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NEIGHBORHOOD CONNECTED EDGE DOMINATION IN GRAPHS

C. SIVAGNANAM, M. P KULANDAIVEL AND P. SELVARAJU

Abstract. Let G = (V, E) be a connected graph. An edge dominating set X of G is called
aneighborhood connected edge dominating set (nced-set) if the edge induced subgraph
< N(X) > is connected. The minimum cardinality of a nced-set of G is called the neigh-
borhood connected edge domination number of G and is denoted by v},.(G). In this
paper, we initiate a study of this parameter.

1. Introduction

The graph G = (V, E) we mean a finite, undirected and connected graph with neither
loops nor multiple edges. The order and size of G are denoted by n and m respectively. For
graph theoretic terminology we refer to Chartrand and Lesniak [3] and Haynes et.al [4].

For any v € V. The open neighborhood and the closed neighborhood of v are denoted by
N(v) and N[v] = N(v) U {v} respectively. If S < V, then N(S) = U N(v)and N[S]=N(S)uS.If

vesS

S <V and u € S, then the private neighbor set of u with respect to S is defined by pn[u, S] =
{v: N[vlnS={u}}. For any e € E, the open neighborhood and the closed neighborhood of e

are denoted by N(e) and N[e] = N(e) U {e} respectively. If X < E, then N(X) = U N(e) and
eeX
N[X]=NX)uX. If X © E and e; € X then the private neighbor of e; with respect to X is

defined by pnle;, X] = {e2: N(e2) N X = {e;}}. The degree of an edge e = uv of G is defined by
dege =degu+degv—2. 6'(G)(A'(G)) is the minimum (maximum) degree among the edges of
G. Let X € E, a graph G — X is obtained from the graph G by removing the edges of X. Let H
be a subgraph of G and let e € G, d(e, H) denotes the distance from e to H.

A subset S of V is called a dominating set of G if N[S] = V. The minimum (maximum) car-
dinality of a minimal dominating set of G is called the domination number(upper domina-
tion number) of G and is denoted by y(G)(I'(G)). An excellent treatment of the fundamentals
of domination is given in the book by Haynes et.al [4]. A survey of several advanced topics in

domination is given in the book edited by Haynes et.al [5].
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S. Arumugam and C. Sivagnanam [1] introduced the concept of neighborhood connected
domination. A dominating set S of a connected graph G is called a neighborhood connected
dominating set (ncd-set) if the induced subgraph < N(S) > is connected. The minimum car-
dinality of a ncd-set of G is called the neighborhood connected domination number of G and

is denoted by y,,.(G).

As an analogy to vertex domination, the concept of edge domination was introduced by
Mitchell and Hedetniemi [7]. A set X < E is said to be an edge dominating set if every edge
in E — X is adjacent to some edge in X. The edge domination number of G is the cardinality
of a smallest edge dominating set of G and is denoted by y'(G). S. Arumugam and S. Velam-
mal [2] introduced the concept of connected edge domination of a connected graph. An edge
dominating set X of a connected graph G is called a connected edge dominating set if the
edge induced subgraph < X > is connected. The minimum cardinality of a connected edge

dominating set of G is called connected edge domination number and is denoted by y.(G).

In this paper we study the edge analogue of neighborhood connected domination num-

ber. We need the following theorem.

Theorem 1.1. [1] For any graph G, y c(G) < {g-‘

2. Main Results

Definition 2.1. An edge dominating set X of a connected graph G is called the neighborhood
connected edge dominating set (nced-set) if the edge induced subgraph < N(X) > of G is
connected. The minimum cardinality of a nced-set is called the neighborhood connected

edge domination number (nced-number) and is denoted by y/,.(G).

Example. Consider the following graph G

NN

Y@ =2 YO =4  ¥,(G)=3

Remark 2.2. (i) Clearly y/,.(G) = y'(G). Further if X is a connected edge dominating set with
|X| > 1 then N(X) = E and hence y/,.(G) < y.(G).

