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A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS
WITH POSITIVE COEFFICIENTS

K. K. DIXIT AND SAURABH PORWAL

Abstract. Complex-valued harmonic functions that are univalent and sense-preserv-
ing in the open unit disc U can be written in the form f = h + g, where h and g

are analytic in U. In this paper authors introduce the class, Ry (3), (1 < 8 < 2)

consisting of harmonic univalent functions f = h+ g, where h and g are of the form

h(2) = 2+3°52, |ax|z" and g(2) = 3272 | |bi|2" for which Re{h'(2)+g'(z)} < 8. We

obtain distortion bounds extreme points and radii of convexity for functions belong-

ing to this class and discuss a class preserving integral operator. We also show that

class studied in this paper is closed under convolution and convex combinations.

1. Introduction

A continuous complex-valued function f = w + iv is said to be harmonic in a simply
connected domain D if both u and v are real harmonic in D. In any simply connected
domain we can write f = h+ g, where h and g are analytic in D. We call h the analytic
part and g the co-analytic part of f. A necessary and sufficient condition for f to be
locally univalent and sense-preserving in D is that |h/'(z)| > |¢'(2)], z € D. See Clunie
and Sheil-Small [1].

Denote by Sp the class of functions f = h + g that are harmonic univalent and
sense-preserving in the unit disk U = {z : |z| < 1} for which f(0) = f’(0) —1 = 0. Then
for f = h+ g € Sy we may express the analytic functions h and g as

h(z)=z+ Zakzk, g(z) = Zbkzk, |b1] < 1. (1.1)
k=2 k=1

Note that Sz reduces to the class of normalized analytic univalent functions if the
co-analytic part of its member is zero.
A function f of the form (1.1) is harmonic starlike for |z| = r < 1, if

% (argf(reie)) = RG{Z}ZZ;—;;??} > 0, |z =r < 1. See [2].
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Silverman [4] proved that the coefficient conditions > 7, k(ax| + |bk]) < 1 and
Sore o k*(la| + [bk]) < 1 are sufficient conditions for functions f = h + g to be har-
monic starlike convex functions, respectively.

Denote by Vi the subclass of Sy consisting of functions of the form f = h+ g, where

h(z)=z+) larle®,  g(z) = [buls", |ba] < 1. (1.2)
k=2 k=1

Recently Yalcin et al. [6] studied the class HP(«), (0 < o < 1) the subclass of Sgr
satisfying the condition
Re{l/(z) + ¢'(2)} > a. (1.3)

Further let VizP(«) be the subclass of Vi consisting of functions of the form (1.2)
that satisfy condition (1.3).
Let Ri (), (1 < 8 < 2), denote the subclass of Vi satisfying the condition

Re{l'(2) +¢'(2)} < B. (1.4)

We note that the class Ry () reduces to class R(3) if co-analytic part of f is zero
i.e. g = 0 studied by Uralegaddi et al. [5]. Yalcin et al. [6] have studied the functions
with negative coefficients that satisfy Re{h/(z) + ¢'(2)} > o, (0 < a < 1) for z € U. we
need the following Lemma due to Theorem 2.1 of [6].

Lemma 1. Let f = h+g € Vi be given by (1.2) and Y ;- o klag|+ > pe klbe] <1—a,
(0<a<1)then f € VgP(a).

2. Main results

Theorem 2.1. A function f of the form (1.2) is in Ry (8) if and only if
[ee] (o]
D klak| + > klbi| < 8- 1. (2.1)
k=2 k=1

Proof. Let > .2, klax| + > pey k|bk| < 3 — 1. It suffices to prove that
W) () -
!

)1
EEyramrEy R

W(z)+4¢'(z)—1 ‘
W(z)+g'(2) - (26 -1)

o0 o0
> klar|F Tt 4> kbl
k=2 k=1

> klarlzF T+ k[belz T = 2(8 - 1)
k=2 k=1

We have
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o0 (o)
D Klagl[2*7+ Y klbill2*
k=2 k=1

S (oo} (o]
208 1) = > klagllz*" = > klbellz|*
k=2 k=1
Zkz|ak| +Zk‘|bk|
- k=2 k=1

2(8—1) = > klax| = > klbx|
k=2 k=1

which is bounded above by 1 by hypothesis and the sufficient part is proved.
Conversely, suppose that

Re{lh/(z) + ¢'(2)} < 3, ie.

