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SOME CODING THEOREMS ON GENERALIZED

HAVRDA-CHARVAT AND TSALLIS’S ENTROPY

SATISH KUMAR AND ARUN CHOUDHARY

Abstract. A new measure L
β
α, called average code word length of order α and type β has

been defined and its relationship with a result of generalized Havrda-Charvat and Tsal-

lis’s entropy has been discussed. Using L
β
α, some coding theorem for discrete noiseless

channel has been proved.

1. Introduction

Throughout the paper N denotes the set of the natural numbers and for N ∈N we set

∆N =

{

(

p1, . . . , pN

)

/pi ≥ 0, i = 1, . . . , N ,
N
∑

i=1

pi = 1

}

.

In case there is no rise to misunderstanding we write P ∈∆N instead of
(

p1, . . . , pN

)

∈∆N .

In case N ∈N the well-known Shannon entropy is defined by

H (P) = H
(

p1, . . . , pN

)

=−

N
∑

i=1

pi log(pi ) (
(

p1, . . . , pN

)

∈∆N ), (1.1)

where the convention 0log(0) = 0 is adapted, (see Shannon [19]).

Throughout this paper,
∑

will stand for
∑N

i=1 unless otherwise stated and logarithms are

taken to the base D (D > 1).

Let a finite set of N input symbols

X = {x1, x2, . . . , xN }

be encoded using alphabet of D symbols, then it has been shown by Feinstien [6] that there

is a uniquely decipherable code with lengths n1,n2, . . . ,nN if and only if the Kraft inequality

holds that is,
N
∑

i=1

D−ni ≤ 1. (1.2)
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Where D is the size of code alphabet.

Furthermore, if

L =

N
∑

i=1

ni pi (1.3)

is the average codeword length, then for a code satisfying (1.2), the inequality

L ≥ H (P) (1.4)

is also fulfilled and equality holds if and only if

ni =− logD (pi ) (i = 1, . . . , N ), (1.5)

and that by suitable encoded into words of long sequences, the average length can be made

arbitrarily close to H (P), (see Feinstein [6]). This is Shannon’s noiseless coding theorem.

By considering Renyi’s entropy (see e.g. [18]), a coding theorem and analogous to the

above noiseless coding theorem has been established by Campbell [3] and the authors ob-

tained bounds for it in terms of Hα(P)= 1
1−α logD

∑

Pα
i

,α > 0(6= 1) . Kieffer [13] defined a class

rules and showed Hα (P) is the best decision rule for deciding which of the two sources can be

coded with expected cost of sequences of length n when n →∞, where the cost of encoding

a sequence is assumed to be a function of length only. Further, in Jelinek [10] it is shown that

coding with respect to Campbell’s mean length is useful in minimizing the problem of buffer

overflow which occurs when the source symbol is produced at a fixed rate and the code words

are stored temporarily in a finite buffer. Concerning Campbell’s mean length the reader can

consult [3].

Hooda and Bhaker considered in [9] the following generalization of Campbell’s mean

length:

Lβ (t )=
1

t
logD

{
∑

p
β

i
D−t ni

∑

p
β

i

}

, β≥ 1

and proved

H
β
α (P) ≤ Lβ (t )< H

β
α (P)+1, α> 0, α 6= 1, β≥ 1

under the condition
∑

p
β−1

i
D−ni ≤

∑

p
β

i

where H
β
α (P) is generalized entropy of order α=

1
1+t and type β studied by Aczel and Daroczy

[1] and Kapur [11]. It may be seen that the mean codeword length (1.3) had been general-

ized parametrically and their bounds had been studied in terms of generalized measures of

entropies. Here we give another generalization of (1.3) and study its bounds in terms of gen-

eralized entropy of order α and type β.
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Generalized coding theorems by considering different information measure under the

condition of unique decipherability were investigated by several authors, see for instance the

papers [7, 9, 12, 14, 17, 20].

In this paper we study some coding theorems by considering a new information mea-

sure depending on two parameters. Our motivation is -among others- that this quantity gen-

eralizes some information measures already existing in the literature such as the Tsallis (or

Havrda-Charvat) entropy, (see [8] and [21]).

