -1)
(n+1)(hntr+l - 1)

where h is a non-constant meromorphic function.
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Letting kK — oo and p = 1 in the above theorem, we have the following result.

Corollary 1.1. Let f and g be two non-constant meromorphic functions and a j(# 0,00)(j =

1,2,3) be three non-zero distinct entire small functions satisfying
E(aj,f"(f-Df)=Ea; g"(g-1g), j=12.3,

where n is a positive integer, then either f = g or g = [(n+ (W™ = D)/ [(n+ (K™% = 1)),
f=Iln+ 2)h(W™Y = 1D)]/[(n+ 1) (k"% =1)], where h is a non-constant meromorphic function.

Theorem 2. Let f and g be two non-constant meromorphic functions and « j(# 0,00)(j =
1,2,3) be three non-zero distinct entire small functions, k be a positive integer or oo and p is
a positive integer satisfying

Eg(aj, f*(f-DPf)=Ep(a;,g"(g-DPg), j=1,23,

(i) ifp =1 and n is a positive integer, then either f = g or g = [(n+2)(h"""' = 1)]/[(n+1)(h"*2 -
D1, f = [(n+2)h(h™ = D1/[(n+ 1)(h"*2 - 1)], where h is a non-constant meromorphic
function.

() ifp=2andn=3,thenf=g.

(iii) if p > 2 and n is a positive integer; then

1 Il
n+1£" (- DC fp—lEngli (=1 CP gp—l
mn+p-l+1 on+p-l+1 ’

Theorem 3. Let [ and g be two non-constant meromorphic functions and a j(# 0,00)(j =
1,2,3) be three non-zero distinct entire small functions, k be a positive integer or co satisfying

En(aj, f"f)=Ep(a;,g"g), j=12,3

where n is positive integer, then either f = g or h"*! —1 =0, where h is a non-constant mero-
morphic function.

Letting k — oo, we have the following result.

Corollary 3.1. Let f and g be two non-constant meromorphic functions and a j(# 0,00)(j =
1,2,3) be three non-zero distinct entire small functions satisfying

E(aj,fnf/):E(aj;gng/)r j:]-rzrs

where n is a positive integer, then either f = g or h"*! —1 =0, where h is a non-constant mero-
morphic function.
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2. Lemmas

In order to prove our results, we need the following lemmas.
Lemma 2.1.([2]) Let f(z) be a non-constant meromorphic function and let

R(f) = i arf*! f bif’
=0

k=0

be an irreducible rational function in f with constant coefficients {ay} and {b j}, where a, #0
and by, #0. Then

T(r,R(f) =dT(r,)+S(r[),
where d = max{n, m}.

Lemma 2.2.([6]) Suppose that f(z) is a non-constant meromorphic function in the complex

plane and a (e C U {oo}) is any complex number. Then

Y O(a, f) <2.

Lemma 2.3.([4]) Let
QW) = (n-D*@"-D@"?-1)-nn-2)(" " -1?
then
QW) = @-D"@=-pD@=P2)...@—Pan-)-
wherej€ C—10,1] (j =1,2,...,2n—6), which are distinct respectively.

Lemma 2.4.([3]) Let P(2) = a, 2"+ ay—12"" ' +...+ ay, where a,(# 0), a,_1,..., ap are constants.
If f (2) is a meromorphic function, then

T(r,P(f)=nT( f)+Sf).

Lemma 2.5.([7]) Let f be a meromorphic function and P(f) be a differential polynomial in f.
Then

T(r,P(f)) = QN(r, ) +d(P)T(r, ) +S(r, f)

d(P) = max{z;"zo nijl<is n},Q =max{n;, +2n;, +3n;, +--+--- +mn;,;1<i<n}.

