
TAMKANG JOURNAL OF MATHEMATICS

Volume 41, Number 3, 217-243, Autumn 2010

NAVIER-STOKES-BRINKMAN SYSTEM FOR

INTERACTION OF VISCOUS WAVES

WITH A SUBMERGED POROUS STRUCTURE

LEMI GUTA AND S. SUNDAR

Abstract. In this paper the interaction of a two-dimensional progressive wave

train over a submerged rectangular porous breakwater is studied theoretically. For

this purpose, the time dependent incompressible Navier-Stokes-Brinkman system is

newly derived for wave propagating over submerged breakwater. A staggered grid

Finite Volume Method (FVM) is used to solve the Navier-Stokes-Brinkman system.

The free surface boundary condition and the interfacial boundary conditions be-

tween the water and porous media are in complete form. A Volume-of-Fluid (VOF)

methodology is employed to track the free surface. The validity of present model is

verified based on the compressions with the existing experimental results. Having

verified the accuracy of the numerical model, the effects of several parameters of

a wave and a submerged breakwater were systematically investigated. The results

indicate that the wave transformations are affected primarily by the breakwater

width and the structure permeability. The numerical results also illustrate that

for the porous breakwater, an optimum porosity value seems to exist at which the

transmitted wave height is minimized. It has been observed that the transmission

coefficient decreases as the permeability increases. However, the results indicate

that further increase of the structure permeability beyond the optimal value in-

crease the transmission coefficient.

1. Introduction

Study of wave-porous structure interaction is becoming increasingly important for

problems like design of porous breakwaters to protect harbors, pillows holding open

sea platforms, erosion of the seacoast etc. The Numerical Prediction of Performance

of submerged breakwater was studied by A.Chiranjeevi [2] The accurate prediction and

estimation of the reflection, transmission and deformation of water waves and their in-

teraction with structures are important for design purposes of porous breakwaters like

rubble-mound breakwaters in ports and coastal areas. In recent years there have been
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many techniques developed for the numerical solution of complicated problems in fluid
dynamics. The simulation of the nonlinear dynamic interactions between waves, a sub-
merged breakwater and the seabed was studied by Dong-Soo Hur [7]. The interaction of
a solitary wave and a submerged dike was studied by Ching-Jer Huang and Chih-Ming
Dong [4]. The use of porous plate structures as wave makers has been studied by Chwang
[3]. With the development activities, the dynamic equilibrium of the coastal region is
disturbed resulting in coastal erosion and accretion. Coastal erosion is a severe problem
worldwide, threatening the coastal properties, degradation of valuable land and natural
resources, disruption to fishing, shipping and tourism. The development of coastal fa-
cilities has necessitated proper management of the sea front warranting for construction
of coastal protective structures. The choice of the structure would depend on the wave
environment and the morphology of the coastal region. Submerged structure has been
employed to protect coastal environments for many years. As water wave propagate over
submerged structures on the bottom, waves are partly reflected and partly diffracted, as
the result the water elevation decreases behind submerged structures. Our work is to es-
tablish a numerical model to investigate the interaction of a two-dimensional progressive
wave train over a submerged porous breakwater incorporating free surface. This paper
is organized as follows. In section 2, we present a mathematical model, describing the
interaction of nonlinear progressive viscous waves with porous breakwater and boundary
conditions. The Navier-Stokes-Brinkman system is employed to simulate the transport
quantities and to solve the free surface flow problem. In section 3, a numerical scheme
is described. A Volume-of-Fluid (VOF) methodology is employed to track the free sur-
face. In section 4, some numerical tests are presented. Numerical results for the wave
interaction with a submerged breakwater are discussed and compared with the existing
experimental results. The effect of structure permeability, width and height on the water
elevation while interacting with the different types of porous obstacle at high Reynolds
number are considered.

2. Governing the problem

We have considered the interaction of a gravity wave train of height H , with porous
submerged rectangular breakwater surrounded by the fluid of finite depth d, the width
and height of the structure are denoted by w and h respectively as shown in Figure 1.
The problem is restricted to two dimensions. Furthermore, momentum conservation can
be described by incompressible isothermal Navier-Stokes equations for the flow in pure
liquid zone, and Brinkman (extension to Darcy) model for flow in porous zone.

2.1. Flow in the fluid region

The liquid we are modelling is incompressible and the governing equation in the fluid
region is given by incompressible Navier-Stokes Equation

∂u

∂t
+ (u · ∇)u =

1

ρ
(µ∆u −∇p + fNS) (1)
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Figure 1: Schematic diagram of a non-linear wave passing over a rectangular porous
structure

∇ · u = 0 (2)

where u = (u, v)T is velocity vector, p is the hydrodynamic pressure, ρ is density, fNS is
external body force and µ is the dynamic viscosity coefficient. Equations (1) and (2) can
be equivalently expressed as u and v component of momentum equations in the following
way

∂u

∂t
+

∂u2

∂x
+

∂uv

∂y
+

∂p̃

∂x
= ν(

∂2u

∂x2
+

∂2u

∂y2
) + fx (3)

∂v

∂t
+

∂uv

∂x
+

∂v2

∂y
+

∂p̃

∂y
= ν(

∂2v

∂x2
+

∂2v

∂y2
) + fy (4)

The x and y coordinate axes are horizontal and vertical components of spatial co-
ordinates respectively, with the origin located at the lower left of the computing region
and the kinematics viscosity coefficient is given by ν = µ

ρ . The corresponding compo-
nents of the velocities are u and v in the Cartesian coordinates (x, y). t is the time, while
p̃ is the ratio of the pressure to the constant density. (For brevity, we usually refer to
as p̃ = p ”pressure”). The x and y components of body force are denoted by fx and fy

respectively.

