Available online at http://journals.math.tku.edu.tw/

NEIGHBORHOOD CONNECTED EDGE DOMINATION IN GRAPHS

C. SIVAGNANAM, M. P. KULANDAIVEL AND P. SELVARAJU

Abstract. Let G = (V, E) be a connected graph. An edge dominating set *X* of *G* is called a neighborhood connected edge dominating set (nced-set) if the edge induced subgraph < N(X) > is connected. The minimum cardinality of a nced-set of *G* is called the neighborhood connected edge domination number of *G* and is denoted by $\gamma'_{nc}(G)$. In this paper, we initiate a study of this parameter.

1. Introduction

The graph G = (V, E) we mean a finite, undirected and connected graph with neither loops nor multiple edges. The order and size of *G* are denoted by *n* and *m* respectively. For graph theoretic terminology we refer to Chartrand and Lesniak [3] and Haynes et.al [4].

For any $v \in V$. The open neighborhood and the closed neighborhood of v are denoted by N(v) and $N[v] = N(v) \cup \{v\}$ respectively. If $S \subseteq V$, then $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = N(S) \cup S$. If $S \subseteq V$ and $u \in S$, then the private neighbor set of u with respect to S is defined by $pn[u, S] = \{v : N[v] \cap S = \{u\}\}$. For any $e \in E$, the open neighborhood and the closed neighborhood of e are denoted by N(e) and $N[e] = N(e) \cup \{e\}$ respectively. If $X \subseteq E$, then $N(X) = \bigcup_{e \in X} N(e)$ and $N[X] = N(X) \cup X$. If $X \subseteq E$ and $e_1 \in X$ then the private neighbor of e_1 with respect to X is defined by $pn[e_1, X] = \{e_2 : N(e_2) \cap X = \{e_1\}\}$. The degree of an edge e = uv of G is defined by deg e = deg u + deg v - 2. $\delta'(G)(\Delta'(G))$ is the minimum (maximum) degree among the edges of G. Let $X \subseteq E$, a graph G - X is obtained from the graph G by removing the edges of X. Let H be a subgraph of G and let $e \in G$, d(e, H) denotes the distance from e to H.

A subset *S* of *V* is called a dominating set of *G* if N[S] = V. The minimum(maximum) cardinality of a minimal dominating set of *G* is called the domination number(upper domination number) of *G* and is denoted by $\gamma(G)(\Gamma(G))$. An excellent treatment of the fundamentals of domination is given in the book by Haynes et.al [4]. A survey of several advanced topics in domination is given in the book edited by Haynes et.al [5].

Corresponding author: M. P. Kulandaivel.

²⁰¹⁰ Mathematics Subject Classification. 05C70.

Key words and phrases. Neighborhood connected domination, neighborhood connected edge domination.

S. Arumugam and C. Sivagnanam [1] introduced the concept of neighborhood connected domination. A dominating set *S* of a connected graph *G* is called a neighborhood connected dominating set (ncd-set) if the induced subgraph < N(S) > is connected. The minimum cardinality of a ncd-set of *G* is called the neighborhood connected domination number of *G* and is denoted by $\gamma_{nc}(G)$.

As an analogy to vertex domination, the concept of edge domination was introduced by Mitchell and Hedetniemi [7]. A set $X \subseteq E$ is said to be an edge dominating set if every edge in E - X is adjacent to some edge in X. The edge domination number of G is the cardinality of a smallest edge dominating set of G and is denoted by $\gamma'(G)$. S. Arumugam and S. Velammal [2] introduced the concept of connected edge domination of a connected graph. An edge dominating set X of a connected graph G is called a connected edge dominating set if the edge induced subgraph < X > is connected. The minimum cardinality of a connected edge dominating set of G is called connected edge domination number and is denoted by $\gamma'_c(G)$.

In this paper we study the edge analogue of neighborhood connected domination number. We need the following theorem.

Theorem 1.1. [1] *For any graph* G, $\gamma_{nc}(G) \leq \left\lceil \frac{n}{2} \right\rceil$.

2. Main Results

Definition 2.1. An edge dominating set *X* of a connected graph *G* is called the neighborhood connected edge dominating set (nced-set) if the edge induced subgraph < N(X) > of *G* is connected. The minimum cardinality of a nced-set is called the neighborhood connected edge domination number (nced-number) and is denoted by $\gamma'_{nc}(G)$.