Theorem 2.1.([7]) Let f be a meromorphic function and let P(f) be a non-constant differential

polynomial in f such that every term in P(f) contains at least one of the derivatives of f.Let m
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be the order of the highest derivative of f occuring in P(f). If k is a positive integer < m such
that every term in P(f) contains atleast one of f', f",..., f®), then

1 — 1
——|+N|r,———
P(f)—b) ( P(f)-c
where a € C, b(# 0), c(Z 0) are distinct meromorphic functions satisfying T(r,b) = S(r, P),
T(r,c)=S(r,P) and d;. = min{Z?zl niilsis n}

diyT(r, f) < diNis1 (1, a, f) +N(r, )+S(r,f)

3. Proof of Theorems
The proof of Theorem B is in [7]. However, we give the proof for the sake of completeness.

Proof of Theorem B. Let

P(fi)(2) = P1(2)
P(f2)(2) = P2(2).

From the Theorem 2.1, we have for the meromorphic function fi, its differential polynomial
P, any element a € C and two distinct non-zero small functions «a,  of P(f1),

dkT(r»fl) = dem+1(r) a»fl) +ﬁ

T

)+S(r)f])

1
T
p

)m

1—a

Since di. = 1,

T(r»fl) = Nm+1(r) a»fl) +N

T,

1 — 1
Pl_a)+N(r,Pl_ﬁ)+S(r,f1)

where m is the order of the highest derivative of f occuring in P;. Since there are CS ways
of selecting one element a and two elements from a;, a2, @3. For a given a € C and three

non-zero distinct entire small functions a1, ay, a3 of P; and P,,we have

T(r, fi) < Ny (r,a, fi) + N ! )+N )+S( f)
r, = ra, r, r, T,
1 m+1 1 o P 1
_ 1 _
T(r,fi) <N, va, 1)+ N|r, +N|r, + S(r,
(r, fi) m+1(1, a, f1) T, P1—062) r, Pl—as) (r, f1)
_ 1 _
T(r)fl)SNm+1(r»a)fl)+N T, )+N T, )+S(r»f1)
Pr-a Pr-as
adding all the above equations, we get
3 —
3T(I‘,f1)S3Nm+1(r,a,f1)+22N(I‘,P )+S(r»fl)
i=1 1= %

<3(1-0mn(a )T fi)+2} N

S e
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i.e.,
3_
35m+](a,f])T(r,f])52 N(ry )+S(r»f1)
i=1 P —a;
ki — 1 1 1

<2 Niylr, N|r, S(r,
g’ ki+1 k')(r Pl—ai)+ki+1 (r Pl—ai) +Snf
i=1

<zi Yy ( )+2i ! N( ! )+S( )

= 3T T, T,
i-1 ki+1 ki) Pi—a; i=1 ki+1 P—a; !

3

— 6

Nia|r, + T(r,Py)+ S(r, f1).
k1+1i:Zi kl)(rpl—ai) k3+1 (r, 1) (rfl)

By Lemma 2.5, we have

T(r,Py) = QN(r, fi) +d(P)T(r, fi) + S(r, 1)
=Q(1-06(co, /1)) T(r, fi) +dA(P)T(r, fi) + S(r, f1).

Therefore
ki 3 — 1 6(d +Q(1-0(o0o, /1))
36m1(a, IT(r, fL) < zklj-l i:lNki) (r, B _ai)+ Q e h T(r, i) +S(r, f1)
3
ie., dl T(I‘,fl) < 2k1(k3 +1) Zﬁki) (I’, ) + S(I’,fl)
i=1 P -a;

where
di=36m+1(a, fi)ki +D(ks+1) - 6(E+ Q1 -06(oo, fi)k1+1), (i=12).