(ii) For any connected graph G that is not a star y’nc(G) = 1 if and only if there exists a non cut
edge e such that dege = m — 1. That is G contains two adjacent vertices u and v such that all
other vertices are mutually non adjacent, adjacent to either u or v, and at least one vertex is

adjacent to both u and v.
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Theorem 2.3. For any graph G,y'(G) <v',.(G) < 2y'(G). Further given two positive integers a
and b with a < b < 2a, there exists a graph G withy'(G) = a andy),.(G) = b.

Proof. Let G be a connected graph and let X be an edge dominating set of G. Obviously

pairing each e € X with a private neighbor forms a nced-set of cardinality 2y’ (G).

Now, let a and b be two positive integers with a < b < 2a.Let b = a+k,0 < k < a. Consider
the galaxy with stars Gy, Go,...,G, with |[V(G;)| =23, 1<1i < a. Join the maximum degree
vertices of G; and G;;; by an edge e;, 1 <i < a. Let H be the graph obtained from the above
graph by subdividing exactly once the edges e; where 1 < i < a—1. Clearly y'(H) = y},.(H) = a.
Let G be the graph obtained from H by subdividing an edge of G; exactly once where 1 < i < k.
Theny'(G) =aandy),.(G) =a+k=h. O
n-1

|

Theorem 2.4. For the path P,,,n =2,y .(P,) = [ 5

Proof. Let P, = (v1, v2,...,vy) and let e; = v;v;4+1. If nis odd, then X ={e; : j =2k or2k+1 and

k is odd } is a nced-set of P,, and if n is even then X; = X U{e,,_1} is a nced-set of P,,. Hence

y’nC(Pn) < [HT-‘ . Further, if X is any y’m-set of P,, then N(X) contains all the internal edges

-1 -1
of P,, and hence | X| = [HT-‘ Thus y),.(Pp) = [n?-‘ O
Corollary 2.5. For any non-trivial path P,,,
@ y)e(Pn) =7Y'(Pp) ifand only ifn =3 or5.
(i) ¥} (Pp) =vyL(Py) ifand only ifn=2,3,5 or 6.
Proof. Since y'(P;) = [n _ -‘ and y.(P,,) = n— 3 the corollary follows. O

Theorem 2.6. For the cycle C,, on n vertices

[E1 ifn#3(mod4)
Y/nc(cn) = n
[EJ if n=3(mod 4)

Proof. Let C,, = (v1,vo,..., vy, V1) and n =4k +r where0<r <3 and e; = v;v;y;. Let X = {ei:
i=2j,2j+1,jisoddand 1 < j <2k-1}.

X if n=0 (mod 4)
Let X; =< Xu{e,} if n=1or2(mod4)
Xuie,_1} if n=3 (mod4)
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Clearly X is a nced-set of C,, and hence
n7.
{E-‘ if n#3 (mod 4)
Yne(Cn) <

{SJ if n.=3 (mod 4)

Now, let X be any y/,.-set of C,, then < X > contains at most one isolated edge and

< N(X)>= C, —{e} if n#0 (mod 4)
B Cn if n=0(mod 4)
Hence n
[—] if 7% 3 (mod 4)
| X| = n
{EJ if n=3 (mod4)
and the result follows. O

Corollary 2.7. (i) y},.(Cn) =y'(Cy) ifand only ifn=3,4 or 7.
(i) v, (Cp) =yL(Cy) ifand only ifn = 3,4 or 5.

Proof. Since y'(C,) = [§1 and y'C(Cn) = n — 2 the result follows. O

n
Theorem 2.8. v/, .(K;) = {EJ ,n=3.

Proof. Let X be a maximum matching of K,,. Hence X is an edge dominating set. Also

< N(X) >= K;, — X which is connected. Hence X is a nced-set which implies y},.(K;,) < |X| =
ny . , _|n

[EJ . Since y'(Kj) = {ZJ the result follows. O

Theorem 2.9. y},.(K; s) = min{r, s}.

