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A SUBCLASS OF HARMONIC UNIVALENT FUNCTIONS

WITH POSITIVE COEFFICIENTS

K. K. DIXIT AND SAURABH PORWAL

Abstract. Complex-valued harmonic functions that are univalent and sense-preserv-

ing in the open unit disc U can be written in the form f = h + ḡ, where h and g

are analytic in U . In this paper authors introduce the class, RH(β), (1 < β ≤ 2)

consisting of harmonic univalent functions f = h+ ḡ, where h and g are of the form
h(z) = z+

P

∞

k=2
|ak|z

k and g(z) =
P

∞

k=1
|bk|z

k for which Re{h′(z)+g′(z)} < β. We

obtain distortion bounds extreme points and radii of convexity for functions belong-

ing to this class and discuss a class preserving integral operator. We also show that

class studied in this paper is closed under convolution and convex combinations.

1. Introduction

A continuous complex-valued function f = u + iv is said to be harmonic in a simply
connected domain D if both u and v are real harmonic in D. In any simply connected
domain we can write f = h + ḡ, where h and g are analytic in D. We call h the analytic
part and g the co-analytic part of f . A necessary and sufficient condition for f to be
locally univalent and sense-preserving in D is that |h′(z)| > |g′(z)|, z ∈ D. See Clunie
and Sheil-Small [1].

Denote by SH the class of functions f = h + ḡ that are harmonic univalent and
sense-preserving in the unit disk U = {z : |z| < 1} for which f(0) = f ′(0) − 1 = 0. Then
for f = h + ḡ ∈ SH we may express the analytic functions h and g as

h(z) = z +
∞
∑

k=2

akzk, g(z) =
∞
∑

k=1

bkzk, |b1| < 1. (1.1)

Note that SH reduces to the class of normalized analytic univalent functions if the
co-analytic part of its member is zero.

A function f of the form (1.1) is harmonic starlike for |z| = r < 1, if

∂

∂θ

(

arg f(reiθ)
)

= Re

{

zh′(z) − zg′(z)

h(z) + g(z)

}

> 0, |z| = r < 1. See [2].
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Silverman [4] proved that the coefficient conditions
∑∞

k=2 k(|ak| + |bk|) ≤ 1 and
∑∞

k=2 k2(|ak| + |bk|) ≤ 1 are sufficient conditions for functions f = h + ḡ to be har-
monic starlike convex functions, respectively.

Denote by VH the subclass of SH consisting of functions of the form f = h+ ḡ, where

h(z) = z +

∞
∑

k=2

|ak|z
k, g(z) =

∞
∑

k=1

|bk|z
k, |b1| < 1. (1.2)

Recently Yalcin et al. [6] studied the class HP (α), (0 ≤ α < 1) the subclass of SH

satisfying the condition
Re{h′(z) + g′(z)} > α. (1.3)

Further let VHP (α) be the subclass of VH consisting of functions of the form (1.2)
that satisfy condition (1.3).

Let RH(β), (1 < β ≤ 2), denote the subclass of VH satisfying the condition

Re{h′(z) + g′(z)} < β. (1.4)

We note that the class RH(β) reduces to class R(β) if co-analytic part of f is zero
i.e. g ≡ 0 studied by Uralegaddi et al. [5]. Yalcin et al. [6] have studied the functions
with negative coefficients that satisfy Re{h′(z) + g′(z)} > α, (0 ≤ α < 1) for z ∈ U . we
need the following Lemma due to Theorem 2.1 of [6].

Lemma 1. Let f = h + ḡ ∈ VH be given by (1.2) and
∑∞

k=2 k|ak|+
∑∞

k=1 k|bk| ≤ 1−α,

(0 ≤ α < 1) then f ∈ VHP (α).

2. Main results

Theorem 2.1. A function f of the form (1.2) is in RH(β) if and only if

∞
∑

k=2

k|ak| +
∞
∑

k=1

k|bk| ≤ β − 1. (2.1)

Proof. Let
∑∞

k=2 k|ak| +
∑∞

k=1 k|bk| ≤ β − 1. It suffices to prove that

∣

∣

∣

h′(z) + g′(z) − 1

h′(z) + g′(z) − (2β − 1)

∣

∣

∣
< 1, z ∈ U.