2.2. Flow in porous media

By porous medium we mean a material consisting of a solid matrix with an intercon-
nected void, the interconnectedness of the void (the pores) allows the flow of one or more
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fluids through the material. Examples of porous media are soil, bread, paper etc., the

details of the internal geometry of porous media are essentially random and unknown

[12]. The saturated flow in porous media is described by Darcy’s model and expressed

by the equations

µK−1u = fD −∇p (5)

∇ · u = 0 (6)

The permeability tensor, a characteristic of the porous media geometry, is denoted by

K. The above relation does not take into account the viscous resistance and convective

acceleration terms. This, in effect, imposes serious limitations on the range of validity of

Darcy’s law, which was valid for flows with low Reynolds number. As the flow velocity

or particle size increases, Darcy’s linear relationship between the discharge velocity and
pressure gradient breaks down. Accordingly, in order to account for the high porosity

and high velocity, the following Brinkman model, which is an extension of Darcy’s model

has been considered. Brinkman accounted for the presence of a solid boundary by adding

a viscous term to Darcy’s law. The unsteady Brinkman equation for viscous flows in a
porous media is given as

s
∂u

∂t
+ (u · ∇)u =

1

ρ
(∇ · (µeff∇u) − µK−1u−∇p + fB) (7)

∇ · u = 0 (8)

where µeff = µ
ǫp

is effective viscosity , s = 1 + (1 − ǫp)cm/ǫp is the inertial coefficient,

cm is a coefficient of added mass and ǫp is the porosity of the porous structure. The
left hand side terms in equation (7) denote the inertial force per unit volume, the write-

hand-side terms represent the total forces acting on the fluid per unit volume. The

first term on the right- hand-side is the force caused by the pressure gradient. The

second term denotes the viscous force and can be traced back to Brinkman who suggests

that for flow motion in porous media with high permeability, the viscous shear stresses
acting on the pore flow should be added to the momentum equation. The viscous stress

term is responsible for transferring shear force and may become increasingly important

near the interface between the porous and pure liquid regions. The convective term

should improve the non-linear effect for the wave structure interaction, while the benefit
of including the viscous force term for pore flow is the complete forces acting on the

flow are taking into account. The third term represents the resistance force acting on

flow by fixed solid skeleton. Consequently, the equations are of the same type as the

Navier-Stokes equations for the flow in the pure liquid region. Hence, both equations

can be solved using the same numerical algorithm and formulated as single system called
Navier-Stokes-Brinkman system.
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2.3. Dimensionless form of Navier-Stokes-Brinkman system

Experimental studies of flows are often carried out on models, and the results are
displayed in dimensionless form, thus allowing scaling to real flow conditions. The same
approach can be undertaken in numerical studies as well. The governing equations

s̃
∂u

∂t
+ (u · ∇)u =

1

ρ
(µ∇ · (µ̃∇u) − µK−1u −∇p + f̃)

can be transferred to dimensionless form by using appropriate normalization. Let us
define dimensionless coordinates x∗ and t∗ and variables u∗ and p∗ as: t∗ = t

T , x∗ = x
d

, u∗ = u
U , p∗ = p

ρU2 , µ̃∗ = µ
µ̃ , f∗ = f

ρg where U is the characteristics velocity and d is
a length scale. If the velocity and the length are non-dimensionalized by U and d where
U = cHi

d , c is the phase speed, and Hi is the ith wave height of the incident waves, and
T = d

U is chosen to non-dimensionalized the time. After changing (u, p) to (u∗, p∗) and
multiplying the resulting momentum equations by d

ρU2 .

s̃d

UT

∂u∗

∂t∗
− µ

ρdU
∇∗ · (µ̃∇∗u∗) + (u∗,∇∗)u∗ +

µdK−1

ρU
u∗ + ∇∗p∗ =

dg

U2
f∗

⇒ s̃
∂u∗

∂t∗
− 1

Re
∇∗ · (µ̃∇∗u∗) + (u∗,∇∗)u∗ +

1

ReDa
u∗ + ∇∗p∗ =

1

F 2
r

f∗

Accordingly the dimensionless form of Navier-Stokes-Brinkman system can be written as

s̃
∂u

∂t
+ (u · ∇)u = −∇p +

1

Re
∇ · (µ̃∇u) − 1

ReDa
u +

1

F 2
r

f̃ (9)

∇ · u = 0 (10)

where µ̃ = 1, s̃ = 1, f̃ = fNS , K−1 = 0 for the pure liquid region(Region 1) and µ̃ =
µeff

µ ,

s̃ = s, f̃ = fB, K−1 = ǫpk
−1 for porous region (Region 2). The dimensionless parameters:

Reyonald’s, Darcy’s and Froude numbers are given by Re = Ud
ν , Da = k̃

d2 and Fr = U√
gd

respectively with k̃ = k
ǫp

. The external body force f̃ = geg, g is gravitational acceleration
and eg is unit vector pointed in the direction of the gravitational force. If the porosity
ǫp and the stone size d50 of the rubble structure are known, then intrinsic permeability
k (with dimension L2, L: length) can be determined as follows

k = 1.643 × 10−7(
d50

d0
)1.57

ǫ3p
(1 − ǫp)2

(11)

where d0 = 10mm. To determine the inertial coefficient s, the added mass coefficient cm

of the porous medium must be known. However, while cm is usually known for isolated
simple shapes, it is generally unknown for random, densely packed material. In this
study, the inertia coefficient s was taken as 1.

2.4. Interface conditions between pure liquid and porous media
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In this section, we discuss some known approaches to treat the coupled problem be-

tween regions 1 and 2. Depending on the macroscopic model for the porous media flow,

different interface conditions have to be specified on the interface. There are four inter-

faces at the submerged porous breakwater. The bottom interface is impermeable, while

the other sides of the porous breakwater are permeable. A common choice of interface

boundary conditions between Navier-Stokes and Brinkman equation is to assume con-

tinuous velocity and continuous normal component of the stress tensor. For continuity

of velocity at interface

u |Sf
= ǫpu |Sp

(12)

v |Sf
= ǫpv |Sp

(13)

Note that for impermeable structure, ǫp = 0 , equations (12) and (13) are reduced to the

no-slip boundary condition. The normal component of the stress tensor (continuity of

normal component of stress tensor) at the interface is given by

np · (µeff∇u − pI)|Sp
= nf · (µ∇u − pI)|Sf

(14)

where Sp and Sf are the interface of porous and interface of fluid parts respectively.