Example. Consider the following graph G

Remark 2.2. (i) Clearly $\gamma'_{nc}(G) \ge \gamma'(G)$. Further if *X* is a connected edge dominating set with |X| > 1 then N(X) = E and hence $\gamma'_{nc}(G) \le \gamma'_{c}(G)$.

(ii) For any connected graph *G* that is not a star $\gamma'_{nc}(G) = 1$ if and only if there exists a non cut edge *e* such that deg *e* = *m* - 1. That is *G* contains two adjacent vertices *u* and *v* such that all other vertices are mutually non adjacent, adjacent to either *u* or *v*, and at least one vertex is adjacent to both *u* and *v*.

Theorem 2.3. For any graph $G, \gamma'(G) \leq \gamma'_{nc}(G) \leq 2\gamma'(G)$. Further given two positive integers a and b with $a \leq b \leq 2a$, there exists a graph G with $\gamma'(G) = a$ and $\gamma'_{nc}(G) = b$.

Proof. Let *G* be a connected graph and let *X* be an edge dominating set of *G*. Obviously pairing each $e \in X$ with a private neighbor forms a need-set of cardinality $2\gamma'(G)$.

Now, let *a* and *b* be two positive integers with $a \le b \le 2a$. Let $b = a+k, 0 \le k \le a$. Consider the galaxy with stars $G_1, G_2, ..., G_a$ with $|V(G_i)| \ge 3$, $1 \le i \le a$. Join the maximum degree vertices of G_i and G_{i+1} by an edge $e_i, 1 \le i \le a$. Let *H* be the graph obtained from the above graph by subdividing exactly once the edges e_i where $1 \le i \le a-1$. Clearly $\gamma'(H) = \gamma'_{nc}(H) = a$. Let *G* be the graph obtained from *H* by subdividing an edge of G_i exactly once where $1 \le i \le k$. Then $\gamma'(G) = a$ and $\gamma'_{nc}(G) = a + k = b$.

Theorem 2.4. For the path P_n , $n \ge 2$, $\gamma'_{nc}(P_n) = \left\lceil \frac{n-1}{2} \right\rceil$.

Proof. Let $P_n = (v_1, v_2, ..., v_n)$ and let $e_i = v_i v_{i+1}$. If *n* is odd, then $X = \{e_j : j = 2k \text{ or } 2k+1 \text{ and } k \text{ is odd} \}$ is a need-set of P_n and if *n* is even then $X_1 = X \cup \{e_{n-1}\}$ is a need-set of P_n . Hence $\gamma'_{nc}(P_n) \leq \left\lceil \frac{n-1}{2} \right\rceil$. Further, if *X* is any γ'_{nc} -set of P_n then N(X) contains all the internal edges of P_n and hence $|X| \geq \left\lceil \frac{n-1}{2} \right\rceil$. Thus $\gamma'_{nc}(P_n) = \left\lceil \frac{n-1}{2} \right\rceil$.

Corollary 2.5. For any non-trivial path P_n ,

- (i) $\gamma'_{nc}(P_n) = \gamma'(P_n)$ if and only if n = 3 or 5.
- (ii) $\gamma'_{nc}(P_n) = \gamma'_c(P_n)$ if and only if n = 2, 3, 5 or 6.

Proof. Since $\gamma'(P_n) = \left\lceil \frac{n-1}{3} \right\rceil$ and $\gamma'_c(P_n) = n-3$ the corollary follows.

Theorem 2.6. For the cycle C_n on n vertices

$$\gamma_{nc}'(C_n) = \begin{cases} \left\lceil \frac{n}{2} \right\rceil & \text{if } n \neq 3 \pmod{4} \\ \left\lfloor \frac{n}{2} \right\rfloor & \text{if } n \equiv 3 \pmod{4} \end{cases}$$

Proof. Let $C_n = (v_1, v_2, ..., v_n, v_1)$ and n = 4k + r where $0 \le r \le 3$ and $e_i = v_i v_{i+1}$. Let $X = \{e_i : i = 2j, 2j + 1, j \text{ is odd and } 1 \le j \le 2k - 1\}$.