We have
∣

∣

∣

h′(z) + g′(z) − 1

h′(z) + g′(z) − (2β − 1)

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

k=2

k|ak|z
k−1 +

∞
∑

k=1

k|bk|z
k−1

∞
∑

k=2

k|ak|z
k−1 +

∞
∑

k=1

k|bk|z
k−1 − 2(β − 1)

∣

∣

∣

∣

∣
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≤

∣

∣

∣

∣

∣

∞
∑

k=2

k|ak||z|
k−1 +

∞
∑

k=1

k|bk||z|
k−1

2(β − 1) −

∞
∑

k=2

k|ak||z|
k−1 −

∞
∑

k=1

k|bk||z|
k−1

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∞
∑

k=2

k|ak| +
∞
∑

k=1

k|bk|

2(β − 1) −

∞
∑

k=2

k|ak| −

∞
∑

k=1

k|bk|

∣

∣

∣

∣

∣

which is bounded above by 1 by hypothesis and the sufficient part is proved.

Conversely, suppose that

Re{h′(z) + g′(z)} < β, i.e.

Re

{

1 +
∞
∑

k=2

k|ak|z
k−1 +

∞
∑

k=1

k|bk|z
k−1

}

< β, z ∈ U.

The above condition must hold for all values of z, |z| = r < 1. Upon choosing the values

of z to be real and let z → 1−, we obtain

∞
∑

k=2

k|ak| +

∞
∑

k=1

k|bk| ≤ β − 1,

which gives the necessary part. The proof of the theorem is complete.

Next we determine bounds for the class RH(β).

Theorem 2.2. If f ∈ RH(β), then

|f(z)| ≤ (1 + |b1|)r +
1

2
(β − 1 − |b1|)r

2, |z| = r < 1

and

|f(z)| ≥ (1 − |b1|)r −
1

2
(β − 1 − |b1|)r

2, |z| = r < 1.

The bounds are sharp for the functions f(z) = z + |b1|z̄ + 1
2 (β − 1 − |b1|)z̄

2 and f(z) =

z + |b1|z̄ + 1
2 (β − 1 − |b1|)z

2 for |b1| ≤ β − 1.

Proof. Let f ∈ RH(β). Taking the absolute value of f , we have

|f(z)| ≤ (1 − |b1|)r +

∞
∑

k=2

(|ak| + |bk|)r
k
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≤ (1 + |b1|)r +
∞
∑

k=2

(|ak| + |bk|)r
2

≤ (1 + |b1|)r +
1

2

∞
∑

k=2

k(|ak| + |bk|)r
2

≤ (1 + |b1|)r +
1

2
(β − 1 − |b1|)r

2

and

|f(z)| ≥ (1 + |b1|)r −

∞
∑

k=2

(|ak| + |bk|)r
k

≥ (1 + |b1|)r −

∞
∑

k=2

(|ak| + |bk|)r
2

≥ (1 + |b1|)r −
1

2

∞
∑

k=2

k(|ak| + |bk|)r
2

≥ (1 + |b1|)r +
1

2
(β − 1 − |b1|)r

2.

The functions z + |b1|z̄ + 1
2 (β−1−|b1|)z̄

2 and z + |b1|z̄ + 1
2 (β−1−|b1|)z

2 for |b1| ≤ β−1
show that the bounds given in Theorem 2.2 are sharp.

The following result follows from the left hand inequality in Theorem 2.2.

Corollary 2.1. If f ∈ RH(β), then

{ω : |ω| <
1

2
(3 − β − |b1|)} ⊂ f(U). (2.2)

Next we determine the extreme points of the closed convex hulls of RH(β), denoted
by clco RH(β).

Theorem 2.3. f ∈ clcoRH(β), if and only if

f(z) =

∞
∑

k=1

(λkhk + γkgk) (2.3)

where h1(z) = z, hk(z) = z + β−1
k

zk (k = 2, 3, 4, . . .), gk(z) = z + β−1
k

z̄k (k = 1, 2, 3, . . .)
and

∑∞
k=1(λk + γk) = 1, λk ≥ 0 and γk ≥ 0. In particular the extreme points of RH(β)

are {hk} and {gk}.