Proof. Let v be a vertex such that degv = min{r, s}. Let X be the set of all edges incident with
v. It is clear that X is an edge dominating set. Also < N(X) >= K}, if K,.sis not a star and
< N(X) >= Ky - if K;5 is a star. Thus X is a nced-set. Hence y},.(Ks) < |X| = degv =

min{r, s}. Since y’ (K},s) = min{r, s} the result follows. O
Theorem 2.10. Foratree T,y .(T) =1 ifand only if T is a star.

Proof. Lety/,.(T) =1 and let X = {e} be the y/),.-set of G. Let e = uv and let degu = 2. If
degv > 1 then < N(X) >= T — e is disconnected. Hence degv = 1. Thus T is a star. The

converse is obvious. O

We now proceed to obtain a characterization of minimal nced-sets.
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Lemma 2.11. A superset of a nced-set is a nced-set.

Proof. Let X be a nced-set of a graph G and let X; = X U {e}, where e € E— X. Let e = uv.
Clearly e € N(X) and X is an edge dominating set of G. Now Let x,y e V(< N(X;) >). If x,y €
V(< N(X) >) thenany x— y pathin < N(X) >isa x— y pathin < N(X;) >. If xe V(< N(X) >)
and y ¢ V(< N(X) >), then without loss of generality we assume x — u path in < N(X) >, and
hence x — u path together with u — y path gives a x — y path in < N(X;) >. Alsoif x,y ¢ V(<
N(X) >) then (x,u,v,y) or (x,v,u,y) or (x,u,y) or (x,v,y) or (x,y) isa x—y pathin < N(X;) >.
Thus < N(X;) > is connected, so that X; is a nced-set of G. O

Theorem 2.12. A nced-set X of a graph G is a minimal nced-set if and only if for every e € X,
one of the following holds,

(i) pnle, X]# @.

(ii) There exists two vertices x, y €< N(X) > such that every x — y path in < N(X) > contains
at least one edge of N(X) — N(X —{e}).

Proof. Let X be a minimal nced-set of G. Let e€ X and let X; = X — {e}. Then either
X; is not an edge dominating set of G or < N(X;) > is disconnected. If X; is not an edge
dominating set of G, then pnle, X] # @¢. If < N(X;) > is disconnected, then there exists two
vertices x,y €< N(Xj) > such that there is no x — y path in < N(X;) >. Since < N(X) > is
connected, it follows that every x — y path in < N(X;) > contains atleast one edge of N(X) —
N(X —{e}). Conversely, X is a nced-set of G satisfying the conditions of theorem, then X is
1-minimal and hence the result follows from Lemma 2.11. O

Theorem 2.13. Let G be a graph with A' = m—1. Theny',.(G) =1 or 2. Furthery),.(G) =2 if

and only if G is a bistar, B(r,s),r,s= 1.

Proof. Let e € E(G) with dege = m—1. Then {e, e}, where e; € E —{e} is a nced-set of G so that
Yhe(G) < 2. Now suppose v/, .(G) = 2. Then < N(e) >= G—{e} is disconnected and hence e is a
cut edge of G. Let e = uv. Since dege = m — 1, N[u, v] — {u, v} is an independent set. If degu or
degv is equal to 1 than G is a star which is a contradiction to y/,.(G) = 2. Thus degu = 2 and

degv = 2. Hence G is a bistar B(r, s), r, s = 1. The converse is obvious. O

In the following theorems we obtain a bound for y/,.(G).
Theorem 2.14. Let G be a graph with A' < m—1. Theny),.(G) < m—A'.

Proof. Let e € E(G) and dege = A'. Since G is connected and A’ < m — 1, there exists two
adjacent edges e; and e, such that e; € N(e) and e, ¢ N[e]. Now, let X = (N(e) — {e1}) U {ex}.
Clearly E — X is a nced-set of G and hence y/,.(G) < m— A’ O
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Theorem 2.15. Let T be a tree with n > 2. Theny',.(T) = m— A’ ifand only if T is one of the
following:

(i) Star.

(i) Tree obtained from bistar B(|X1|,|Xz|) with e = uv be a non-pendant edge and X, and

X5 are set of pendant edges which are incident with u and v respectively, by subdividing
at least one edge of X1 U Xo and subdividing at most one edge of X, or X, once, or by
subdividing exactly one edge of X1 U X» twice.