Equation (14) can be written in dimensionless form as

nf · ( 1

Re
∇u− pI)|Sf

= np · (µeff

µ

1

Re
∇u − pI)|Sp

(15)

2.5. Boundary Conditions

To close the initial boundary value problem, appropriate initial conditions and bound-

ary conditions are required. In this physical problem, there are four boundaries, such as:

inlet, outlet, free surface and solid bed boundaries.

2.5.1. Along solid wall

The solid bed is assumed impermeable and no slip condition namely, u = v = 0, is

used. Thus on a solid wall both velocity components are set to zero at the bottom of the

channel. In this paper we consider a solid wall parallel to the x-direction.

2.5.2. Inlet

The analytical solution for a Stokesian wave is imposed in the inlet boundary, thus

the water elevation η is given by

η = d +
H

2
cos(kx − ωt) +

πH2

8L

cosh(kd)

sinh3(kd)
(2 + cosh(2kx − 2ωt) (16)
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where the wave number k = 2π
L and wave frequency ω = 2π

T . Inlet boundary conditions
for velocity components are given as

u =
H

2

gT

L

cosh(ky)

cosh(kd)
cos(kx − ωt) +

3

4
(
πH

L
)2c

cosh(2ky)

sinh4(kd)
cos(2kx − 2ωt) (17)

v =
H

2

gT

L

sinh(ky)

cosh(kd)
sin(kx − ωt) +

3

4
(
πH

L
)2c

sinh(2ky)

sinh4(kd)
sin(2kx − 2ωt) (18)

2.5.3. Outlet

The sommerfeld radiation condition is employed in the outlet boundary to avoid the
reflection from the outlet boundary. If the outlet is selected far away from geometrical
disturbances, the flow often reaches a fully developed state where no change occurs in
the flow directions. Based on the wave equation and continuity equation, one can set

∂u

∂x
+ c

∂v

∂y
= 0 (19)

∂φ

∂t
+ c

∂φ

∂x
= 0 (20)

where φ is a physical variable such as pressure , velocity in the flow field and c is the phase
speed of the wave. For solitary wave c =

√

g(Hi + d). In the numerical computation,
when the wave passes over a porous Breakwater, the wave height at the downstream
boundary is unknown a priori. Hence, this condition becomes unpractical. In this case,
we simply extend the computation domain long enough such that the wave does not
reach the downstream boundary of the domain.

2.5.4. Free surface

The type of flow which is subject to this paper contains a separation of the fluid
with air. The separation surface is called the free surface. Boundary conditions on a
free surface must satisfy kinematics and dynamic conditions. The kinematic boundary
condition for free surface assumes that all fluid particles at the free surface must remain
on the free surface and mathematically formulate as

Dη

Dt
=

∂η

∂t
+ u · ∇η = v (21)

where η denotes the free surface elevation. In terms of the dynamic boundary condition
on free surface, stresses on a free surface must be balanced in normal and tangential
conditions. The normal stress is equal to the atmospheric pressure and the tangential
stress is zero. We ignore surface tension in the dynamic boundary conditions. Hence,
the dynamic boundary condition in the normal direction was expressed by Huang [8] as

p =
η

F 2
r

+
2(1 + ( ∂η

∂x)2)

Re(1 − ( ∂η
∂x )2)

∂v

∂y
(22)
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Further, the dynamics boundary condition in the tangential direction can be presented

as
∂u

∂y
=

−∂v

∂x
+

4

( ∂η
∂x)2 − 1

∂v

∂y

∂η

∂x
(23)

where p = p(x, η) is the hydrodynamic pressure at the free surface. In numerical compu-

tations, equation (22) is used to determine the pressure at the free surface and equation

(23) is used to extrapolate the horizontal velocity at the free surface from the flow do-

main. The vertical velocity component is then calculated from the continuity equation

using the known velocity component u, obtained from equation (23).

2.6. Initial conditions

In addition, we need initial conditions to start the numerical simulation and obtain

a unique solution. There are three physical variables, u, v and p in the initial-boundary

problem. Initial values for these variables have to be given. The initial flow field is

assumed to be still, so velocity components are both zero throughout the flow field. The

hydrostatic pressure is used to initialized the pressure field. The hydrodynamic pressure

and surface displacements are also set to zero at time t = 0 .

3. Numerical scheme

The algorithm is based on a finite volume discretization on a non-uniform staggered

Cartesian grid. This grid arrangement provides stronger coupling between the pressure

and velocity variables. According to the staggered grid approach, velocity components

are located at the middle points of the control surfaces, while pressures are defined at

center of a computational cell, as shown in Figure 2. Using a staggered grid one obtains

a control volume for pressure and four control volumes for velocities.

The control volumes are supposed to contain only a single phase either solid or fluid

or porous that means interfaces between different media appear only at the interface of

the control volumes.

3.1. Discretization for continuity equation

To discretize the continuity equation ∇ · u = 0, the expression ∇ · u is integrated on

each of the control volume V for velocities and,then apply Gauss divergence theorem so

as to get
∫

V

∇ · udV = 0 ⇒
∫

∂V

u · nds = 0

where ∂V indicates the contour of the EFGH or (i, j) cell and ds is the small change in

the control surface with n being denoted as a unit outward normal vector to the surface.