Let
$$X_1 = \begin{cases} X & \text{if } n \equiv 0 \pmod{4} \\ X \cup \{e_n\} & \text{if } n \equiv 1 \text{ or } 2 \pmod{4} \\ X \cup \{e_{n-1}\} & \text{if } n \equiv 3 \pmod{4} \end{cases}$$

Clearly X_1 is a need-set of C_n and hence

$$\gamma'_{nc}(C_n) \leq \begin{cases} \left\lceil \frac{n}{2} \right\rceil \text{ if } n \neq 3 \pmod{4} \\ \left\lfloor \frac{n}{2} \right\rfloor \text{ if } n \equiv 3 \pmod{4} \end{cases}$$

Now, let X be any γ'_{nc} -set of C_n then $\langle X \rangle$ contains at most one isolated edge and

$$< N(X) >= \begin{cases} C_n - \{e\} & \text{if } n \neq 0 \pmod{4} \\ C_n & \text{if } n \equiv 0 \pmod{4} \end{cases}$$

Hence

$$|X| \ge \begin{cases} \left\lceil \frac{n}{2} \right\rceil \text{ if } n \not\equiv 3 \pmod{4} \\ \left\lfloor \frac{n}{2} \right\rfloor \text{ if } n \equiv 3 \pmod{4} \end{cases}$$

and the result follows.

Corollary 2.7. (i) $\gamma'_{nc}(C_n) = \gamma'(C_n)$ if and only if n = 3, 4 or 7. (ii) $\gamma'_{nc}(C_n) = \gamma'_c(C_n)$ if and only if n = 3, 4 or 5. **Proof.** Since $\gamma'(C_n) = \left\lceil \frac{n}{3} \right\rceil$ and $\gamma'_c(C_n) = n - 2$ the result follows. \square **Theorem 2.8.** $\gamma'_{nc}(K_n) = \left\lfloor \frac{n}{2} \right\rfloor, n \ge 3.$

Proof. Let *X* be a maximum matching of K_n . Hence *X* is an edge dominating set. Also $< N(X) >= K_n - X$ which is connected. Hence *X* is a need-set which implies $\gamma'_{nc}(K_n) \le |X| = \lfloor \frac{n}{2} \rfloor$. Since $\gamma'(K_n) = \lfloor \frac{n}{2} \rfloor$ the result follows.

Theorem 2.9. $\gamma'_{nc}(K_{r,s}) = \min\{r, s\}.$

Proof. Let v be a vertex such that deg $v = min\{r, s\}$. Let X be the set of all edges incident with v. It is clear that X is an edge dominating set. Also $\langle N(X) \rangle = K_{r,s}$, if $K_{r,s}$ is not a star and $\langle N(X) \rangle = K_{1,n-1}$ if $K_{r,s}$ is a star. Thus X is a need-set. Hence $\gamma'_{nc}(K_{r,s}) \leq |X| = \deg v = \min\{r, s\}$. Since $\gamma'(K_{r,s}) = \min\{r, s\}$ the result follows.

Theorem 2.10. For a tree T, $\gamma'_{nc}(T) = 1$ if and only if T is a star.

Proof. Let $\gamma'_{nc}(T) = 1$ and let $X = \{e\}$ be the γ'_{nc} -set of G. Let e = uv and let deg $u \ge 2$. If deg v > 1 then $\langle N(X) \rangle = T - e$ is disconnected. Hence deg v = 1. Thus T is a star. The converse is obvious.

We now proceed to obtain a characterization of minimal nced-sets.

Lemma 2.11. A superset of a need-set is a need-set.

Proof. Let *X* be a need-set of a graph *G* and let $X_1 = X \cup \{e\}$, where $e \in E - X$. Let e = uv. Clearly $e \in N(X)$ and X_1 is an edge dominating set of *G*. Now Let $x, y \in V(< N(X_1) >)$. If $x, y \in V(< N(X) >)$ then any x - y path in < N(X) > is a x - y path in $< N(X_1) >$. If $x \in V(< N(X) >)$ and $y \notin V(< N(X) >)$, then without loss of generality we assume x - u path in < N(X) >, and hence x - u path together with u - y path gives a x - y path in $< N(X_1) >$. Also if $x, y \notin V(< N(X) >)$ then (x, u, v, y) or (x, v, u, y) or (x, v, y) or (x, y) is a x - y path in $< N(X_1) >$. Thus $< N(X_1) >$ is connected, so that X_1 is a need-set of *G*.