Proof. For functions f of the form (2.3) write

f(z) =

∞
∑

k=1

(λkhk + γkgk)
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= z +
∞
∑

k=2

(β − 1

k

)

λkzk +
∞
∑

k=1

(β − 1

k

)

γkz̄k.

Then

∞
∑

k=2

k

β − 1

(β − 1

k
λk

)

+

∞
∑

k=1

k

β − 1

(β − 1

k
γk

)

=
∞
∑

k=2

λk +
∞
∑

k=1

γk

= 1 − λ1 ≤ 1,

and so f ∈ clcoRH(β).
Conversely, suppose that f ∈ clcoRH(β). Set λk = k

β−1 |ak|, (k = 2, 3, 4, . . .) and γk =
k

β−1 |bk|, (k = 1, 2, 3, . . .). Then note that by Theorem 2.1, 0 ≤ λk ≤ 1, (k = 2, 3, 4, . . .)

and 0 ≤ γk ≤ 1, (k = 1, 2, 3, . . .). We define λ1 = 1 −
∑∞

k=2 λk −
∑∞

k=1 γk and note
that by Theorem 2.1, λ1 ≥ 0. Consequently, we obtain f(z) =

∑∞
k=1(λkhk + γkgk) as

required.

Theorem 2.4. If f ∈ RH(β) then f ∈ VHP (2 − β).

Proof. The inclusion relation is a direct consequence of Lemma 1 and Theorem 2.1.

Next we give the interrelation between the class RH(β) and S∗
H , where S∗

H is the class
of harmonic starlike function in U .

Theorem 2.5. RH(β) ⊆ S∗
H , where 1 < β ≤ 2.

Proof. Let f ∈ RH(β). Then by Theorem 2.1

∞
∑

k=2

k

β − 1
|ak| +

∞
∑

k=1

k

β − 1
|bk| ≤ 1. (2.4)

Now

∞
∑

k=2

k|ak| +

∞
∑

k=1

k|bk|

≤

∞
∑

k=2

k

β − 1
|ak| +

∞
∑

k=1

k

β − 1
|bk|

≤ 1. [using (2.4)]

Thus f ∈ S∗
H .

This completes the proof of Theorem 2.5.
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Theorem 2.6. Each function in the class RH(β) maps a disks Ur where r < infk
{

1
k(β−1−|b1|)

}
1

k+1

onto convex domains for β > 1 + |b1|.

Proof. Let f ∈ RH(β) and let r, be fixed is that 0 < r < 1, then r−1f(rz) ∈ RH(β)
and we have

∞
∑

k=2

k2(|ak| + |bk|)r
k−1 =

∞
∑

k=2

k(|ak| + |bk|)(krk−1)

≤

∞
∑

k=2

k(|ak| + |bk|)

≤ β − 1 − |b1| ≤ 1,

provided

krk−1 ≤
1

β − 1 − |b1|

or, r < inf
k

{ 1

k(β − 1 − |b1|)

}
1

k−1

.

The proof of Theorem 2.6 is complete.

For our next theorem, we need to define the convolution of two harmonic functions.
For harmonic functions of the form

f(z) = z +
∞
∑

k=2

|ak|z
k +

∞
∑

k=1

|bk|z̄
k

and

F (z) = z +

∞
∑

k=2

|Ak|z
k +

∞
∑

k=1

|Bk|z̄
k

we define their convolution

(f ∗ F )(z) = f(z) ∗ F (z) = z +

∞
∑

k=2

|akAk|z
k +

∞
∑

k=1

|bkBk|z̄
k. (2.5)

Using this definition, we show that the class RH(β) is closed under convolution.

Theorem 2.7. For 1 < β ≤ α ≤ 2 let f ∈ RH(α) and F ∈ RH(β). Then f ∗ F ∈
RH(β) ⊆ RH(α).

Proof. Let f(z) = z +
∑∞

k=2 |ak|z
k +

∑∞
k=1 |bk|z̄

k be in RH(β) and F (z) = z +
∑∞

k=2 |Ak|z
k +

∑∞
k=1 |Bk|z̄

k be in RH(α). Then the convolution f ∗ F is given by (2.5).

