Available online at http://journals.math.tku.edu.tw

ON GRADED WEAK MULTIPLICATION MODULES

F. FARZALIPOUR AND P. GHIASVAND

Abstract. Let *G* be a group with identity e, and let *R* be a *G*-graded commutative ring, and let *M* be a graded *R*-module. In this paper we characterize graded weak multiplication modules.

1. Introduction

Let G be a group. A commutative ring (R,G) is called a G-graded commutative ring if there exists a family $\{R_g : g \in G\}$ of additive subgroups of R such that $R = \bigoplus_{g \in G} R_g$ such that $1 \in R_e$ and $R_g R_h \subseteq R_{gh}$ for each g and h in G. For simplicity, we will denote the graded ring (R,G) by R. If R is G-graded, then an R-module M is said to be G-graded if it has a direct sum decomposition $M = \bigoplus_{g \in G} M_g$ such that for all $g, h \in G$; $R_g M_h \subseteq M_{gh}$. An element of some R_g or M_g is said to be homogeneous element of degree g. A submodule $N \subseteq M$, where M is G-graded, is called G-graded if $N = \bigoplus_{g \in G} (N \cap M_g)$ or if, equivalently, N is generated by homogeneous elements. Moreover, M/N becomes a G-graded module with g-component $(M/N)_g = (M_g + N)/N$ for $g \in G$. We write $h(R) = \bigcup_{g \in G} R_g$ and $h(M) = \bigcup_{g \in G} M_g$. A graded commutative ring R is called graded integral domain, if ab = 0 for $a, b \in h(R)$, then a = 0 or b = 0. A graded commutative ring R is called graded field, if every homogeneous element of *R* is unit. A graded ideal *I* of *R* is said to be graded prime ideal if $I \neq R$; and whenever $ab \in I$, we have $a \in I$ or $b \in I$, where $a, b \in h(R)$ (see, [6]). A graded ideal I of R is said to be graded maximal if $I \neq R$ and there is no graded ideal J of R such that $I \subsetneq J \subsetneq R$. If R is a graded ring and M a graded R-module, the subset T(M) of M is defined by $T(M) = \{m \in M : rm = 0 \text{ for } m \in M \}$ some $0 \neq r \in h(R)$. If R is a graded integral domain, then T(M) is a graded submodule of M (see [1]). If T(M) = 0, M is called graded torsion free, if T(M) = M, M is called graded torsion. A graded module M over a G-graded ring R is called to be graded multiplication if for each graded submodule N of M; N = IM for some graded ideal I of R. One can easily show that if N is graded submodule of a graded multiplication module M, then N = (N : M)M[see, 4]. Let *R* be a *G*-graded ring and $S \subseteq h(R)$ be a multiplicatively closed subset of *R*. Then

Corresponding author: Peyman Ghiasvand.

2010 Mathematics Subject Classification. 13C05, 13C13, 13A15.

Key words and phrases. Minimal, Graded, graded prime, graded weak multiplication.

the ring of fraction $S^{-1}R$ is a graded ring which is called the graded ring of fractions. Indeed, $S^{-1}R = \bigoplus_{g \in G} (S^{-1}R)_g$ where $(S^{-1}R)_g = \{r/s : r \in h(R), s \in S \text{ and } g = (degs)^{-1}(degr)\}.$

Let *M* be a graded module over a *G*-graded ring *R* and $S \subseteq h(R)$ be a multiplicatively closed subset of R ($0 \notin S$, $1 \in S$ and for any $a, b \in S$, $ab \in S$). The module of fraction $S^{-1}M$ over a graded ring $S^{-1}R$ is a graded module which is called the module of fractions, if $S^{-1}M = \bigoplus_{g \in G} (S^{-1}M)_g$ where $(S^{-1}M)_g = \{m/s : m \in M, s \in S \text{ and } g = (degs)^{-1}(degm)\}$. We write $h(S^{-1}R) = \bigcup_{g \in G} (S^{-1}R)_g$ and $h(S^{-1}M) = \bigcup_{g \in G} (S^{-1}M)_g$. Let $M = \bigoplus_{g \in G} M_g$ and $N = \bigoplus_{g \in G} N_g$ are two graded modules, then a mapping $\eta : M \longrightarrow N$ is graded homomorphism if $\eta(M_g) \subseteq N_g$ for all $g \in G$. Consider the graded homomorphism $\eta : M \longrightarrow S^{-1}M$ defined by $\eta(m) = m/1$. For any graded submodule *N* of *M*, the submodule of $S^{-1}M$ generated by $\eta(N)$ is denoted by $S^{-1}N$. Similar to non graded case, one can prove that $S^{-1}N = \{\beta \in S^{-1}M : \beta = m/s \text{ for } m \in N$ and $s \in S$ and that $S^{-1}N \neq S^{-1}M$ if and only if $S \cap (N : M) = \phi$. Let *P* be any graded prime ideal of a graded ring *G* fraction $S^{-1}R$ of *R* by R_p^g and we call it the graded localization of *R*. This ring is graded local with the unique graded maximal $S^{-1}P$ which will be denoted by PR_p^g . Moreover, R_p^g -module $S^{-1}M$ is denoted by M_p^g . For graded submodules *N* and *K* of *M*, if $N_p^g = K_p^g$ for every graded prime (graded maximal) ideal *P* of *R*, then N = K.