Theorem 2.12. A need-set X of a graph G is a minimal need-set if and only if for every $e \in X$, one of the following holds,

- (i) $\operatorname{pn}[e, X] \neq \emptyset$.
- (ii) There exists two vertices $x, y \in \langle N(X) \rangle$ such that every x y path in $\langle N(X) \rangle$ contains at least one edge of $N(X) N(X \{e\})$.

Proof. Let *X* be a minimal need-set of *G*. Let $e \in X$ and let $X_1 = X - \{e\}$. Then either X_1 is not an edge dominating set of *G* or $< N(X_1) >$ is disconnected. If X_1 is not an edge dominating set of *G*, then pn[e, X] $\neq \emptyset$. If $< N(X_1) >$ is disconnected, then there exists two vertices $x, y \in < N(X_1) >$ such that there is no x - y path in $< N(X_1) >$. Since < N(X) > is connected, it follows that every x - y path in $< N(X_1) >$ contains atleast one edge of $N(X) - N(X - \{e\})$. Conversely, *X* is a need-set of *G* satisfying the conditions of theorem, then *X* is 1-minimal and hence the result follows from Lemma 2.11.

Theorem 2.13. Let G be a graph with $\Delta' = m - 1$. Then $\gamma'_{nc}(G) = 1$ or 2. Further $\gamma'_{nc}(G) = 2$ if and only if G is a bistar, $B(r, s), r, s \ge 1$.

Proof. Let $e \in E(G)$ with deg e = m - 1. Then $\{e, e_1\}$, where $e_1 \in E - \{e\}$ is a need-set of *G* so that $\gamma'_{nc}(G) \leq 2$. Now suppose $\gamma'_{nc}(G) = 2$. Then $\langle N(e) \rangle = G - \{e\}$ is disconnected and hence *e* is a cut edge of *G*. Let e = uv. Since deg e = m - 1, $N[u, v] - \{u, v\}$ is an independent set. If deg *u* or deg *v* is equal to 1 than *G* is a star which is a contradiction to $\gamma'_{nc}(G) = 2$. Thus deg $u \geq 2$ and deg $v \geq 2$. Hence *G* is a bistar $B(r, s), r, s \geq 1$. The converse is obvious.

In the following theorems we obtain a bound for $\gamma'_{nc}(G)$.

Theorem 2.14. Let G be a graph with $\Delta' < m - 1$. Then $\gamma'_{nc}(G) \le m - \Delta'$.

Proof. Let $e \in E(G)$ and deg $e = \Delta'$. Since *G* is connected and $\Delta' < m - 1$, there exists two adjacent edges e_1 and e_2 such that $e_1 \in N(e)$ and $e_2 \notin N[e]$. Now, let $X = (N(e) - \{e_1\}) \cup \{e_2\}$. Clearly E - X is a need-set of *G* and hence $\gamma'_{nc}(G) \le m - \Delta'$.

Theorem 2.15. Let T be a tree with n > 2. Then $\gamma'_{nc}(T) = m - \Delta'$ if and only if T is one of the following:

- (i) Star.
- (ii) Tree obtained from bistar $B(|X_1|, |X_2|)$ with e = uv be a non-pendant edge and X_1 and X_2 are set of pendant edges which are incident with u and v respectively, by subdividing at least one edge of $X_1 \cup X_2$ and subdividing at most one edge of X_1 or X_2 once, or by subdividing exactly one edge of $X_1 \cup X_2$ twice.

Proof. Let *T* be a tree with $\gamma'_{nc}(T) = m - \Delta'$. Let $e = uv \in E(T)$ and deg $e = \Delta'$. Let $Y_1 = N(u) - \{v\} = \{v_1, v_2, ..., v_r\}$ and $Y_2 = N(v) - \{u\} = \{v_{r+1}, v_{r+2}, ..., v_{\Delta'}\}$. If r = 0 then *T* is a star graph. Let us assume $r \ge 1$ and $r < \Delta'$ and $A = V(T) - N[u, v] = \{w_1, w_2, ..., w_k\}$ and $T_1 = <A >$.

Case i. $E(T_1) = \emptyset$.

Suppose deg $v_i \ge 3$ for some $v_i \in Y_1 \cup Y_2$ without loss of generality we assume $v_i \in Y_1$. Let $uv_i, v_iw_1, v_iw_2 \in E(T)$. Then $X = [E(T) - (N(e) \cup \{v_iw_1, v_iw_2\})] \cup \{uv_i\}$ is a need-set of T and $|X| = m - \Delta' - 1$, which is a contradiction. Hence deg $v_i \le 2$. If deg $v_i = 1$ for all i, $1 \le i \le \Delta'$ then T is a bistar which is a contradiction. Thus deg $v_i = 2$ for some i.