For the scalar control volumes centered at (i, j), the discretized form of the above integral
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Figure 2: Staggered grid arrangement

is given by
∫

∂V

u · nds = (ui,j − ui−1,j)lj + (vi,j − vi,j−1)hi (24)

3.2. Discretization for momentum equations

To obtain finite volume method formulation, the governing momentum equations are
integrated over the control volumes. Then, the integral form of u and v components of
momentum equations are written as

∫

V

∂u

∂t
dV = −

∫

∂V

u(u·n)ds−
∫

V

1

ReDa
udV +

∫

∂V

(
µ̃

Re
∇u·n)ds−

∫

∂V

px·nds+

∫

V

1

F 2
r

f̃xdV

(25)

∫

V

∂v

∂t
dV = −

∫

∂V

v(u·n)ds−
∫

V

1

ReDa
vdV +

∫

∂V

(
µ̃

Re
∇v·n)ds−

∫

∂V

py·nds+

∫

V

1

F 2
r

f̃ydV

(26)
Equations (25) and (26) can be rewritten as

∫

V

(
∂u

∂t
+

1

ReDa
u − 1

F 2
r

f̃x)dV −
∫

∂V

(
µ̃

Re
∇u − uu− pe1) · nds = 0 (27)

∫

V

(
∂v

∂t
+

1

ReDa
v − 1

F 2
r

f̃y)dV −
∫

∂V

(
µ̃

Re
∇v − vu − pe2) · nds = 0. (28)

3.2.1. Discretization of volume integral
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(a) A Cartesian staggered grid system on the x-y plane

(b) Cell used for constructing a volume of fluid approximation

Figure 3: Computational cells

Without loss of generality consider the x-component of momentum equation. Inte-

grating ∂u
∂t + k̃

ReDau − 1
F 2

r
f̃x over the control volume ABCD

∫

ABCD

(
∂u

∂t
+

1

ReDa
u − 1

F 2
r

f̃x)dV = (
∂u

∂t
+

1

ReDa
u − 1

F 2
r

f̃x) · ∆V

= (
un+1

i,j − un
i,j

δt
+

1

ReDa
ui,j −

1

F 2
r

f̃x) · ∆V (29)

∫

ABCD

(
∂u

∂t
+

1

ReDa
u − 1

F 2
r

f̃x)dV = (
un+1

i,j − un
i,j

δt
+

1

ReDa
ui,j −

1

F 2
r

f̃x) · ∆V (30)
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where ∆V is the volume of control volume ABCD and δt is time subinterval.

3.2.2. Discretization of surface integral

To obtain a discretized form for surface integral, we have to integrate over the four

faces of control volume ABCD of figure 3. Let w1 = µ̃
Re ▽ u− uu− pe1, then we obtain

∫

∂ABCD

w1 · nds =

∫

AB

w1 · nds +

∫

BC

w1 · nds +

∫

CD

w1 · nds +

∫

DA

w1 · nds (31)

We approximate the given integral over each phase of control volume ABCD. Along the

phase CD we have w1 · n|CD = w1 · e1|CD = µ̃
Re

∂u
∂x − [u]2 − p. The segment CD is inside

pi+1,jth control volume, where the solution is assumed to be smooth, w1 · n is continues

on CD and we can use central point approximation for the integral,

∫

CD

w1·nds ≈ w1·n|(xi+1,yj)·|CD| ≈ (
µ̃

Re

ui+1,j − ui,j

hi+1
−[u(xi+1, yj)]

2−pi+1,j)|CD| (32)

where |CD| is the length of edge CD. In order to handle the flow with high Reynolds

number we use the so-called upwind difference scheme for the approximation of non-

linear convective terms. Accordingly using upwind scheme approximation for convective

non linear term, equation (32) becomes

∫

CD

w1 · nds ≈ (
µ̃

Re

ui+1,j − ui,j

hi+1
− ũi+1/2,jui,j − pi+1,j)|CD| (33)

Similarly, for AB,

∫

AB

w1.nds ≈ −(
µ̃

Re

ui,j − ui−1,j

hi
− ũi−1/2,jui−1,j − pi,j)|AB| (34)

Along the phase BC we have w1.n|BC = w1 · e2|BC = µ̃
Re

∂u
∂y − uv. Thus we can approxi-

mate the volume integral along the edge BC as

∫

BC

w1.nds ≈
∫

S(y)

µ̃

Re

∂u

∂y
dx − (uv)(xi+ 1

2
, yj+ 1

2
)|BC|

where S(y) = {(x, y) : x ∈ [xi,xi+1]} and ũi+1/2,j is priory known predictions for the

values of ui+1/2,j . Let us define an auxiliary function w(y), where y ∈ [yj,yj+1] such that

w(y) =
∫

S(y)

µ̃
Re

∂u
∂y dx. We assume u to be enough smooth and uy is continues along the

interface and w(y) ≈ uy(xi+ 1
2
, y)

∫

S(y)
µ̃

Re . Then ui,j+1 − ui,j =
∫ yj+1

yj
uy(xi+ 1

2
, y)dy ≈

w(yj+ 1
2
)

yj+1
∫

yj

1
R

S(y)
µ̃

Re
dx

dy, If in each control volume V , the effective viscosities µ̃ are
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constants and equal to µ̃i,j then it is easy to calculate the integral in the expressions for

the coefficients. for y ∈ (yj , yj+ 1
2
)

∫

S(y)

µ̃dx =
1

2
(µ̃i,jhi + µ̃i+1,jhi+1)

if y ∈ (yj+ 1
2
, yj+1)
∫

S(y)

µ̃dx =
1

2
(µ̃i,j+1hi + µ̃i+1,j+1hi+1)

⇒ ui,j+1 − ui,j ≈ w(yj+ 1
2
)(

y
j+ 1

2
∫

yj

Re
1
2 (µ̃i,jhi + µ̃i+1,jhi+1)

dy

+

yj+1
∫

y
j+ 1

2

Re
1
2 (µ̃i,j+1hi + µ̃i+1,j+1hi+1)

dy)

≈ w(yj+ 1
2
)(

ljRe

µ̃i,jhi + µ̃i+1,jhi+1
+

lj+1Re

µ̃i,j+1hi + µ̃i+1,j+1hi+1
)