Moreover, similar to non graded case, we have the following properties for graded submodules N and K of M:

- (1) $S^{-1}(N \cap K) = S^{-1}N \cap S^{-1}K$.
- (2) $S^{-1}(N:K) = (S^{-1}N:S^{-1}K)$ if *K* is finitely generated.

If *K* is a graded submodule of $S^{-1}R$ -module $S^{-1}M$, then $K \cap M$ will denote the graded submodule $\eta^{-1}(K)$ of *M*. Moreover, similar to the non graded case one can prove that $S^{-1}(K \cap M) = K$. In this paper, we study properties of graded prime submodules and define graded weak multiplication module. Also, we characterize graded weak multiplication modules.

2. Graded prime submodules

A proper graded submodule *N* of a graded *R*-module *M* is defined to be graded prime if $r m \in N$ where $r \in h(R)$ and $m \in h(M)$, then $m \in N$ or $r \in (N : M)$ (see [3]).

The set of all graded prime submodules of a graded *R*-module *M* is denoted by $GSpec_R(M)$. The following Lemma is known, but we write it here for the sake of references.

Lemma 2.1. Let M be a graded module over a graded ring R. Then the following hold:

(i) If I and J are graded ideals of R, then I + J and $I \cap J$ are graded ideals.

- (ii) If N is a graded submodule, $r \in h(R)$ and $x \in h(M)$, then Rx, IN and rN are graded submodules of M.
- (iii) If N and K are graded submodules of M, then N + K and $N \cap K$ are also graded submodules of M and $(N:_R M)$ is a graded ideal of R.
- (iv) Let N_{λ} be a collection of graded submodules of M. Then $\sum_{\lambda} N_{\lambda}$ and $\bigcap_{\lambda} N_{\lambda}$ are graded submodules of M.

Theorem 2.2. Let *R* be a graded ring and $M \neq 0$ a graded *R*-module, then *R* is a graded field if and only if every proper graded submodule of *M* is a graded prime submodule of *M* and $T(M) \neq M$.

Proof. (\Rightarrow)Let *N* be a proper graded submodule of *M*. Suppose that $r_g m_h \in N$ where $r_g \in h(R)$ and $m_h \in h(M)$. If $r_g = 0$, then $r_g = 0 \in (N : M)$, so let $r_g \neq 0$. Hence $m_h = r_g^{-1}(r_g m_h) \in N$ since *R* is graded field. So *N* is a graded prime submodule.

Now we show that $T(M) \neq M$. Let T(M) = M, and $0 \neq m \in M$. Then $r_g m = 0$ for some $0 \neq r_g \in h(R)$. So m = 0 since R is graded field, a contradiction.

(⇐)Let $m_g \in M - T(M)$, so $Ann(m_g) = 0$. It is easy to see that every proper graded submodule of Rm_g is a graded prime submodule, and $Rm_g \cong R/Ann(m_g) = R$ as graded *R*-modules. Therefore, every proper graded ideal of *R* is a graded prime ideal, hence *R* is a graded field (see, [2]).

Lemma 2.3. Let M be a graded R-module, $S \subseteq h(R)$ a multiplicatively closed set and N a graded prime submodule of M such that $S \cap (N : M) = \emptyset$. Then $S^{-1}(N : M) = (S^{-1}N : S^{-1}M)$.

Proof. Let $r/s \in (S^{-1}N : S^{-1}M)$. Let $m \in M$, so $m = \sum_{g \in G} m_g$. We show that for any $g \in G$, $rm_g \in N$. $r/s.m_g/1 \in S^{-1}N$. Hence $rm_g/s = n/t$ for some $n \in N$ and $t \in S$. So $s'trm_g = ss'n \in N$ for some $s' \in S$ and since $s't \notin (N : M)$, so N graded prime submodule gives $rm_g \in N$. Therefore, $rm \in N$, so $(S^{-1}N : S^{-1}M) \subseteq S^{-1}(N : M)$. It is clear that $S^{-1}(N : M) \subseteq (S^{-1}N : S^{-1}M)$. Thus $S^{-1}(N : M) = (S^{-1}N : S^{-1}M)$.