Claim. At most one vertex of Y_1 or at most one vertex of Y_2 has degree 2.

Suppose $v_1, v_2 \in Y_1$ and $v_i, v_j \in Y_2$ with deg $v_k = 2$, for $k \in \{1, 2, i, j\}$. Let $w_k \in N(v_k) - \{u, v\}$ for $k \in \{1, 2, i, j\}$. Then $X = [E(T) - (N[e] \cup \{v_1w_1, v_2w_2, v_iw_i, v_jw_j\})] \cup \{uv_1, uv_2, vv_i, vv_j\}$ is a need-set with $|X| = m - \Delta' - 1$ which is a contradiction. Hence at most one vertex of Y_1 or at most one vertex of Y_2 has degree 2.

Case ii. $E(T_1) \neq \emptyset$.

Let G_1 be any non-trivial component of T_1 and we may assume without loss of generality that $v_1 \in N[V(G_1)]$. If G_1 contains more than one pendant vertex of T, then $X = [E(T) - (N(e) \cup E_1)] \cup \{uv_1\}$ where E_1 is the set of all pendant edges of T in G_1 , is a need-set of T with $|X| < m - \Delta'$ which is a contradiction. Hence G_1 is a path. Suppose $G_1 = (x_1, x_2, ..., x_k), k \ge 3$ and let $v_1x_1 \in E(T)$. Then $X = [E(T) - [N(e) \cup \{v_1x_1, x_1x_2\}]] \cup \{uv_1\}$ is a need-set of T with $|X| = m - \Delta' - 1$ which is a contradiction. Thus $G_1 = P_2$. Now, if T has two non-trivial components $G_1 = (x_1, x_2)$ and $G_2 = (y_1, y_2), x_1 \in N(v_i), y_1 \in N(v_j)$ then $X = [E(T) - N(e) \cup \{v_ix_1, v_jy_1\}] \cup \{uv_i\}$ is a need-set of T which is again a contradiction. Thus T_1 has exactly one non-trivial component. Let $X_1 = \{uv_i : 1 \le i \le r\}$ and $X_2 = \{vv_j : r + 1 \le j \le \Delta'\}$ then the result follows and the converse is obvious.

Theorem 2.16. Let G be a unicyclic graph with cycle $C = (v_1, v_2, ..., v_r, v_1)$. Then $\gamma'_{nc}(G) = m - \Delta'$ if and only if G is isomorphic to C_3 or C_4 or C_5 or one of the graphs G_i , $1 \le i \le 23$, given in Figure 1.

Proof. Let *G* be a unicyclic graph with cycle *C* and $\gamma'_{nc}(G) = m - \Delta'$. If G = C then it follows from theorem 2.6 that $m \le 5$ and hence *G* is isomorphic to C_3 or C_4 or C_5 . Suppose $G \ne C$. Let *A* denote the set of all pendant edges in *G* and let |A| = k. Suppose $k \ge \Delta' + 1$. Since E(G) - A

is a need-set of *G* we have $\gamma'_{nc}(G) \le m - \Delta' - 1$ which is a contradiction. Hence $k \le \Delta'$. Also maximum of two adjacent edges of *e* are in *C* we have $\Delta' - 2 \le k$.

Hence
$$\Delta' - 2 \le k \le \Delta'$$
. (1)

Let e = uv with deg $e = \Delta'(G)$. Suppose $d(e, C) \ge 1$, then $k = \Delta'$ or $\Delta' - 1$. Then $X = [E(G) - E(C) \cup A] \cup X_1$ where X_1 is need-set of *C*, is a need-set of *G* with $|X| < m - \Delta'$ which is a contradiction. Hence the edge *e* lies on *C* or incident with *C*. Let *e* be incident with *C* and let $C = (v_1, v_2, ..., v_r, v_1)$. Let us assume $u = v_1$.

Claim. $r \leq 4$.