Proof. Let T be a tree with y),.(T) = m—A’. Lete= uv € E(T) and dege =A’. Let Y; = N(u) —
{vy} ={v1,vp,...,v;}and Yo = N(v) —{u} = {Vr41, Ur42,..., var}. If r = 0 then T is a star graph. Let

usassumer =1landr <A’ and A=V (T) - Nlu, vl ={w;, ws,...,wi}and T} =< A >.

Casei. E(T))=09.

Suppose deg v; = 3 for some v; € Y7 U Y, without loss of generality we assume v; € Y;. Let
uv;, viwy, viws € E(T). Then X = [E(T) — (N(e) U{v;wy, viw,})] U {uv;} is anced-set of T and
|X| =m—A"—1, which is a contradiction. Hence degv; < 2. Ifdegv; =1foralli, 1<i<A’
then T is a bistar which is a contradiction. Thus deg v; = 2 for some i.

Claim. At most one vertex of ¥ or at most one vertex of Y, has degree 2.

Suppose vy, v2 € Y7 and v;, vj € Y, with degvy = 2, for k € {1,2,1,j}. Let wr € N(vg) —
{u,vifor ke {1,2,i, j}. Then X = [E(T) —(Nlelu{viwy, vows, v; Wi, vjwj})] U{uvy, uvy, vvi, vvj}
is a nced-set with | X| = m — A’ — 1 which is a contradiction. Hence at most one vertex of Y; or
at most one vertex of Y> has degree 2.

Caseii. E(T}) # @.

Let G1 be any non-trivial component of 77 and we may assume without loss of generality
that v; € N[V(Gy)]. If G; contains more than one pendant vertex of T, then X = [E(T) —
(N(e)u Ep)]u{uv,} where E is the set of all pendant edges of T in G, is a nced-set of T with
| X| < m— A’ which is a contradiction. Hence G is a path. Suppose G; = (x1, X2,...,X¢), k>3
andlet v1x; € E(T). Then X = [E(T)—[N(e)u{vi x1, x1x2}1]U{uv,} is anced-set of T with | X| =
m — A’ — 1 which is a contradiction. Thus G; = P,. Now, if T has two non-trivial components
G1 = (x1,X2) and Gz = (y1,)2), %1 € N(v), 1 € N(v)) then X = [E(T) - N(e) U{v;x1,vjy}] U
{uv;} is a nced-set of T which is again a contradiction. Thus T; has exactly one non-trivial
component. Let X; ={uv;:1<i<rtand Xp ={vv;:r+1<j< A’} then the result follows and

the converse is obvious. O

Theorem 2.16. Let G be a unicyclic graph with cycle C = (vy,vo,...,Vr,V1). Then y'nc(G) =
m— A" ifand only if G is isomorphic to Cs or Cy or Cs or one of the graphs G;, 1 < i < 23, given

in Figure 1.
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Figure 1

Proof. Let G be a unicyclic graph with cycle C and y},.(G) = m— A’. If G = C then it follows
from theorem 2.6 that m < 5 and hence G is isomorphic to Cs or C4 or Cs. Suppose G # C. Let

A denote the set of all pendant edges in G and let | A| = k. Suppose k = A’ + 1. Since E(G) — A
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is a nced-set of G we have y/,.(G) < m— A’ — 1 which is a contradiction. Hence k < A’. Also
maximum of two adjacent edges of e are in C we have A’ -2 < k.
Hence A’ -2 < k<A’ (1)
Let e = uv with dege = A'(G). Suppose d(e,C) = 1, then k = A’ or A’ —1. Then X =
[E(G) — E(C)u A]U X; where X is nced-set of C, is a nced-set of G with | X| < m— A’ which is a
contradiction. Hence the edge e lies on C or incident with C. Let e be incident with C and let

C=(vy,v,...,v;,v1). Letus assume u = vy.

Claim. r < 4.