Theorem 2.4. Let *P* be a graded prime ideal of *R*, $S \subseteq h(R)$ a multiplicatively closed set such that S = h(R) - P and *M* a graded *R*-module. Then there exists a one-to-one correspondence between the graded *P*-prime submodules of *M* and the PR_p^g -prime R_p^g -submodules of M_p^g .

Proof. Let *N* be a graded *P*-prime submodule of *M*. suppose $r/s.m/t \in N_p^g$ and $m/t \notin N_p^g$ where $r/s \in h(R_p^g)$ and $m/t \in h(M_p^g)$. Hence $rm \in N$ and $m \notin N$ where $r \in h(R)$ and $m \in h(M)$, so $r \in (N : M)$ since *N* is graded prime. Hence $r/s \in (N :_R M)_P^g = (N_P^g :_{R_p^g} M_P^g) = PR_P^g$ by Lemma 2.3. Hence N_p^g is a graded PR_P^g -prime R_P^g -submodule of M_P^g . Let N_P^g be a graded prime submodule of M_p^g . Let $rm \in N$ where $r \in h(R)$ and h(M). So $r/1.m/1 \in N_p^g$ where

 $r/1 \in h(R_p^g)$ and $m/1 \in h(M_p^g)$. Thus $m/1 \in N_p^g$ or $r/1 \in (N_p^g : M_p^g) = (N :_R M)_p^g = PR_p^g$ since N_p^g is a graded prime. Hence $r \in (N : M) = P$ or $m \in N$. Therefore, N is a graded P-prime submodule of M.

3. Graded weak multiplication modules

Definition 3.1. Let *M* be a graded *R*-module. *M* is called a graded weak multiplication module if $GSpec_R M = \emptyset$ or for every graded prime submodule *N* of *M*, we have N = IM where *I* is a graded ideal of *R*.

One can easily show that if *M* is a graded weak multiplication module, then N = (N : M)M for every graded prime submodule *N* of *M*.

Theorem 3.2. A graded *R*-module *M* is a graded weak multiplication module if and only if the graded R_P -module M_P is a graded weak multiplication module for every graded prime (or graded maximal) ideal P of R.

Proof. Let *M* be a graded weak multiplication *R*-module and *K* a graded prime submodule of M_P where *P* is a graded prime ideal of *R*. So $K = N_p^g$ for some graded prime submodule *N* of *M*. So N = IM for some graded ideal *I* of *R*. Hence $K = N_p^g = (IM)_p^g = I_p^g M_p^g$ because if $x/s \in (IM)_p^g$, then x/s = am/t for some $a \in I$, $m \in M$ and $t \in S = R - P$, then $x/s = a/t.m/t \in I_p^g M_p^g$, so $(IM)_p^g \subseteq I_p^g M_p^g$, and clearly, $I_p^g M_p^g \subseteq (IM)_p^g$, so $(IM)_p^g = I_p^g M_p^g$. Thus M_p^g is a graded weak multiplication R_p^g -module.

Conversely, let *N* be a graded prime submodule of *M*. We show that $(N/(N:M)M)_p^g = 0$ for every graded maximal ideal *P* of *R*. If $(N:M) \subseteq P$, then by Theorem 2.4, N_p^g is a graded prime submodule of M_p^g . So $N_p^g = (N_p^g:M_p^g)M_p^g$, and by Lemma 2.3, $(N_p^g:M_p^g) = (N:M)_p^g$. Hence $(N/(N:M)M)_p^g = N_p^g/(N:R)M_p^g M_p^g = N_p^g/(N_p^g:R_p^g)M_p^g)M_p^g = 0$. If $(N:M) \not \subseteq P$, then clearly $N_p^g = M_p^g$ and $(N:M)_p^g = R_p^g$. So $(N/(N:M)M)_p^g = N_p^g/(N:M)_p^g M_p^g = M_p^g/(N:M)M_p^g = 0$. If $(N:M) \not \subseteq P$, then clearly $N_p^g = M_p^g$ and $(N:M)_p^g = R_p^g$. So $(N/(N:M)M)_p^g = N_p^g/(N:M)M_p^g = M_p^g/(N:M)M_p^g = 0$. If (N:M)M = 0, as needed.