Re{l+Zk’|ak|zk_1+2k|bk|zk_l} < B, zeU.

k=2 k=1

The above condition must hold for all values of z, |z| = < 1. Upon choosing the values
of z to be real and let z — 17, we obtain

> klar| + > kb <8 -1,
k=2 k=1

which gives the necessary part. The proof of the theorem is complete.

Next we determine bounds for the class Ry (3).

Theorem 2.2. If f € Ry (8), then

FEI< A+ i+ 31 [nlr?, Jdl=r <1
and 1
@2 A=l = 58— 1o, Jel =7 < 1.

The bounds are sharp for the functions f(z) =z + |b1|z2 4+ 3(8 — 1 — |b1|)22 and f(z) =
z+ b1z + (B —1— |b1])2? for |by]| < B —1.

Proof. Let f € Ry (). Taking the absolute value of f, we have

oo

[FE) < (L= oy + D (lax] + [bel)r*

k=2
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(oo}
<+ bl + > (a| + [bel)r
k=2

1 [ee]
< (1+|ba))r 52 (Jak| + |bk])r?
k=2

—_

<L+ [bal)r+ (8 =1 [ba))r®

[\

and

[F() = (A [ba)r = D (lax] + [br])r*

WE

b
I|
N

> (14 [bal)r = ) (ar] + [be])r?

NE

el
U
o

1 o0
> (14 [bilyr = 5 3 kaxl + [bi)r
k=2
1
> (14 [bil)r o+ 55— 1= )

The functions z + |b1|Z+ 3 (3 —1—[b1])2? and 2+ [b1|z+ 5 (8 — 1 — |b1])2% for |b1] < B—1
show that the bounds given in Theorem 2.2 are sharp.

The following result follows from the left hand inequality in Theorem 2.2.

Corollary 2.1. If f € Ry (8), then

{w:lwl < ( — b1} € F(U). (2.2)

Next we determine the extreme points of the closed convex hulls of Ry (3), denoted
by clco Ry ().

Theorem 2.3. f € clco Ry (0), if and only if
[ee]
= (Akhk + Yrgr) (2.3)
k=1

where hy(z) = z, hg(z) = z + %zk (k=2,3,4,...), gr(z) =z + %2’“ (k=1,2,3,...)
and 72 (M + %) =1, A > 0 and v, > 0. In particular the extreme points of Ry (3)
are {hi} and {g}.

Proof. For functions f of the form (2.3) write

Z (Akhr + Yegr)
k=1
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Then

and so f € clcoRp(0).

Conversely, suppose that f € clcoRy(8). Set A\, = %|ak|, (k=2,3,4,...) and vy, =
77 [bkl, (k= 1,2,3,...). Then note that by Theorem 2.1, 0 < A, <1, (k = 2,3,4,...)
and 0 < v < 1, (k= 1,2,3,...). Wedefine \; =1 —> 720\ — > 7o, 7 and note
that by Theorem 2.1, A\; > 0. Consequently, we obtain f(z) = > 7o, (Axhk + Vkgr) as

required.

Theorem 2.4. If f € Ry () then f € VuP(2 - (3).

Proof. The inclusion relation is a direct consequence of Lemma 1 and Theorem 2.1.

Next we give the interrelation between the class Ry (5) and S}, where S}, is the class

of harmonic starlike function in U.

Theorem 2.5. Ry (5) C Sy, where 1 < 5 < 2.

Proof. Let f € Ry (). Then by Theorem 2.1

=k =k
> Jar] + > o fbi| < 1.
k:26—1 k=1571

Now
> kla| + > klbx|
k=2 k=1
B DLW LY
= A1 p—-1
k=2 k=1
<1 [using (2.4)
Thus f € S%;.

This completes the proof of Theorem 2.5.

(2.4)
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Theorem 2.6. Each function in the class Ry (8) maps a disks U, where r < infy

1
{M} " onto conver domains for B> 1+ |by].