Similarly, we have

3 —_
dzT(T,fz) < 2k1(k3 +1) Z Nki) (r

i=1

) + S(r»fZ)-

'Py-a;
Adding the above two equations, we get

1
'Pl—a,-

3
A T(r )+ doT(r,f>) < 2ki(ks+1) ) +8(r, fi1) +S(r, f2)
i=1

N, + N,
k,)(f ) ki) (T Pz—ai)
Since by hypothesis,

Ery(aj, P(f1)) =Ex, (@, P(f2))  (,j=1,2,3)

so that

o ) )
A = 3T = rai).
kl) Pl _ al kl) P2 _ al 0 l
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Thus
3 1__ 1 _ 1
le(r,f1)+d2T(r,f2) SZkl(k3+1)Z Nkl.)(r, )+Nki)(l‘, ) +S(T,f1)+S(I‘,fz)
i=1 Pi—a; Py —qa;
3
diT(r, f1) + da T(r, fo) < 4k (k3 +1) Y. No2(r, ) + S(r, i) + S(1, o). 3)
i=1
Suppose,
Py (2) # P2(2). 4)

Then under the assumption that P and P, are distinct, it follows that for any a € S(P1) N S(P2) -
{0,000}, each common zero of P; — @ and P, — « is a zero of P; — P,. Since a1, a, a3 are distinct,
we have

<T(r,P1—P
PI_PZ) (r, Py — P»)

< T(r,P1)+T(r,Py)+0(1)

3
Y N9 ap) < N(r,
i=1

3 _
NS ai) < (d+Q—O(oo, AT (1, fi) +S(r, fi)
=1

1

+(d + Q1 —B(co, L) T(r, f2) + S(r, fo) (5)

From equations (3) and (5) , we get

DiT(r, A)+ D2 T (1, f2) < S(r, f1)) + S(1, f2) (6)

where for i = 1,2, D; = d; — 4k (ks + 1(d + Q(1 - O(oo, f))) which is required D; mentioned
earlier. From conditions (1), (2) the above inequility (6) is not possible. Thus our assumption
(4) is not true and hence we must have

P1(2) = P2(2)
i.e., P(fi)(2) = P(f2)(2).

Proof of Theorem 1. First, we need to show that f"(f? —1)f' = g"(g” —1)g’. Consider k; =
ko = ks = k and a = 0. We have d{f"(fP-1)f'} =d{g"(g"-1g'} =n+p+1, Q=1 and
m = 1. Therefore

min{Ds,Dg} =0, max{D,Dg{>0 ,

where

Dy =3(k+1)252(0, f) — (n+ p+2)(k +1)(6 +4k) + (k+1)(6 + 4k)O (oo, f)

and
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Dg = 3(k+ 1)282(0,8) — (n+ p+2)(k+1)(6+4k) + (k + 1) (6 + 4k)O(c0, g).
By Theorem B, we get

AP -nf'=g"gr-ng

(F*)/E(G*)/
Then
F*=G*+c¢, cisaconstant
where . . . .
. frept _fn+ oo gnPt _gn+
n+p+1 n+1’ n+p+1 n+1

By Lemma 2.1, we have T(r, F*) = (n+ p+ D) T(r, f) + S(r, f). Note that

— 1 — 1y — 1
N2 T,F :N2 r,? +N2 r,ﬁ

n+p+1 T+l

r1)+T(r 1 )
y ;fpi
I -

n+p+1

IN
2|

— 1
-, r,?)+pT(r,f)+S(r,f)~
So,
Mo, Tl
Nz(r»F*)< 2\ 7 pT(r, f)
T(r,F*) ~ (n+p+ DT )+Srf)  (n+p+DT(r, f)+S(r, f)
Therefore,
N, (r,L) limsup,_ . No(r, 3)/T(r, f)
limsup 2( £ ) = ’ ! "
r—oco  T(r,F*) n+p+l n+p+l
1—®z(o,F*)sl_®2(0’f)+ P

n+p+1 n+p+1
n. ©2(0, f)
n+p+l n+p+1

ie, ©y(0,F") =

Similarly, we have

n . 02(0, g)

0,(0,G*) =
n+p+l n+p+1

Note that N, (r, F*) =N2(r,f). So,

No(r,F*) No(r, )
T(r,F*) (n+p+1)T(r,f)+S(r,[)