Suppose $r \ge 6$. Then any γ'_{nc} -set of *C* does not contain at least 3 edges of *C*. Let X_1 be a γ'_{nc} -set of *C* which contains an edge adjacent to *e*. Then $X = [E(G) - (E(C) \cup A)] \cup X_1$ is a need-set of *G* with $|X| < m - \Delta'$ which is a contradiction. Hence $r \le 5$. Suppose r = 5. Let $C = (v_1, v_2, v_3, v_4, v_5, v_1)$. Then $X = E(G) - [A \cup \{v_1 v_2, v_2 v_3, v_4 v_5\}]$ is a need-set of *G* with $|X| < m - \Delta'$ which is a contradiction. Hence $r \le 4$ and it is clear that every vertex in $V(C) - \{v_1\}$ has degree 2.

Case 1.1. *r* = 4.

Let $C = (v_1, v_2, v_3, v_4, v_1)$. Suppose there exists a vertex $w \in A$ such that $d(w, e) \ge 2$. Let d(w, u) = d(w, e) and let $(u, w_1, w_2, ..., w_k, w)$, $k \ge 1$ be the unique u - w path. Then $X = [E(G) - [A \cup \{v_1 v_2, v_3 v_4, v_4 v_1, w_1 w_2\}]] \cup \{uw_1\}$ is a need-set of G with $|X| < m - \Delta'$ which is a contradiction. Similarly we can get a contradiction if d(w, v) = d(w, e). Hence d(w, e) = 1 for all $w \in A$. Thus G is isomorphic to G_1 .

Case 1.2. *r* = 3.

Let $C = (v_1, v_2, v_3, v_1)$ and $u = v_1$, suppose there exists a vertex $w \in A$ such that $d(w, e) \ge 3$. Let d(w, u) = d(w, e) and let $(u, w_1, w_2, ..., w_k, w), k \ge 2$ be the unique u - w path. Then $X = [E(G) - [A \cup \{v_2v_3, v_3v_1, uw_1, w_1w_2\}]] \cup \{w_kw\}$ is a need-set of G with $|X| < m - \Delta'$ which is a contradiction. Similarly we can get a contradiction if d(w, v) = d(w, e). Hence $d(w, e) \le 2$ for all $w \in A$. Let $w_1 \in N(u) - [V(C) \cup \{v\}]$ and deg $w_1 \ge 3$. Then $X = E(G) - [A \cup \{v_2v_3, v_3v_1\}]$ is a need-set of G with $|X| < m - \Delta'$ which is a contradiction. Similarly we can get a contradiction. Similarly we can get a contradiction if $w_1 \in N(v) - \{u\}$. Now, let $w_1, w_2 \in N(u) - [V(C) \cup \{v\}]$ such that deg $w_1 = \deg w_2 = 2$. Suppose there exist two vertices $w_3, w_4 \in N(v) - \{u\}$ such that deg $w_3 = \deg w_4 = 2$. Then $X = E(G) - [A \cup \{v_2v_3, v_3v_1, e\}]$ is a need-set of G with $|X| < m - \Delta'$. Hence at most one vertex of $N(v) - \{u\}$ is of degree 2. Then G is isomorphic to G_2 or G_3 . Let $w_1, w_2 \in N(v) - \{u\}$ with deg $w_1 = \deg w_2 = 2$. Suppose there exists a vertex $w_3 \in N(u) - [V(C) \cup \{v\}]$ such that deg $w_3 = 2$. Then $X = E(G) - [A \cup \{v_2v_3, v_3v_1, e\}]$ is a need-set of G with $|X| < m - \Delta'$. Hence at most one vertex of $N(v) - \{u\}$ is of degree 2. Then G is isomorphic to G_2 or G_3 . Let $w_1, w_2 \in N(v) - \{u\}$ with deg $w_1 = \deg w_2 = 2$. Suppose there exists a vertex $w_3 \in N(u) - [V(C) \cup \{v\}]$ such that deg $w_3 = 2$. Then $X = E(G) - [A \cup \{v_2v_3, v_3v_1, e\}]$ is a need-set of G with $|X| < m - \Delta'$ which is a contradiction. Hence G is isomorphic to G_4 .

Suppose *e* lies on *C*. Let $C = (v_1, v_2, \dots, v_r, v_1)$ and $v_1v_2 = e$

Claim 1. deg w = 1 or 2 for all $w \in V(G) - V(C)$.