Suppose r = 6. Then any y),.-set of C does not contain at least 3 edges of C. Let X; be
a y',.-set of C which contains an edge adjacent to e. Then X = [E(G) —(E(C)UA)] U X; is
a nced-set of G with |X| < m — A’ which is a contradiction. Hence r < 5. Suppose r = 5.
Let C = (v1, 12, U3, Us, Us, V7). Then X = E(G) — [AU {v1 12, V23, V4U5}] is a nced-set of G with
|X| < m—A"which is a contradiction. Hence r <4 and it is clear that every vertexin V(C)—{v;}
has degree 2.

Casel.l. r=4.

Let C = (v1, V2, 13, 14, V7). Suppose there exists a vertex w € A such that d(w,e) = 2. Let
d(w,u) = d(w,e) and let (u, wy, wo...,wg, w), k = 1 be the unique u — w path. Then X =
[E(G) — [AU{v1 V2, U314, V41, Wy wo}]] U{uwn} is a nced-set of G with | X| < m — A’ which is a
contradiction. Similarly we can get a contradiction if d(w, v) = d(w, e). Hence d(w, e) = 1 for

all w € A. Thus G is isomorphic to G.

Casel1l.2. r=3.

Let C = (vy, v2, v3, 1) and u = vy, suppose there exists a vertex w € A such that d(w, e) =
3. Let d(w,u) = d(w, e) and let (u, wy, wo,..., Wy, w), k = 2 be the unique u — w path. Then
X = [E(G)-[AU{vov3, 1311, U, wy wo}])U{w w} is a nced-set of G with | X| < m— A’ which is
a contradiction. Similarly we can get a contradiction if d(w, v) = d(w, e). Hence d(w, e) < 2 for
all we A. Let wy € N(u) — [V(C)u{v}] and degw; = 3. Then X = E(G) — [AU{vov3, v311}] is a
nced-set of G with | X| < m — A’ which is a contradiction. Similarly we can get a contradiction
if w; € N(v)—{u}. Now, let wy, wy € N(u) —[V(C)U{v}] such that deg w; = deg w» = 2. Suppose
there exist two vertices ws, w4 € N(v)—{u} such that deg ws = degw, = 2. Then X = E(G)-[AuU
{vov3, V311, e}] is a nced-set of G with | X| < m—A’. Hence at most one vertex of N(v) — {u} is of
degree 2. Then G is isomorphic to G, or Gs. Let wy, w» € N(v) — {u} with degw, = degw» = 2.
Suppose there exists a vertex w3 € N(u) — [V(C) U {v}] such that degws = 2. Then X = E(G) —
[AU{vov3, V311, €}] is a nced-set of G with | X| < m — A’ which is a contradiction. Hence G is
isomorphic to G4.

Suppose elieson C. Let C = (vy, v2,..., v, v1) and vive = e
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Claim 1. degw =1or2forall we V(G) -V (C).

Suppose there exist a vertex w € V(G) — V(C) with degw > 2. Then k=A'—1or A'. If
k = A’ -1, then all the vertices of V(C) — {vy, v2} have degree 2 and hence X = E(G) — [AU
{vovs3, vov1}] is anced-set of G with | X| < m—A'. If k = A’ then X = E(G)-[AU{v, v3}] is anced-
set of G with | X| < m—A’ which is a contradiction. Hence deg w = 1 or 2 forall w € V(G)-V (C).

Claim 2. Every vertex of V(C) —{v1, v»} has degree 2 or 3.
It follows from (1) that degv; < 4 for all i # 1,2. If there exists a vertex v; € V(C) with
degv; =4, then k= A’ and X = E(G) — [AU {vpvs}] is a nced-set of G with |X| < m —A’. This

proves claim 2.

Claim 3. r <5.

Suppose r = 6. If k = A’ then X = E(G) — [AU{v, v3}] is anced-set of G with | X| < m—A'. If
k = A’—1 then there exists a vertex v; such that deg v; = 2. Now X = E(G)—[AU{v;_1V;, Vi Vi+1}]
is a nced-set of G with | X| < m—A'. If k = A’ — 2 then every vertex of V (C) — {vy, v»} has degree
2 and hence X = E(G) — [AU{vov3, Vy_3Vr_2, Ur_2V,_1}] is a nced-set of G with | X| < m—A.
Thus r <5.