59

()
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_ . No(r,f)
. No(r,F7)  limsup, o, 8
limsup =
r—oo 1(r,F*) (n+p+1)
1-0 ,
1-0,(c0, F*) = ﬂ
n+p+1
+ €] s
@2(OO,F*) — n+p + 2(00 f)

n+p+1 n+p+1

And, by the definition we have,

Nz(r;*;)

0,(c, F*) = 1 —limsup ——L—¢2
2015 ool T(r, F*)
Ny (r, &=
= 1-limsup ( G)

_ by (7
ool T, F y @

Since F* = G* + ¢, ¢ a constant, so T(r, F*) = T(r, G*). Therefore,

N, (r, =
Oy(c, F*) =1-limsup 2 G)

—— 22 —0,(0,G*
mSUP g 200

We now show that ¢ =0in (7) . Suppose that ¢ # 0, then

02(0, F*) +©2(00, F*) + 02 (c, F7)

- n N 0,(0, f) N n+p +®2(oo,f) N n N 0,(0,8)
n+p+1 n+p+1 n+p+1 n+p+1 n+p+1 n+p+l1l
n N 62(0, ) N n+p N O(oo, ) N n . 62(0,8) ’

n+p+1 n+p+1 n+p+1 n+p+1 n+p+1 n+p+1

v

because No(r, = N(r, f) and hence

meup N2 _ N, f)

reco T(r,f) e T(r, f) = 02(00, f) = 0(c0, /).

Since min{D¢, Dg} =0,

3(k+1)265(0, ) — (n+ p+2)(k+1)(6+4k) + (k+1)(6+4k)O(co, f) = 0

and
3(k+1)262(0,8) — (n+ p+2)(k +1)(6+4k) + (k +1)(6 + 4k)O(00, g) = 0.
Therefore
(n+p+2)(6+4k) B (6+4k)
020002 =30 ste ) O/
5,0,9) > (n+p+2)6+4k) B (6+4k)®(oo,g)

3(k+1) 3(k+1)

8)

©)

(10)
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Substituting (9) and (10) in (8) , we get

©2(0, F*) + 03 (00, F*) + 02 (c, F7)

3n+p 1 {(n+p+2)(6+4k) (6+4k) (oo, f)
= + - ®(oo,f)}+—
n+p+1 n+p+1 3(k+1) 3(k+1) n+p+1
1 (n+p+2)(6+4k) (6+4Kk) }
n+p+1{ 3(k+1) Shka1) 008
_ 3n+p +2(n+p+2)(6+4k)_ (k+3) (o, f) (6+4k) (00, g)
n+p+1 3k+D(n+p+1) 3k+Dn+p+1) 3k+1)(n+p+1)
3n+p +2(n+p+2)(6+4k)_ (k+3) (6+4k)

" n+p+l 3k+Dn+p+1) 3k+Dn+p+1) _3(k+1)(n+p+1)
17kn+11kp+21n+15p+11k+15 52
3k+D)(n+p+1) '

Because, let

_ 17kn+11kp+21n+15p+11k+15
B 3(k+D(n+p+1)

, k>0, p>0.

n

Then
, _ 6kp+6p+6k+6

" 3(k+1)(n+p+1)2

>0 for k>0, p>0.