Let Ci,j+ 1
2

= Re(
lj

µ̃i,jhi+µ̃i+1,jhi+1
+

lj+1

µ̃i,j+1hi+µ̃i+1,j+1hi+1
), then

w(yj+ 1
2
) =

ui,j+1 − ui,j

Ci,j+ 1
2

(35)

∫

BC

w1 · nds ≈ w(yj+ 1
2
) − (uv)(xi+ 1

2
, yj+ 1

2
)|BC|

≈ ui,j+1 − ui,j

Ci,j+ 1
2

− (uv)(xi+ 1
2
, yj+ 1

2
)|BC|

Again applying upwind scheme approximation for non linear term, the final expression

for the integral over the phase BC becomes

∫

BC

w1.nds ≈ ui,j+1 − ui,j

Ci,j+ 1
2

− ṽi+ 1
2 ,j(ui,j − ũi,j)|BC| (36)

Similarly, for DA

∫

DA

w1 · nds ≈ −w(yj− 1
2
) − (uv)(xi+ 1

2
, yj− 1

2
)|DA|

≈ −(ui,j − ui,j−1)

Ci,j− 1
2

− (uv)(xi+ 1
2
, yj− 1

2
)|DA|

≈ −(ui,j − ui,j−1)

Ci,j− 1
2

− ṽi+ 1
2 ,j−1(ui,j−1 − ũi,j−1)|DA| (37)
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where

Ci,j− 1
2

= Re(
lj−1

µ̃i,j−1hi + µ̃i+1,jhi+1
+

lj
µ̃i,jhi + µ̃i+1,j+1hi+1

)

3.3. The pressure Poisson equation

The Navier-Stokes-Brinkman equations clearly determine the respective velocity com-
ponents so that their roles are clearly defined. This leaves the continuity equation, which
does not contain the pressure, to determine the pressure. To do this, the most com-
mon method is based on combining the two equations. Thus we can derive pressure
Poisson equation by using projection method. Consider the following incompressible
Navier-Stokes-Brinkman equation in Lagrangian form

dx

dt
= v (38)

dv

dt
=

∂v

∂t
+ (v · ∇v) (39)

dv

dt
= −∇p − 1

ReDa
v +

µ̃

Re
△v +

1

F 2
r

f̃ (40)

where x = (x, y) and ~v = (u, v). Consider dx
dt = v, then

x(n+1) − xn

δt
= v(n) ⇒ x(n+1) = x(n) + δt ∗ v(n) (41)

From equation (40) we also have

v(n+1) − v∗ + v∗ − vn

δt
= −∇p(n+1) − 1

ReDa
v(n) +

µ̃

Re
△v(n) +

1

F 2
r

f̃ (n)

using projection method
v(n+1) − v∗

δt
= −∇p(n+1) (42)

v∗ − v(n)

δt
= − 1

ReDa
v(n) +

µ̃

Re
∆v(n) +

1

F 2
r

f̃ (n)

From v(n+1)−v∗

δt = −∇p(n+1) we have v(n+1) = v∗ − δt · (∇p(n+1)) apply divergence
on both sides with the incompressibility constraint ∇ · v(n+1) = 0, then we obtain

∇ · v(n+1) = ∇ · v∗ − δt · (∇ · ∇p(n+1))

⇒ ∆p(n+1) =
∇ · v∗

δt
(43)

where v∗ is an intermediate velocity ( the tentative velocity field ). The boundary
condition for solid walls as well as for inflow boundaries is obtained by projecting equation
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v(n+1) = v∗ − δt · (∇p(n+1)) on the outward unit normal vector (~n) to the boundary.
Thus, we obtain the Neumann boundary condition ,( ∂p

∂~n )n+1 = −1
δt (~vn+1 −~vn) ·~n, on the

boundary. Assuming ~vn · ~n = 0 on the boundary

∂p

∂~n

(n+1)

= 0 (44)

Moreover, Dirichlet boundary condition is applied for the free surface as well as for
outflow particles in the context of the pressure Poisson equation (43). We note that
particle positions change only in the first step. The intermediate velocity v∗ is obtained
on the new particle positions. Finally, the pressure Poisson equation and the divergence
free velocity vector are also computed on the same new particle positions.

3.4. Numerical methods for free surface flows (Volume of Fluid Method)

The most important property of the flow that is studied in this paper is the presence
of a free surface. The flow is mainly determined by this free surface, therefore a proper
discretization is required to capture its dynamics. To obtain numerical solutions of
the governing equations, the whole computational domain is divided into Cartesian cells.
The free surface calculation is a challenging point in the numerical study. An appropriate
approach to treat free surface variation has to satisfy two requirements. First of all, it
has to capture free surface profiles. The other point is to impose free surface boundary
conditions at the captured free surface. We adopt the Volume -of- Fluid (VOF) method
Hirt and Nichols [5] to evaluate the free surface variation. The main principle of VOF
is to define another variable called the VOF function, F (x, y, t). It is also defined at
the center of computational cell. Its value varies from 0 to 1. Due to a free surface,
computational cell may contain fluids or not. A cell full of fluid is called a full cell. The
VOF functions, in a full cell are defined as 1. On the other hand, if a cell does not
contain any fluid, it will be called an empty cell with F defined as 0 for an empty cell. In
addition, a cell containing a free surface is called a surface cell with F varying between
0 and 1 for a surface cell;

F (i, j) =
volume1

volume2
(45)

where volume1 is volume of the fluid in a given cell and volume2 is volume of the
corresponding cell. F = 1 means the cell is full of water, F = 0 is air cell, while
0 < F < 1 means the cell contains the free surface. Free surface boundary conditions
have imposed at surface cells. The free surface is time dependent, so the VOF functions,
F , has to be calculated at each time step and satisfies the convection equation,

∂F

∂t
+ u

∂F

∂x
+ v

∂F

∂y
= 0 (46)