Suppose there exist a vertex $w \in V(G) - V(C)$ with deg w > 2. Then $k = \Delta' - 1$ or Δ' . If $k = \Delta' - 1$, then all the vertices of $V(C) - \{v_1, v_2\}$ have degree 2 and hence $X = E(G) - [A \cup \{v_2v_3, v_2v_1\}]$ is a need-set of *G* with $|X| < m - \Delta'$. If $k = \Delta'$ then $X = E(G) - [A \cup \{v_2v_3\}]$ is a need-set of *G* with $|X| < m - \Delta'$. If $k = \Delta'$ then $X = E(G) - [A \cup \{v_2v_3\}]$ is a need-set of *G* with $|X| < m - \Delta'$. Hence deg w = 1 or 2 for all $w \in V(G) - V(C)$.

Claim 2. Every vertex of $V(C) - \{v_1, v_2\}$ has degree 2 or 3.

It follows from (1) that deg $v_i \le 4$ for all $i \ne 1,2$. If there exists a vertex $v_i \in V(C)$ with deg $v_i = 4$, then $k = \Delta'$ and $X = E(G) - [A \cup \{v_2 v_3\}]$ is a need-set of *G* with $|X| < m - \Delta'$. This proves claim 2.

Claim 3. *r* ≤ 5.

Suppose $r \ge 6$. If $k = \Delta'$ then $X = E(G) - [A \cup \{v_2 v_3\}]$ is a need-set of G with $|X| < m - \Delta'$. If $k = \Delta' - 1$ then there exists a vertex v_i such that deg $v_i = 2$. Now $X = E(G) - [A \cup \{v_{i-1} v_i, v_i v_{i+1}\}]$ is a need-set of G with $|X| < m - \Delta'$. If $k = \Delta' - 2$ then every vertex of $V(C) - \{v_1, v_2\}$ has degree 2 and hence $X = E(G) - [A \cup \{v_2 v_3, v_{r-3} v_{r-2}, v_{r-2} v_{r-1}\}]$ is a need-set of G with $|X| < m - \Delta'$. Thus $r \le 5$.

Claim 4. $d(w, C) \le 2$ for all $w \in A$.

Suppose there exist a pendant vertex w_1 , such that $d(w_1, C) \ge 3$. Let $(w_1, w_2, ..., w_k, v_i), k \ge 3$ be the unique $w_1 - v_i$ path. If $k \ne \Delta - 2$ then $X = [E(G) - [A \cup \{v_2v_3, v_iw_k, w_kw_{k-1}\}]] \cup \{w_2w_1\}$ is a need-set of *G* with $|X| < m - \Delta'$. If $k = \Delta - 2$, then $X = [E(G) - [A \cup \{v_2v_3, v_3v_4, v_iw_k, w_kw_{k-1}\}]] \cup \{w_2w_1\}$ is a need-set of *G* with $|X| < m - \Delta'$ which is a contradiction. Hence $d(w, C) \le 2$ for all $w \in A$.

Claim 5. If there are two P_3 attached with v_1 then at most one P_3 is attached to v_2 .

Suppose not, then $X = E(G) - [A \cup \{v_1 v_2, v_2 v_3, v_r v_1\}]$ is a need-set of *G* with $|X| < m - \Delta'$ which is a contradiction. Hence the Claim 5.

Case 2.1. $k = \Delta' - 2$.

In this case deg x = 1 or 2 for all $x \in V(G) - \{v_1, v_2\}$. Now, if r = 5 and if there exists a vertex $w \in N(v_i) - V(C)$, i = 1 or 2, such that deg w = 2, then $X = E(G) - [A \cup \{v_2 v_3, v_3 v_4, v_5 v_1\}]$ is a need-set of G with $|X| < m - \Delta'$. Hence deg w = 1 for all $w \in N(v_i) - V(C)$ and hence G is isomorphic to G_5 or G_6 . If $r \le 4$ then G is isomorphic to G_i , $7 \le i \le 15$.

Case 2.2. $k = \Delta' - 1$.