We wish to show that the coefficients of f ∗ F satisfy the required condition given in
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Theorem 2.1. For F (z) ∈ RH(α) we note that |Ak| ≤ 1 and |Bk| ≤ 1. Now, for the
convolution function f ∗ F , we have

∞
∑

k=2

k

β − 1
|akAk| +

∞
∑

k=1

k

β − 1
|bkBk|

≤

∞
∑

k=2

k

β − 1
|ak| +

∞
∑

k=1

k

β − 1
|bk|

≤ 1. (Science f ∈ RH(β).

Therefore f ∗ F ∈ RH(β) ⊆ RH(α).

Next, we show that RH(β) is closed under convex combinations of its members.

Theorem 2.8. The class RH(β) is closed under convex combination.

Proof. For i = 1, 2, 3, . . . let fi(z) ∈ RH(β), where fi(z) is given by

fi(z) = z +

∞
∑

k=2

|aki
|zk +

∞
∑

k=1

|bki
|z̄k.

Then by Theorem 2.1, we have

∞
∑

k=2

k

β − 1
|aki

| +

∞
∑

k=1

k

β − 1
|bki

| ≤ 1.

For
∑∞

i=1 ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞
∑

i=1

tifi(z) = z +

∞
∑

k=2

(

∞
∑

i=1

ti|aki
|
)

zk +

∞
∑

k=1

(

∞
∑

i=1

ti|bki
|
)

z̄k.

then by Theorem 2.1, we have

∞
∑

k=2

k

β − 1

(

∞
∑

i=1

ti|aki
|
)

+

∞
∑

k=1

k

β − 1

(

∞
∑

i=1

ti|bki
|
)

=
∞
∑

i=1

ti

(

∞
∑

k=2

k

β − 1
|aki

| +
∞
∑

k=1

k

β − 1
|bki

|
)

≤

∞
∑

i=1

ti = 1.

Therefore
∞
∑

i=1

tifi(z) ∈ RH(β).
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The δ-neighborhood of f is the set

Nδ(f) =
{

F : F (z) = z +

∞
∑

k=2

|Ak|z
k +

∞
∑

k=1

|Bk|z̄
k

and

∞
∑

k=1

k(|ak − Ak| + |bk − Bk|) ≤ δ
}

. See [3].

Theorem 2.9. Let f ∈ RH(β) and δ ≤ 2−β. If F ∈ Nδ(f), then F is harmonic starlike

function.

Proof. Let F (z) = z +
∑∞

k=2 |Ak|z
k +

∑∞
k=1 |Bk|z̄

k belong to Nδ(f). We have

∞
∑

k=2

k|Ak| +

∞
∑

k=1

k|Bk| ≤

∞
∑

k=2

k(|ak − Ak| + |bk − Bk|) +

∞
∑

k=2

k(|ak| + |bk|) + |b1 − B1| + |b1|

≤ δ + β − 1 ≤ 1.

Hence, F (z) is harmonic starlike function.

3. A family of class preserving integral operator

let f(z) = h(z) + g(z) ∈ SH be given by (1.1) then F (z) defined by relation

F (z) =
c + 1

zc

∫ c

0

tc−1h(t)dt +
c + 1

zc

∫ z

0

tc−1g(t)dt, (c > −1). (3.1)

Theorem 3.1. Let f(z) = h(z) + g(z) ∈ SH be given by (1.2) and f(z) ∈ RH(β) then

F (z) be defined by (3.1) also belong to RH(β).

Proof. Let f(z) = z +
∑∞

k=2 |ak|z
k +

∑∞
k=1 |bk|z

k be in RH(β) then by Theorem 2.1,
we have

∞
∑

k=2

k

β − 1
|ak| +

∞
∑

k=1

k

β − 1
|bk| ≤ 1. (3.2)

By definition of F (z), we have

F (z) = z +

∞
∑

k=2

c + 1

c + k
|ak|z

k +

∞
∑

k=1

c + 1

c + k
|bk|z̄

k.

Now

∞
∑

k=2

k

β − 1

( c + 1

c + k
|ak|

)

+

∞
∑

k=1

k

β − 1

( c + 1

c + k
|bk|

)
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≤
∞
∑

k=2

k

β − 1
|ak| +

∞
∑

k=1

k

β − 1
|bk|

≤ 1.

Thus F (z) ∈ RH(β).
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