2. Coding theorem

Definition. Let N ∈ N be arbitrarily fixed, α,β > 0, α 6= 1 be given real numbers. Then the

information measure H
β
α :∆N →R is defined by

H
β
α

(

p1, . . . , pN

)

=
1

α−1



1−

∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





(

(p1, . . . , pN )∈∆N

)

. (2.1)

Remark (i) When β= 1, then the information measure H
β
α reduces to entropy,

i .e., Hα

(

p1, . . . , pN

)

=
1

α−1

[

1−
N
∑

i=1

pα
i

]

(

(p1, . . . , pN ) ∈∆N

)

. (2.2)

The measure (2.2) was characterized by Havrda-Charvat [8], Vajda [22], Tsallis [21] and Daroczy

[4] by different approaches.

(ii) When β= 1 and α→ 1, then the information measure H
β
α reduces to Shannon entropy,

i .e., H (P) =−
∑

pi log pi . (2.3)

(iii) When α→ 1, the information measure H
β
α is the entropy of the β-power distribution,

i .e., Hβ (P) =−

∑N
i=1 p

β

i
log(p

β

i
)

∑N
j=1 p

β

j

, (2.4)

that was considered e.g. in Mathur-Mitter [16].

Definition. Let N ∈ N, α,β > 0, α 6= 1 be arbitrarily fixed, then the mean length L
β
α corre-

sponding to the generalized information measure H
β
α is given by the formula

L
β
α =

1

α−1



1−





∑N
i=1 p

β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α

 , (2.5)
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where (p1, . . . , pN ) ∈∆N and D, n1,n2, . . . ,nN are positive integers so that

N
∑

i=1

D−ni ≤

N
∑

j=1

p
β

j
. (2.6)

Remark (i) When β= 1, (2.5) reduces to a mean codeword length,

i .e., Lα =
1

α−1

[

1−
{

∑

pi D−ni

(

α−1
α

)
}α]

. (2.7)

(ii) When β= 1, α→ 1, (2.5) reduces to a mean code length L =
∑N

i=1 ni pi , defined in Shannon

[19].

Also, we have used the condition (2.6) to find the bounds. It may be seen that the case

β= 1 inequality (2.6) reduces to (1.2).

We establish a result, that in a sense, provides a characterization of H
β
α (P) under the

condition of (2.6).

Theorem 2.1. Let α,β > 0, α 6= 1 be arbitrarily fixed real numbers, then for all integers D > 1

inequality

L
β
α ≥ H

β
α (P) (2.8)

is fulfilled. Furthermore, equality holds if and only if

ni =− logD











p
αβ

i
∑N

i=1 p
αβ

i
∑N

j=1 p
β

j











. (2.9)

Proof. By reverse Hölder inequality, that is, if N ∈N, γ> 1 and x1, . . . , xN , y1, . . . , yN are positive

real numbers then
(

N
∑

i=1

x
1
γ

i

)γ

.

(

N
∑

i=1

y
−

1
(γ−1)

i

)−(γ−1)

≤

N
∑

i=1

xi yi . (2.10)

Let γ=
α

α−1
, xi =

(

p
β

i
∑N

j=1 p
β

j

)

(

α
α−1

)

D−ni , yi =

(

p
αβ

i
∑N

j=1 p
β

j

)
1

1−α

(i = 1, . . . , N ).

Putting these values into (2.10), we get





∑

p
β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α
α−1





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





1
1−α

≤

∑N
i=1 D−ni

∑N
j=1 p

β

j

≤ 1,

where we used (2.6), too. This implies however that





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





1
1−α

≤





∑N
i=1 p

β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α
1−α

. (2.11)
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Here two cases arise

Case 1. When 0 <α< 1, then raising power (1−α) to both sides of (2.11), we have





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j



≤





∑

p
β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α

we obtain the result (2.8) after simplification for 1
α−1

< 0 as 0 <α< 1.

i.e.,

L
β
α ≥ H

β
α(P), when 0 <α< 1. (2.12)

Case 2. When α> 1, then raising power (1−α) to both sides of (2.11), we have





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j



≥





∑

p
β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α

we obtain the result (2.8) after simplification for 1
α−1 > 0 as α> 1.

i.e., L
β
α ≥ H

β
α(P), when α> 1.

Case 3. From (2.9) and after simplification, we get

D−ni

(

α−1
α

)

= p
β(α−1)

i





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





(

1−α
α

)

.

This implies




∑

p
β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α

=





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j



 ,

which gives L
β
α = H

β
α (P). ���

Theorem 2.2. Let N ∈N, α,β> 0, α 6= 1 be fixed. Then there exist code length n1, . . . ,nN so that

H
β
α(P) ≤ L

β
α < D1−αH

β
α(P)+

1

α−1
(1−D1−α) (2.13)

holds. Where H
β
α(P) and L

β
α are given by (2.1) and (2.5) respectively.