Proof. Let f € Ry(3) and let r, be fixed is that 0 < 7 < 1, then r~!f(rz) € Ry (B)
and we have

k(lax| + b]) (k")

hE

> K (ax] + byt =
k=2

=
I|

2

hE

<> k(lax| + [bl)

=
I|

2
<B-1-|b1] <1,

provided

1
krk71<7
T B=1—1b]

1 w1
T SR
or, <1 {k(ﬂflf|b1|)}

The proof of Theorem 2.6 is complete.
For our next theorem, we need to define the convolution of two harmonic functions.
For harmonic functions of the form

o0 o0
FE) =2+ laklz" + bel2"
k=2 k=1
and
o0 o0
Fz)=z+ Y |z + > |Byz*
k=2 k=1
we define their convolution

(f*F)(2) = f(2)* F(2) = 2+ Y _ laxAg|z" + > |bp By| 2. (2.5)
k=2 k=1

Using this definition, we show that the class Ry (5) is closed under convolution.

Theorem 2.7. For1l < 8 < a < 2let f € Ru(a) and F € Ry(B). Then fx F €
Ry (B) € Ru(w).

Proof. Let f(z) = z + > poylan]z® + 3 po, [bk|z¥ be in Rp(B) and F(z) = z +
S |Akl2* + 30, | B|z® be in Ry (). Then the convolution f * F is given by (2.5).
We wish to show that the coefficients of f % I’ satisfy the required condition given in
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Theorem 2.1. For F(z) € Rpy(a) we note that |A;| < 1 and |Bi| < 1. Now, for the
convolution function f * F', we have

Therefore f * F € Ry (8) C Ru(«).
Next, we show that Ry (0) is closed under convex combinations of its members.

Theorem 2.8. The class Ry (f3) is closed under convex combination.

Proof. For i =1,2,3,... let fi(2) € Ru(8), where f;(z) is given by

Then by Theorem 2.1, we have

(o] k/’ (o]
Zﬂfllak| Z bk|<1.

k=2 k=1

For Z;’il t; =1,0 <t; <1, the convex combination of f; may be written as

itifi(z) =2+ i (im% JEE i (imbki )2
=1 k=2 =1 k=1 =1

then by Theorem 2.1, we have

e (Ctlanl) + 3 57 Zt )
k=2 =1 k=1

= th(z 52'“’“' +) %lbkqo
=1 k=2 k=1

<) ti=1
=1

Therefore -
> tifiz) € Ru(P)
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The d-neighborhood of f is the set
o0 o0
Ns(f) = {F cF(z)=z+ Z |Ag|2* + Z | B.| 2%
k=2 k=1

and > k(lax — Ax| + [bx — Bl) < 5}. See [3].
k=1

Theorem 2.9. Let f € Ry(8) and § <2—03. If F € Ns(f), then F is harmonic starlike
function.

Proof. Let F(z) = z+ Y o, |Ak|2* + 372 | | Bx|z* belong to Nis(f). We have

Zk‘|Ak| + Zk|Bk| < Zkz(|ak — Ag| + |bx, — By|) + Zk(|ak| + [b|) + [b1 — B1| + |b1]
k=2 k=1 k=2 k=2
<di+p-1<1

Hence, F(z) is harmonic starlike function.

3. A family of class preserving integral operator

let f(z) = h(z) 4+ g(z) € Su be given by (1.1) then F(z) defined by relation

Plz) = <1 /ctHh( \dt + C“/ te-lg(t)dt, (¢ > —1). (3.1)

C
< 0

Theorem 3.1. Let f(z) = h(z) + g(2) € S be given by (1.2) and f(z) € Ru(3) then
F(z) be defined by (3.1) also belong to R (B).

Proof. Let f(z) = z + 2212 lax|2* + > po [be|z" be in Ry (8) then by Theorem 2.1,
we have

_1|ak|+Z -bk] < 1. (3.2)

By definition of F'(z), we have

+Z +k|ak|z +ZC+1|bk| *,

Now

o0

Z <c+1| k|) Z <c+1 |)

=2 k=1
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(o]
<>l +Z - b
k:2ﬁ
<1.

Thus F(z) € Ru(B).
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