For incompressible fluid flow equation (46) may be combined with continuity equation
(2) to yield the equation

∂F

∂t
+ ∇ · (Fu) = 0 (47)
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where u = (u, v). In addition to equation (47), Hirt and Nichols [5] derived the donor -
acceptor method to solve the formula. Let a horizontal velocity component, u be located
at the center of a control face. If u is positive, then the cell in the left side of the control
face is called a donor. On the other hand, the cell in the right hand side is called an
acceptor. The variation of F is evaluated using the above given formula (47), which may
be integrated in the control volume of the single (i, j) cell

∫

V

∂F

∂t
dV +

∫

V

∇ · (uF )dV = 0

⇒
∫

V

∂F

∂t
dV +

∫

∂V

(u · ~n)Fds = 0 (48)

For the sides west and east the above integral yields ∆F
∆t ∆V + Fulj = 0, while for the

sides south and north we get ∆F
∆t ∆V + Fvhi = 0. In a strong convective flow from

west to east, the central difference scheme treatment is unstable because the west face
should receive much stronger influencing from west node (W ) than from central node
(P ). Thus, the upwind differencing scheme or donor cell differencing scheme takes into
account the flow direction when determining the value at a cell face. Let sgn(u) be the
sign of velocity u, whether the flow is in the positive direction (west to east) or negative
direction (east to west). Since V = hilj , using first order upwind discretization we have

∆Fi,j |i+ 1
2 ,j = −(1 + sgn(u))

u · δt
2hi

Fi,j + (1 − sgn(u))
u · δt
2hi

Fi+1,j (49)

where ∆Fi+ 1
2 ,j denotes the increment in Fi,j due to the fluxes over the east phase and

in which u = ui+ 1
2 ,j . Similar expression can be derived for the change in Fi,j due to the

contribution of the other sides, yielding

∆Fi,j |i− 1
2 ,j = (1 + sgn(u))

u · δt
2hi

Fi−1,j − (1 − sgn(u))
u · δt
2hi

Fi,j (50)

This denotes the changes in F due to the flux over the west phase and in which u =
ui− 1

2 ,j . For the cell (i, j) evaluate at (i, j + 1
2 ) we also have an expression

∆Fi,j |i,j+ 1
2

= −(1 + sgn(v))
v.δt

2lj
Fi,j + (1 − sgn(v))

v · δt
2lj

Fi,j+1 (51)

where ∆Fi,j+ 1
2

denotes the increment in Fi,j due to the fluxes over the north phase and
in which v = vi,j+ 1

2
. For the change in Fi,j due to the contribution of the south phase is

also written as

∆Fi,j |i,j− 1
2

= (1 + sgn(v))
v · δt
2lj

Fi,j−1 − (1 − sgn(v))
v · δt
2lj

Fi,j (52)

Assembling the changes in F from all four sides and updating F yields the new distribu-
tion of the liquid in the computational domain. In order to ensure that the total amount
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of fluid does not change, i.e i.e
∑

i,j Fi,j remains constant, the value of F in the surface

cells will be modified. After the new distribution of F has been calculated the labelling

of empty, surface and full cells is performed again. The boundary conditions on the

free surface will be set again, after which the following time step can be taken.

3.5. The SIMPLE algorithm

The acronym SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equa-

tions. The algorithm was originally put forward by Patankar and Spalding and is essen-

tially a guess and correct procedure for the calculation of pressure on the staggered grid

arrangement introduce on Figure 2 above. SIMPLE algorithm is one of the fundamental

algorithms for solving the resulting coupled system of algebraic equations. The method

is iterative and when other scalars are coupled to the momentum equations, the calcula-

tion needs to be done sequentially [12]. We apply the sequence of operations in a CFD

procedure which employs the SIMPLE algorithms in the following way

1. Guess initial values of pressure field (p∗)n

2. Set initial value of velocity field (u∗)n and (v∗)n

3. Solving for the intermediate (tentative) velocity fields (u∗)n+1 and

(v∗)n+1

4. solving for the pressure correction pc from equation (43)

5. Solving for corrected pressure, using equation

pn+1 = (p∗)n + pc (53)

6. Solving for velocity correction uc and vc, projection of velocity to divergence

free field

uc
i+ 1

2 ,j = − δt
1
2 (hi + hi+1)

(P c
i+1,j − P c

i,j) (54)

vc
i,j+ 1

2
= − δt

1
2 (lj + lj+1)

(P c
i,j+1 − P c

i,j) (55)

7. Solving for corrected velocity

un+1 = (u∗)n + uc (56)

vn+1 = (v∗)n + vc (57)

8. Proceeding to a new time step.
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4. Results and discussions

In this section, we validate the proposed model, at first; the numerical solutions

for a solitary wave are compared with previous studies. In addition, the established

model is coupled with the porous structure and is used to simulate progressive waves

over submerged porous breakwater. The effect of the Reynolds’s and Darcy’s numbers

on the wave transformation, reflection and transmission for solitary wave is investigated

subsequently; for free surface flow the proposed model is utilized to simulate the broken

dam problem.