Remark 3.3. Let *R* be a graded integral domain. The quotient field *Q* of *R* is defined by $Q = S^{-1}R$ where $S = h(R) - \{0\}$. Indeed $Q = \bigoplus_{g \in G} Q_g$ where $Q_g = \{r/s : r, s \in h(R), s \neq 0 \text{ and } g = (degs)^{-1}(degr)\}$ that is a graded field which is called the graded quotient field.

Definition 3.4. Let *R* be a graded domain with the graded quotient field *Q*, the Grank(M) is defined to be the maximal number of homogeneous elements of *M* linearly independent over *M*. In fact, Grank(M) is the dimension of the graded vector space *QM* over graded field *Q*, that is $Grank(M) = Grank_Q(QM)$.

Theorem 3.5. Let M be a graded weak multiplication module over a graded domain, then

- (i) If M is a non-zero graded torsion free module, then Grank(M) = 1.
- (ii) If M is a graded torsion module, then Grank(M) = 0.
- (iii) *M* is either graded torsion or graded torsion free.

Proof. (i) First, Let *R* is a graded field, so $0 \neq M$ is a graded vector space which is a graded weak multiplication module. If Grank(M) > 1, then let $0 \neq W \subset M$. According to Theorem 2.2, *W* is a graded prime submodule of *M*, so W = IM for some graded ideal *I* of the graded field *R*. So I = 0 or I = R, a contradiction. Hence $Grank(M) \leq 1$, and since $M \neq 0$, then Grank(M) = 1. Now let *M* be a non-zero graded torsion free *R*-module, then $QM \neq 0$, which *Q* is a graded quotient field of *R*. By Theorem 3.2, QM is a graded weak multiplication *Q*-module, and since we have proved in above $Grank_Q(QM) = 1$, so $Grank(M) = Grank_Q(QM) = 1$.

(ii) Suppose that *M* is a graded torsion module, then QM = 0 and therefore $Grank(M) = Grank_Q(QM) = 0$.

(iii) Let $T(M) \neq M$. Then T(M) is a graded prime submodule and (T(M) : M) = 0 by [1, Proposition 2.5]. Therefore since *M* is graded weak multiplication, we have T(M) = (T(M) : M)M = 0, so the proof is complete.

A graded module *M* over a *G*-graded ring *R* is called locally graded cyclic if M_p^g is graded cyclic R_p^g -module for all graded maximal ideal *P* of *R*.

A graded module *M* over a *G*-graded ring *R* is called to be graded finitely generated if $M = \sum_{i=1}^{n} Rx_{g_i}$ where $x_{g_i} \in h(M)$. A graded *R*-module *M* is called graded cyclic if $M = Rx_g$ where $x_g \in h(M)$.

Theorem 3.6. A graded finitely generated module is a graded multiplication module if and only if it is locally graded cyclic.

Proof. See [4, Proposition 2.4].

Theorem 3.7. *Every graded finitely generated graded weak multiplication module is graded multiplication module.*

Proof. Suppose that *M* is a graded finitely generated graded weak multiplication *R*-module. We show that *M* is locally graded cyclic, and by Theorem 3.5, *M* is a graded multiplication module. By localization and Theorem 3.2, we can assume that *M* is a graded finitely generated graded weak multiplication *R*-module where *R* is a graded local ring. Let *m* be the only graded maximal ideal of *R*. Obviously M/mM is a graded finitely generated graded weak multiplication *R*/*m*-module. If M = mM, then by Nakayama Lemma for graded case (see [4]), we have M = 0, so it is graded cyclic.

If $mM \neq M$, then $Grank_{R/m}(M/mM) = 1$, by Theorem 3.5 (i), so M is graded cyclic.

The graded dimension of a *G*-graded *R* is the supremum of the lengths of all chains of graded prime ideals in *R* and denoted by Gdim(R).

Theorem 3.8. Let *R* is a graded domain. Then the following are equivalent.

- (i) Gdim(R)=0.
- (ii) For every graded weak multiplication R-module M, if T(M) = 0, then M is graded cyclic.
- (iii) For every graded weak multiplication R-module M, if T(M) = 0, then M is graded multiplication.

Proof. (i) \Rightarrow (ii) First let *R* be a graded field. Let *M* a graded torsion-free graded weak multiplication *R*-module. If *M* = 0, then *M* is graded cyclic. So let $M \neq 0$. Hence *M* is a non-zero graded weak multiplication vector space over the graded field *R*. By Theorem 3.5, Grank(M) = 1. That is $M \cong R$, so *M* is graded cyclic.