Thus H, is an increasing function and

Hy ar | _ln_l}_26k+62 4 lim 26k + 62 _26_2888
" P=bit= =g MM N T9k+9 | 9 T

This shows that H,, always exceeds the value 2, which contradicts Lemma 2.2. Hence ¢ = 0.
Therefore
F*=G*
fn+p+1 fn+1 gn+p+1 gn+1

i.e, =
n+p+1l n+1 n+p+1 n+l

B o

n+p+1_n+1 n+p+1_n+1

Now, let h = g. If h=1, then f = g. Suppose h # 1, then

(7 sl
g n+p+1 n+l _n+p+1 n+1

hn+1{ (hg)p _ 1 }_ gp _ ]'
n+p+1 n+l n+p+1 n+l
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thrl{(hg)/’j(n+1)—(n+p+1)} _gPn+1)—-(n+p+1)
(n+D(n+p+1)  (n+D(n+p+D)

hn+p+1 hn+1

gln+1)- m+p+1)=gPn+1)—(n+p+1)

hn+p+1 hn+1

g’n+1)-gP(n+1) = (n+p+)—-(n+p+1)

gPn+ 1) WP 1] = (n+p+1) (K" -1)

_(n+p+D((h" -1

P
(n+1)(hn+p+1—1)
Similarly
7= (n+p+1h? (" -1)
T (n+1)(hmtrilo])
Therefore,
£ n+p+DRP -1 (meprm -1
| (m+D(hntrl o) S | (m+ (Pl o) '
which proves the Theorem 1. a

Proof of Theorem 2. First, we show that f"*(f — 1) f' = g"(g—1)"g', where

(f—l)pip—pfp_1+p(pT_l)fp_2— ...... +(=1)P
So, )
fn(f_ 1)pf/ — fn+pf/ _ pfn+p—1f/ + %fn*—p_z-f/ T + (_1)pfnf/
-1
gn(g_l)pg/:gn+pg/_pgn+p—lg/+ p(pz )gn+p—2g/_ ...... +(_1)pgng/

Consider k; = ky = k3 = kand @ = 0. We have, d {f"(f - 1" f'} =d{g"(g-1DPg'} =n+p+1,
Q =1and m = 1. Therefore

min{Dys,Dg} =0 , max{Ds,Dg}>0 ,
where

Dy =3(k+ 1)252(0,f) —(n+p+2)(k+1)(6+4k)+ (k+1)(6+4k)O(co0, f)

and
Dg =3(k+ 1)285(0,8) — (n+ p+2)(k+1)(6+4k) + (k+1)(6+4k)O(c0, 8)

By Theorem B, we obtain

fff-nPf=g"g-nrg
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(F*)/E(G*)/
Then
F*=G"+c , cisaconstant (11)
where
n+p+1 n+p -1 n+p-1 -1 ) n+p-2 n+1
ot _pf L pp-b f _pp-D(p=-2) f N (_Dpf
n+p+1 n+p 2 n+p-1 6 n+p-2 n+1
n+p+1 n+p -1 n+p-1 -1 -2 n+p-2 n+1
G- 8 _pg R _plp-D(p-2) g fer P8
n+p+1 n+p 2 n+p-1 6 n+p-2 n+1
By Lemma 2.1, we have T'(r, F*) = (n+ p+ 1)T(r, f) + S(r, f). Note that
Mol ) =W [r 2]+ :
2\Pe ) TR T T T heeh i peipea (1
n+p+1 n+p 2 n+p+1 6 n+p=2°°°0°00 n+1
— 1 p p-1 -1 p-2 —1P
=No|r—=|+T|r ! - f +p(p )_1 ( ))
f n+p+1 n+p 2 n+p+l n+1
— 1
=N r,? +pT(r, ) +Sr, [ (using Lemma 2.4)
So,
— ~ 1
Na(r ) _ N (r.) pT(r.f)
T(r,F*) ~ (n+p+ )T, H+S(r,f) (m+p+DTr )+S,[)
Therefore,
N, (r,-L) limsup,_o Na(r,3)/T(r, f)
limsup 2( F)S T ! P
r-ooco 1(r,F*) n+p+1 n+p+1
1-0,(0,
10,5 < 129200 P
n+p+1 n+p+1
ie,
0, (0,
0,0,F") > — " 1 220D
n+p+l n+p+1
Similarly, we have
0,(0,
0,0,61) > — 1, 2208
n+p+l n+p+1
Note that N, (r, F*) = No(r, f). So,
No(r,F*) No(r, f)
T(r,F*) (n+p+ DT H+Sr[)
— . Nao(r,f)
. No(r, F*) limsup,_q Tz(r%
limsup =
r—oo 1(r,F*) (n+p+1)
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1-06 ,
1_@2(00’5'*):ﬂ
n+p+1