Proof. Due to the previous theorem,

L
β
α = H

β
α(P)

holds if and only if

D−ni =
p
αβ

i
∑N

i=1 p
αβ

i
∑N

j=1 p
β

j

, α> 0, α 6= 1, β> 0,
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i.e., ni =− logD p
αβ

i
+ logD

[

∑N
i=1 p

αβ

i
∑N

j=1 p
β

j

]

.

We choose the codeword lengths ni , i = 1, . . . , N in such a way that

− logD p
αβ

i
+ logD





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j



≤ni <− logD p
αβ

i
+ logD





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j



+1 (2.14)

is fulfilled for all i = 1, . . . , N .

From the left inequality of (2.14), we have

D−ni ≤
p
αβ

i
∑N

i=1 p
αβ

i
∑N

j=1 p
β

j

, (2.15)

taking sum over i , we get the generalized inequality (2.6). So there exists a generalized code

with code lengths ni , i = 1, . . . , N .

Case 1. Let 0 <α< 1, then (2.14) can be written as

p
β(α−1)

i





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





1−α
α

≤ D−ni

(

α−1
α

)

< p
β(α−1)

i





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





1−α
α

D
1−α
α . (2.16)

Multiplying (2.16) throughout by
p
β

i
∑N

j=1 p
β

j

and then summing up from i = 1 to i = N , we obtain

inequality (2.13) after simplification with α
α−1 ,

i.e.,
1

α−1



1−





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j







 ≤
1

α−1



1−

∑N
i=1 p

β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α

< D1−α







1

α−1



1−

∑N
i=1 p

αβ

i
∑N

j=1 p
β

j











+
1

α−1

(

1−D1−α
)

H
β
α(P) ≤ L

β
α < D1−αH

β
α(P)+ 1

α−1 (1−D1−α), which gives (2.13).

Case 2. Let α> 1, then (2.14) can be written as

p
β(α−1)

i





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





1−α
α

≥ D−ni

(

α−1
α

)

> p
β(α−1)

i





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j





1−α
α

D
1−α
α .

Multiplying (2.16) throughout by
p
β

i
∑N

j=1 p
β

j

and then summing up from i = 1 to i = N , we obtain

inequality (2.13) after simplification with α
α−1 ,

i.e.,
1

α−1



1−





∑N
i=1 p

αβ

i
∑N

j=1 p
β

j







 ≤
1

α−1



1−

∑N
i=1 p

β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α
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< D1−α







1

α−1



1−

∑N
i=1 p

αβ

i
∑N

j=1 p
β

j











+
1

α−1

(

1−D1−α
)

H
β
α(P) ≤ L

β
α <D1−αH

β
α(P)+ 1

α−1 (1−D1−α), which gives (2.13). ���

Theorem 2.3. For arbitrary N ∈N,α,β> 0,α 6= 1 and for every code word lengths ni , i = 1, . . . , N

of Theorem 2.1, L
β
α can be made to satisfy,

L
β
α ≥ H

β
α (P) > H

β
α (P)D +

1

α−1
(1−D) . (2.17)

Proof. Suppose

n̄i =− logD











p
αβ

i
∑N

i=1 p
αβ

i
∑N

j=1 p
β

j











, α> 0, α 6= 1, β> 0. (2.18)

Clearly n̄i and n̄i + 1 satisfy ‘equality’ in Holder’s inequality (2.10). Moreover, n̄i satisfies (2.6).

Suppose ni is the unique integer between n̄i and n̄i + 1, then obviously, ni satisfies (2.6).

Since α> 0(6= 1), we have





∑N
i=1 p

β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α

≤





∑N
i=1 p

β

i
D−n̄i

(

α−1
α

)

∑N
j=1 p

β

j





α

< D





∑N
i=1 p

β

i
D−n̄i

(

α−1
α

)

∑N
j=1 p

β

j





α

. (2.19)

Since

(

∑N
i=1 p

β

i
D−n̄i ( α−1

α )
∑N

j=1 p
β

j

)α

=

∑

p
αβ

i
∑

p
β

j

.

Hence (2.19) becomes





∑N
i=1 p

β

i
D−ni

(

α−1
α

)

∑N
j=1 p

β

j





α

≤

∑

p
αβ

i
∑

p
β

j

<D





∑

p
αβ

i
∑

p
β

j





which gives (2.17).
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