Now we prove the general case. Let $0 \neq M$. By [1, Proposition 2.5], T(M) = 0 is a graded prime submodule of M. Hence (T(M) : M) is a graded prime ideal of R and since Gdim(R) = 0, R/(T(M) : M) is a graded field. Since T(M) = 0, so $M \cong M/0 = M/T(M)$ is a graded torsion-free graded weak multiplication R/(T(M) : M)-module. So M is a graded torsion-free graded weak multiplication module over a graded field R/(T(M) : M). Therefore as we have proved in above M is a graded cyclic R/(T(M) : M)-module and by the fact (r + (T(M) : M))m = rm for all $r \in R$ and $m \in M$, then M is a graded cyclic R-module.

(ii) \Rightarrow (iii) By [4, Proposition 2.4].

(iii) \Rightarrow (i) Let *P* be a graded prime ideal of *R*. It is enough to prove that *R*/*P* is a graded field. If *Q* is the graded quotient field of *R*, then 0 is the only graded prime ideal of *R*/*P*-module *Q*. Hence *Q* is a graded torsion-free graded weak multiplication *R*/*P*-module. Therefore by assumption *Q* is a graded multiplication module. Since *R*/*P* is a graded submodule of *Q*, so R/P = IQ for some graded ideal *I* of *R*/*P*. Clearly, IQ = Q, so Q = R/P, hence *P* is a graded maximal ideal of *R*. Therefore, Gdim(R) = 0.

Corollary 3.9. Let R is a graded integral domain. Then the following are equivalent.

- (i) *R* is a graded field.
- (ii) Every graded weak multiplication R-module is graded cyclic.
- (iii) Every graded weak multiplication R-module is graded multiplication.

Proof. If *R* is graded field, and since every graded weak multiplication *R*-module is a graded vector space, it is a graded torsion-free graded weak multiplication *R*-module, so the proof follow by Theorem 3.8. \Box

Corollary 3.10. If m is a graded maximal ideal of the graded ring R which is a minimal graded prime ideal and $m \neq m^2$, then the following are equivalent.

- (i) *m* is a graded weak multiplication *R*-module.
- (ii) There is no graded ideal between m^2 and m.
- (iii) $GSpec_Rm = \{m^2\}.$

Proof. By localization and Theorem 3.2 we can assume that *R* is a graded local ring with the only graded prime ideal *m*.

(i) \Rightarrow (ii) Let *m* be a graded weak multiplication *R*-module. If $m^2 \subseteq I \subseteq m$ where *I* is graded ideal of *R*, we show that *I* is a graded prime submodule of *m*. Let $ra \in I$ where $r \in h(R)$ and $a \in h(m)$. Suppose that $a \notin I$, then *r* is not unit, hence $r \in m$. Therefore $rm \subseteq m^2 \subset I$, that is *I* is a graded prime submodule of *m*.

Since *m* is graded weak multiplication module, and *I* a graded prime submodule, then $I = mm_1$ for some graded ideal m_1 of *R*. If $m_1 = R$, then I = mR = m, which is a contradiction. So $m_1 \subseteq m$, that is $m^2 \subseteq I = mm_1 \subseteq m^2$, thus there is no graded ideal between m^2 and *m*.

(ii) \Rightarrow (iii) Suppose that there is no graded ideal between m^2 and m. If I is a graded prime submodule of the graded R-module m, then (I : m) is a graded prime ideal by [3, Proposition 2.5]. Since m is the only graded prime ideal of R, then (I : m) = m. Therefore, $m^2 \subseteq I \subseteq m$, and by assumption $I = m^2$, hence $GSpec_Rm = \{m^2\}$.

Acknowledgement

I would like to thank the referee(s) for his comments and suggestions on the manuscript.

References

- [1] S. Ebrahimi Atani, On graded prime submodules, Chiang Mai J. Sci., 2006,33(1), 3-7.
- [2] S. Ebrahimi Atani and F. Farzalipour, *Notes On the graded prime submodules*, Int. Math. Forum 1(2006), 1871–1880.
- [3] S. Ebrahimi Atani and F. Farzalipour, On graded secondary modules, Tuikish. J. Math. 31(2007), 371–378.
- [4] P. Ghiasvand and F. Farzalipour, Some Properties of Graded Multiplication Modules, Far East J. Math. Sci. 34(2009), 341–352.
- [5] C. Nastasescu and F. van Oystaeyen, Graded Rings Theory, Mathhematical Library 28, North Holand, Amsterdam, 1982.
- [6] M. Refaei and K. Alzobi, On graded primary ideals, Turkish. J. Math. 28(2004), 217–229.

Department of Mathematics, Payame Noor University, Tehran 19395-3697, Iran.

E-mail: f.farzalipour@pnu.ac.ir

Department of Mathematics, Payame Noor University, Tehran 19395-3697, Iran.

E-mail: p.ghiasvand@pnu.ac.ir