O3 (oo,

Os(c0,F) = -t P 2o ])

n+p+1l n+p+l1

And, by the definition we have,

Na (1, )
0,(c, F*) = 1 -limsup ———<
26 1) ol TT(r, F7)
Na (1, 57)
=1-limsup ————. by (11)
ol (1, F*) v
Since F* = G* + ¢, ¢ a constant, so T(r, F*) = T(r,G*). Therefore,
Nz(l’,é)
O5(c, F*)=1-limsup ———=—= =0,(0,G*
2( ) r_mp (.G 2 ( )

We now show that ¢ = 0. Proceeding as in the proof of Theorem 1, we obtain

() If p=1, then

fn+2 fn+1
F* =

_n+2_n+1 n+2 n+1

ne1 ) [ 1 _oa1) & 1 }
f {n+2 n+1}_g {n+2 n+1

If h=1, then f = g. Suppose h # 1, then we easily obtain

Then, we can write

I~

Now, let h = g

_(n+2)(h"-1)
C(n+1)(ht2-1)’

_ (n+2)h(h" 1)
 (n+ D2 -1)

(i) If p =2, then

ie.,

n+3 n+2 n+l1 n+3 n+2 n+l1
ASRPY AN LSS SANNPY SAR i
n+3 n+2 n+l1 n+3 n+2 n+l

Seth= j§£' Substitute f = hgin (12) , we obtain

n+2)(n+1)g>h"P -1 -2m+3)(n+ g™ 1)+ (n+2)(n+3)(K"" -1 =0.

If h is not a constant, then

[(n+2)(n+Dgh™3 =1) = (n+3)(n+ ("2 -1

(12)

13)
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= (n+1)*(n+272g*(h">P 1?2+ D(n+2)(n+3)(n+ 1 gh™> - 1)(h"** -1)
+(n+3)%(n+1D*(h"2 -1)

=m+2)(n+ D" =D [(n+2)(n+ D> (W"*3 -1) - 2(n+3)(n+ 1) g(h"*2 - 1)]
+(n+3)*(n+D* (W™ - 1)?

= (n+2)(n+ (WP -1) {-(n+2)(n+3) (K" =D} +(n+3)* (n+ D? (K" = 1)? [by (13) ]

= —(n+3)(n+D{(n+2*(W"™ - D" - 1) - (n+3)(n+ D" - 1%}

using Lemma 2.3, we get
[(n+2)(n+Dg(h"™ -1) - (n+3)(n+ 1) (K" - 1)]2 =—(n+3)(n+1Qh),

where Q(h) = (h—1)*(h—B1)(h—B2)...... (h—Pan), Bj € C—1{0,1} (j = 1,2,...,2n), which are
pairwise distinct.

This implies that every zero of (h— ;) (j = 1,2,...,2n) has a multiplicity of atleast 2. By
the second fundamental theorem we obtain 7 < 2, which is again a contradiction. Therefore,
h is a constant. We have from (13) that h"*! —1 =0 and h"*"? - 1 = 0, which imply & = 1 and
hence f = g.