4.1. Propagation of solitary waves in a numerical wave tank

In this study, the incident solitary waves were generated using a numerical piston-type

wave maker developed by Huang [8]. The attenuation of a solitary wave propagating in

a channel with a flat bottom was determined using the present numerical scheme and

compared with the analytic and experimental results. Russell [11] conducted experiments

regarding waves in a shallow water tank. He observed wave heights of travelling solitary

waves are affected by the fluid viscosity. After a century, Keulegan [9] reconsider the

viscous solitary wave problem and obtained analytic solutions. According to Keulegan,

the damping rate of the solitary wave is

(
H

d
)

−1
4 = (

Hi

d
)

−1
4 +

1

12
(1 +

2d

w̃
)

√

ν

d
√

gd
· x

d
(58)

where Hi is the initial wave height, ν is the kinematics viscosity of the fluid, x is the

distance travelled by the solitary wave, and w̃ is the width of the channel. Mei [10] re-

derived Keulegan’s results using the perturbation method and gave the law of attenuation

as

H
−1
4 = H

−1
4

i + 0.08356

√

ν

d2√g
· x

d
(59)

This is indeed a special case of Eq.(58) as w̃ approaches infinity. Mei assumed that most

of viscous effect come from the solid boundary and he obtained the relationship between

wave height and time is

H
−1
4 = H

−1
4

i +
0.08356
√

R̃e
t
√

gd · d−5
4 (60)

where R̃e =
√

gdd
ν and t is time. We consider numerical tank of length 20m and depth

0.2m. The wave with height 0.075m was propagated toward the right direction. The

viscous solitary wave travels at Reynolds number 1000. The whole simulation time is

10s. Figure 4 shows that the evaluation of moving solitary wave. We learned from

the figure, a solitary wave decays due to the energy dissipation caused by the viscosity.

Accordingly due to the fluid viscosity, the wave height of moving solitary wave decreases

as time goes. Figure 5 shows the time history of the wave height. The wave height
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decays due to fluid viscosity as the wave travels. It reveals that our numerical results

agree very well with the analytic solution. The established numerical model simulates

the viscous damping in the moving solitary wave successfully. On the other hand, the

viscous effect does not only reduce the wave height but also slow down the wave velocity.

Russell’s experimental data for a solitary wave cited by Keulegan is also shown in Figure

6 to provide more information for comparison. The numerical values shown in Figure 6

where calculated with , Hi = 0.028 , ν = 1.14 × 10−6m2/s, g = 9.81m/s2 and d=0.2m,

to be consistent with Russell’s experimental conditions. We noted that our numerical

results lie between the results calculated from equation (60) and Russell’s experimental

data.

4.2. Numerical tests for free surface model

One example has been chosen to illustrate the accuracy and capabilities of the VOF

code. In this example, experimental information is available for comparison with the cal-

culated results. This example offer a substantial challenge to any free boundary method.

4.2.1. The broken dam problem

This is a very popular and simple test case to validate many numerical schemes for

the simulations of free surface flows. It consists of simple initial configurations and simple

initial and boundary conditions. The experimental results are available in W.J. Moyce

[14]. Consider a rectangular column of water with a width of L = 5.1m and a height

of h = 10.2m. The lines x = 0, y = 0 and x = 25 consists of the solid wall. In the

simulation, the upper and the right boundary of the water columns are consider as the

free surface boundary. Initially, 100 × 100 grid points are considered. The gravity with

g = 9.81 m
s2 acts downwards, the initial velocity is set to zero. The initial pressure p0

is also considered to be zero. The surface tension forces are neglected. When the right

wall(dam) is removed, the water column collapses under the influence of gravity. The

dynamic viscosity of the fluid is µ = 0.5 kg
ms . No slip boundary condition is used on

the solid walls. The particles, plotted successively in time, are shown in Figure 7. The

numerical results can be compared with the experimental data given in W.J. Moyce

[14]. In Figure 8, the position of the leading fluid front versus time and height of the

water column versus time are compared. The figure shows a good agreement between

the numerical and experimental result.

4.3. Effects of structure permeability

After having verified the accuracy of the numerical scheme, the interaction of a soli-

tary wave and a submerged breakwater was studied. A schematic diagram of a solitary

wave passing over a submerged breakwater is shown in Figure 9. The breakwater can be

permeable or impermeable and for the sake of simplicity, its shape is taken to be rect-

angular. A piston-type wave maker with stroke s0 is located at x = 0 and generates the

incident solitary waves. In Table 1, Case 1 to Case 3 (Type I) represents the reference
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Figure 4: The evolution of a moving solitary wave with out considering porous breakwa-
ter.

values for Hi

d , w
d and h

d with the breakwater in Case 1 being impermeable, and perme-

able in Cases 2 and 3 with Darcy number Da equals to 0.612 × 10−6 and 2.741 × 10−6
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Figure 5: The wave height decays due to fluid viscosity as the wave travels

Figure 6: Attenuation of a solitary wave of Hi=0.04 propagating in a channel with a flat
bottom

respectively. In Cases 4 to 6 (Type II), the incident wave height Hi

d increases from the

reference value of 0.20 to 0.40. In Cases 7 to 9 (Type III), the breakwater height h
d

increases from 0.5 to 0.75.

In this section, we concentrate on the effect of the structure permeability on the wave

transformation, reflection and transmission as a solitary wave passes over a submerged

breakwater. The transformation of a solitary wave passing over a submerged breakwater

for Cases 4 to 6 (Type II) with w
d = 1, the breakwater width is much smaller than the

wavelength. Thus, the nonlinear effect caused by the breakwater is minor, hence there
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Figure 7: Velocity vectors and fluid configuration for the broken dam at times t = 0s,
t = 0.085s, t = 0.125s and t = 0.21s

Table 1: Numerical condition of the incident solitary wave and the breakwater width and
height.