In this case deg $v_i = 3$ for exactly one vertex $v_i \neq v_1$ and v_2 on *C* also deg x = 1 or 2 for all $x \in V(G) - \{v_1, v_2, v_i\}$. If r = 5, then $X = E(G) - [A \cup B]$ where *B* is a set of edges in *C* not

incident with v_i is a need-set of G with $|X| = m - \Delta' - 1$ and hence r = 3 or 4. Suppose there exists a path (v_i, x_1, w_1) such that $x_1 \notin V(C)$ and $w_2 \in A$, if r = 4 then $X = [E(G) - [A \cup B \cup \{v_i x_1\}]] \cup \{x_1 w_1\}$ where B is $N[v_i x_1] \cap V(C)$ is a need-set of G with $|X| < m - \Delta'$ and if r = 3, then $X = E(G) - [A \cup \{v_2 v_3, v_3 v_1, v_3 x_1\}] \cup \{x_1 w_1\}$ is a need-set of G with $|X| < m - \Delta'$ and hence G is isomorphic to $G_i, 16 \le i \le 23$.

Case 2.3. If $k = \Delta'$.

In this case r = 4 or 5 and there does not exists a graph with $\gamma'_{nc}(G) = m - \Delta'$. Converse is obvious.

Problem 2.17. Characterize the class of graphs for which $\gamma'_{nc}(G) = m - \Delta'$.

Remark 2.18. Since $\gamma'_{nc}(G) = \gamma_{nc}(L(G))$ where L(G) is the line graph of *G*, it follows from Theorem 1.1 that $\gamma'_{nc}(G) \leq \left\lceil \frac{m}{2} \right\rceil$.

Theorem 2.19. Let G be any graph such that both G and \overline{G} are connected. Then $\gamma'_{nc}(G) + \gamma'_{nc}(\overline{G}) \le m+1$.

Proof. The proof follows from Remark 2.18.

Remark 2.20. The bounds given in Theorem 2.19 is sharp. The graph $G = C_5$, $\gamma'_{nc}(G) + \gamma'_{nc}(\overline{G}) = 6 = m + 1$.

Problem 2.21. Characterize the class of graphs for which $\gamma'_{nc}(G) + \gamma'_{nc}(\overline{G}) = m + 1$.

Theorem 2.22. For any graph $G, \gamma'_{nc}(G) \leq \left\lfloor \frac{3n}{4} \right\rfloor$.

Proof. Let *X* be a maximum matching of the graph *G*. Label the edges of *X* by $e_1, e_2, ..., e_k, e_{k+1}, ..., e_r$ such that the edges e_i and e_{i+1} , *i* is odd $1 \le i \le k - 1$ are adjacent to common edge $f(e_i)$ with maximum value of *k*. Let $Y = \{f(e_i)/i \text{ is odd }\}$. Then $X \cup Y$ is an edge dominating set with $< N(X \cup Y) >$ is connected and hence $\gamma'_{nc}(G) \le |X \cup Y| = \lfloor \frac{3n}{4} \rfloor$.

Remark 2.23. The bound given in Theorem 2.22 is sharp. The graph $G = C_5$, $\gamma'_{nc}(G) = 3 = \lfloor \frac{3n}{4} \rfloor$.

Problem 2.24. Characterize the class of graphs for which $\gamma'_{nc}(G) = \lfloor \frac{3n}{4} \rfloor$.

Acknowledgement

Thanks are due to the referees for their helpful comments.

C. SIVAGNANAM, M. P. KULANDAIVEL AND P. SELVARAJU

References

- [1] S. Arumugam and C. Sivagnanam, *Neighborhood connected domination in graphs*, J. Combin. Math. Combin. Comput. **73**(2010), 55-64.
- [2] S. Arumugam and S. Velammal, *Connected edge domination in graphs*, Bulletin of Allahabad Mathematical Society, **24**(1)(2009), 43-49.
- [3] G. Chartrand and L. Lesniak, Graphs and Digraphs, CRC, (2005).
- [4] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, (1997).
- [5] T.W. Haynes, S.T. Hedetniemi and P.J. Slater, Domination in Graphs-Advanced Topics, Marcel Dekker, Inc., New York, (1997).
- [6] S.R. Jayaram, *Line domination in graphs*, Graphs Combin. **3** (1987), 357-363.
- [7] S. Mitchell and S.T. Hedetniemi, Edge domination in trees, Congr. Numer. 19(1977), 489-509.

School of Sciences, Birla Institute of Technology, Kingdom of Bahrain.

E-mail: choshi71@gmail.com

Department of Mathematics, St. Joseph's College of Engineering, Chennai-600119, India.

E-mail: gracempk@yahoo.co.in

Department of Mathematics, SSN College of Engineering, Chennai-603110, India.

E-mail: pselvar@yahoo.com