Claim4. d(w,C) <2 forall we A.

Suppose there exist a pendant vertex wy, such that d(w;,C) = 3. Let (wy, wy, ..., W, Vi), k =
3 be the unique w; —v; path. If k # A—2then X = [E(G) - [AU{va U3, V; Wi, Wi Wi—1311U{wown}
isanced-set of Gwith | X| < m—A'. If k = A-2, then X = [E(G)—[AU{v V3, V3 U4, V; Wi, Wi Wi—1}]1]U
{wyw} is a nced-set of G with | X| < m — A’ which is a contradiction. Hence d(w, C) < 2 for all
weA.

Claim 5. If there are two P3 attached with v then at most one Pj is attached to v,.

Suppose not, then X = E(G) — [AU {v1 v, V23, v, 11}] is a nced-set of G with | X| < m — A’
which is a contradiction. Hence the Claim 5.

Case2.1. k=A-2.

In this case degx =1 or 2 for all x € V(G) — {vy, v2}. Now, if r = 5 and if there exists a vertex
w e N(v;) - V(C),i =1 or 2, such that degw = 2, then X = E(G) — [AU {va2vs, V304, U5V1}] i
a nced-set of G with |X| < m—A’. Hence degw =1 for all w € N(v;) — V(C) and hence G is

isomorphic to Gs or Gg. If 7 < 4 then G is isomorphic to G;,7 < i < 15.

Case2.2. k=A'-1.

In this case degv; = 3 for exactly one vertex v; # v, and v, on C also degx =1 or 2 for
all x € V(G) —{vy,vp,v}. If r =5, then X = E(G) — [AU B] where B is a set of edges in C not
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incident with v; is a nced-set of G with | X| = m — A’ —1 and hence r = 3 or 4. Suppose there
exists a path (v;, x1, w;) such that x; ¢ V(C) and w, € A, if r =4 then X = [E(G)—-[AUBU
{v;x11]] U {x; w1} where B is N[v;x;] n V(C) is a nced-set of G with |X| < m—A’ and if r = 3,
then X = E(G) —[AU{vov3, V311, V3X1}] U {x3 wi} is a nced-set of G with | X| < m—A’ and hence
G isisomorphic to G;,16 < i <23.
Case2.3. Ifk=A.

In this case r = 4 or 5 and there does not exists a graph with y},.(G) = m — A’. Converse is
obvious. O

Problem 2.17. Characterize the class of graphs for which y/,.(G) = m — A’

Remark 2.18. Since y},.(G) = y,:(L(G)) where L(G) is the line graph of G, it follows from

m
Theorem 1.1 that y},.(G) < [?-‘

Theorem 2.19. Let G be any graph such that both G and G are connected. Then y',.(G) +
Yhe(G < m+1.

Proof. The proof follows from Remark 2.18. O

Remark 2.20. The bounds given in Theorem 2.19 is sharp. The graph G = Cs, y'n Q) +y’n ¢ G) =

6=m+1.

Problem 2.21. Characterize the class of graphs for which y’n AG)+ y'n ¢ (G =m+1.
, 3n

Theorem 2.22. For any graph G,v,,.(G) < [TJ .

Proof. Let X be amaximum matching of the graph G. Label the edges of X by ey, e2,..., ek, €x+1,- .., €r
such that the edges e; and e;;1, i isodd 1 < i < k—1 are adjacent to common edge f(e;) with
maximum value of k. Let Y = {f(e;)/iisodd}. Then XU Y is an edge dominating set with
< N(XUY)>isconnected and hencey/,.(G) < | XU Y|= BTHJ O

Remark 2.23. The bound given in Theorem 2.22 is sharp. The graph G = Cs, y’nC(G) =3 =
3n
5
3
Problem 2.24. Characterize the class of graphs for which y/,.(G) = [THJ .
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