Type case Hi/d w/d h/d Da(×10−6)
I 1 0.2 1.0 0.5 -

2 0.2 1.0 0.5 0.612
3 0.2 1.0 0.5 2.741

II 4 0.4 1.0 0.5 -
5 0.4 1.0 0.5 0.612
6 0.4 1.0 0.5 2.741

III 7 0.2 1.0 0.75 -
8 0.2 1.0 0.75 0.612
9 0.2 1.0 0.75 2.741

IV 10 0.2 25.0 0.5 -
11 0.2 25.0 0.5 0.612
12 0.2 25.0 0.5 2.741
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Figure 8: Time history of leading edge of the wave for comparison of present numerical
result with experimental data

is no apparent wave distortion noticed. The effect of the structure permeability is not

distinguishable either. As the breakwater width increases from 1.0 to 25.0 in cases 10

to 12 (Type IV), the permeability effect becomes obvious. The transmitted wave height

decreases as the Darcy number Da increases from 0.612 × 10−6 to 2.741 × 10−6. To see

how the wave height varies as a solitary wave passes over a breakwater, Figure 10 shows

the maximum value of the water elevation at different locations in the wave tank for

Cases 1 to 12, categorized into Type I to Type IV, the rectangle indicates the location of

the breakwater. The rise of the wave height near the leading edge of the breakwater is

due to the shallow effect. Consequently, the wave height decreases as part of the wave is

reflected. For the small width breakwaters, Figure 10(A) to (C), the wave height above

the breakwater decreases slightly due to the energy dissipation caused by the wave and

structure interaction and reaches a minimum value at the trailing edge. Afterwards, the

wave height increases a little, as the reflected wave is generated. Its clearly shown at

Figure 10(D) that for wide impermeable breakwater, due to the nonlinear effect, the wave

height above the breakwater increases continually, which may eventually result in wave

breaking. However, a wide permeable breakwater will reduce the wave height due to the

additional energy dissipation caused by the flow friction within the porous structure. As

the Darcy number increases from 0.612 × 10−6 to 2.741 × 10−6, the transmitted wave

height decreases. However, if Da is further increased from 1.119×10−5 to 2.225×10−5, the

transmitted wave height increases. Regarding the transmission coefficient for the porous
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Figure 9: Schematic diagram of a solitary wave propagating over a submerged porous
breakwater

Table 2: Numerical condition of the incident solitary wave and the breakwater width and
height.

Type case Hi/d w/d h/d Da(×10−6)
13 0.2 10.0 0.5 -
14 0.2 10.0 0.5 0.612
15 0.2 10.0 0.5 2.741
16 0.2 15.0 0.5 -
17 0.2 15.0 0.5 0.612
18 0.2 15.0 0.5 2.741

V 19 0.2 20.0 0.8 -
20 0.2 20.0 0.8 0.612
21 0.2 20.0 0.8 2.741
22 0.2 25.0 0.5 -
23 0.2 25.0 0.5 0.612
24 0.2 25.0 0.5 2.741
25 0.2 30.0 0.5 -
26 0.2 30.0 0.5 0.612
27 0.2 30.0 0.5 2.741



240 LEMI GUTA AND S. SUNDAR

Figure 10: The maximum water surface elevation as a solitary wave passes over a sub-
merged porous breakwater.

structure, the increase of the Darcy number causes increased energy dissipation because

of the flow friction within the porous structure, resulting in reducing the transmitted

wave height. On the other hand, the increase in Da will allow more energy penetration

through the structure, thus increasing the transmitted wave height. The numerical results

illustrate that for a wide porous breakwater, given a small Darcy number, an increase in

Da reduces the transmission coefficient; otherwise the transmission coefficient increases

with Da.

For the case displayed in Figure 10(D), the optimum Da is approximately 2.741×10−6.

The results presented in Figure 10 indicate that the wave transformation is affected

primarily by the breakwater width and the structure permeability. Figure 11 shows the

variation in the reflection coefficient with respect to the breakwater width. The reflection

coefficient is defined as the reflected wave height divided by the incident wave height ηr

Hi
.

Hence, an optimum Da value seems to exist, at which the transmitted wave height is

minimized.
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Figure 11: The variation in the reflection coefficient with respect to the breakwater width
as a solitary wave propagates over the breakwater

Note from Figure 10 that when w
d is less than or equal to 5 , the structure permeability

has no apparent effect on the reflection coefficient. When w
d is greater than 5, the

reflection coefficient decreases with increasing permeability. When w
d is greater than or

equal to 12 , the reflection coefficient remains constant, even if the breakwater width
increases. The reflection coefficient increases apparently with the breakwater height
with its value from 0.11 for h

d = 0.50 to 0.26 for h
d = 0.70 when w

d = 1 . The reflection
coefficient decreases slightly with the increase in the incident wave height. Figure 12
shows the variations in the transmission coefficient with respect to the breakwater width.
The transmission coefficient is defined as the ratio of the transmitted wave height at the
trailing edge to the incident wave height. We noted that the transmission coefficient
increases with the breakwater width for the impermeable case due to the nonlinear effect,
while it decreases in the permeable cases. The transmission coefficient decreases as Darcy
number Da increases from 0.612× 10−6 to 2.741× 10−6. However, the results in Figure
10(D) indicate that the further increase of the structure permeability will result in the
increase of the transmission coefficient.

5. Conclusion

In this paper, the new model unsteady two-dimensional incompressible Navier-Stokes-
Brinkman system were solved numerically to simulate the propagation of non-linear wave
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Figure 12: The variation in the transmission coefficient with respect to the breakwater
width as a solitary wave propagates over the breakwater

over submerged porous structure. The staggered grid finite volume method is used to

approximate the system. A volume of fluid method is used to simulate free surface
flows. We validate the proposed numerical model with the theoretical and experimental

solution. At first, the numerical experiments are performed with and without porous

breakwater. Close agreements between numerical and experimental results show the ro-

bustness of the new model. Effect of different parameters (The incident wave height,

structure permeability, length and width of the breakwater) on the wave height atten-
uation were studied and discussed. The numerical results also illustrate that for the

porous breakwater, an optimum porosity value seems to exist at which the transmitted

wave height is minimized. It has been observed that the transmission coefficient de-

creases as the permeability increases. However, the results indicate that further increase
of the structure permeability beyond the optimal value increase the transmission coeffi-

cient. It is found that, if the breakwater is considered as a porous medium, the waves

start decaying in front of a distance of the porous breakwater, then decreasing rapidly

over the breakwater, and decaying continuously at the back of the breakwater, due to

the permeability and the resistance of the porous medium. How ever, for the case of
the impermeable structure, the waves only start decaying as the waves passing over the

breakwater and it is found that the recovery waves will appear at a distance behind the

breakwater.
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