(iii) If p = 2, we get

f}’l+p+1 ~ fn+p . P(P_l) fn+p—1 ~ p(p_l)(p_z) fn+p—2 ( 1)pfn+1
n+p+1 n+p 2 n+p-1 6 n+p—2 +1
_gmrt g™t plp-1) g™ pp-D(p-2) g7 e (e1)P gm!
n+p+1 pn+p 2 n+p-1 6 n+p-2 n+1
above equality can be represented as
)l l p (-1) Cl
n+1 n+1 p—1
! lzon+p l+1 IZ;’)n+p—l+1g '
This completes the proof of the theorem. O

Proof of Theorem 3. First we show that f" f' = g"g’. Consider k; = k, = k3 = k and a = 0.We
have d{f"f'} =d{g"g'} =n+1,Q=1and m= 1. Therefore

min{Ds,Dg} =20 , max{Ds,Dg}>0 ,
where

Df =3(k+ 1)252(0,f) —(n+2)(k+1)(6+4k)+ (k+1)(6+4k)O(oc0, f)
and
Dg =3(k+ 1)252(0, g —-n+2)(k+1)(6+4k)+ (k+1)(6+4k)O(c0, g)
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By Theorem B, we get

fnf/ = gng/
(F*)/ = (G*)/
Then
F*=G*+c¢, cisaconstant. (14)
where . .
. _ fn+ . _ gn+
n+1’ n+1

By Lemma 2.1, we have T(r, F*) = (n+ 1) T(r, f) + S(r, f). Note that
%) =[]
n—|= r,—=
2\" 2 7
Ny (1, F") = Na (1, f)

Similarly, as in the Theorem 1, we obtain

n ©-,(0,
©,(0, F*) = + 200
n+1 n+1
) ,
Os(00, F*) = — 4 22(0S)
n+1 n+1

®2(c, F*) = ©2(0,G")

and 0.0
n N 2(0,8)

0,(0,G*) =
2l ) n+1 n+1
We now show that ¢ = 0 in (14) .Suppose that ¢ # 0, then

0,0, F*) + Oy(00, F*) + Op(c, F*) = L4 20N n  6:00f) n  6:08)

n+1 n+1 n+1 n+1 n+1 n+1
3n  6,(0, O (oo, 62(0,

_3n  50.) Oof) 508 )
n+1 n+1 n+1 n+1

Since min{D¢, Dg} =0,

Dy =3(k+1)262(0, f) — (n+2)(k + 1)(6+4Kk) + (k + 1) (6 + 4k)O(co, f) = 0
Dy =3(k+1)252(0, f) — (n+2)(k + 1)(6+4Kk) + (k + 1) (6 + 4k)O(co, f) = 0

Therefore

(n+2)(6+4k) (6+4k)
3(k+1)  3(k+1)
(n+2)(6+4k) (6+4k)
3(k+1)  3(k+1)

6200, 1) = O(oo, f) (16)

52(0,8) = (00, 8) 17
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Substituting (16) and (17) in (15) , we get

©2(0, F*) + B2 (00, F*) + @2 (c, F*)

3n 1 {(n+2)(6+4k) 6 +4k) } 000, f)
> + - Oo, )+ ———
n+l n+1 3(k+1) 3(k+1) n+1
1 {(n+2)(6+4k)_(6+4k)®( )}
n+1|  3(k+1D 3+ o8
_ 3n @n+4)(6+4k) (k+3) 6+4k)
=il 3G DmeD 3k DD YN T35 Dm0 8
3n  @n+d)6+4k)  (k+3) 6+4k)

=0+l 3k+Dn+D) 3k+Dn+D 3k+D0tD

17nk+21n+11k+15
= > 4.666..
3tk+)(n+1)

Because, let

Q) = 17nk+21n+11k+15
" 3(k+1)(n+1)

, k>0

Then
. 18k*+36k+18

Q, = TCFSTHCESIE >0 for k>0

Thus Qy, is an increasing function and

28k +36 . 28k +36 28
Q, at n=1=———-— , ] — = —
—00

6k +6 6k+6 | 6

This shows that Q, always exceeds the value 4.666...which contradicts Lemma 2.2. Hence

¢ = 0. Therefore

Let h = g. If h=1then f = g. Suppose h # 1, then h"*"! —1 = 0. This completes the proof of
the theorem. O
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