TAMKANG JOURNAL OF MATHEMATICS Volume 41, Number 3, 271-273, Autumn 2010

COHOMOLOGY OF FINITE ABELIAN *p*-GROUPS AND FREE ACTIONS

KAHTAN H. ALZUBAIDY

Abstract. The generators of the integral cohomology ring $H^*(G, \mathbb{Z})$ of a finite abelian *p*-group *G* have been constructed and an application to free action of a finite group on a product of spheres $(S^n)^k$ has been given.

1. Introduction

In this paper Bockestein homomorphism is used to work out the generators and some basic relations of the integral cohomology ring $H^*(G, \mathbb{Z})$ of an abelian *p*-group $G = \mathbb{Z}_{p^{t_1}} \times \mathbb{Z}_{p^{t_2}} \times \cdots \times \mathbb{Z}_{p^{t_r}}$, aproduct of cyclic groups of orders powers of the prime *p*. An application is also given about the maximum possible rank for a *p*-group to act freely, preserving orientation, on $(S^n)^k$, $k \geq 2$, a product of *k* spheres of dimension *n*.

2. Preleminaries

Let $0 \to \mathbb{Z} \xrightarrow{p} \mathbb{Z} \xrightarrow{j} \mathbb{Z}_p \to 0$ be a short exact sequence, where the first map p is defined by multiplication by the prime p and second map j is by taking modulo p. The Bockestein homomorphism $\Delta : H^q(G, \mathbb{Z}_p) \to H^{q+1}(G, \mathbb{Z})$ is the connecting homomorphism . The following sequence is however exact:

$$0 \to H^q(G, \mathbb{Z}) \xrightarrow{j_*} H^q(G, \mathbb{Z}_p) \xrightarrow{\delta} H^{q+1}(G, \mathbb{Z}) \to 0$$

 j_* is monomorphism. Therefore $H^*(G, Z) = \ker \delta = \ker \Delta$. Observe that the composite $\Delta \Delta = j_* \delta j_* \delta = j_* 0 \delta = 0$.

3. Computations

 $H^*(\mathbb{Z}_{p^t},\mathbb{Z}_p) = P[v] \otimes E[u]$, tensor product of polynomial and exterior algebras, where $\deg v = 2$, $\deg u = 1$, $p^t v = p^t u = 0$ and $\Delta u = v$. That is if $p \ge 3$. When p = 2,

Received January 28, 2010.

2000 *Mathematics Subject Classification*. 20J06: cohomology of groups and 57S25: groups acting on special manifolds.

Key words and phrases. Cohomology of groups, free actions.

 $H^*(\mathbb{Z}_{p^t},\mathbb{Z}_p) = P[v]$, where deg v = 1, $p^t v = 0$ and $\Delta v = v^2[4]$, Let G be a finite abelian p-group. Then $G = \mathbb{Z}_{p^{t_1}} \times \mathbb{Z}_{p^{t_2}} \times \cdots \times \mathbb{Z}_{p^{t_r}}$, a product of cyclic groups of orders powers of the prime p. Without lost of generality, we can assume $t_1 \leq t_2 \leq \cdots \leq t_r$. By Kunneth formula [3] we have

$$H^*(G,\mathbb{Z}_p) \cong H^*(\mathbb{Z}_{p^{t_1}},\mathbb{Z}_p) \otimes H^*(\mathbb{Z}_{p^{t_2}},\mathbb{Z}_p) \otimes \cdots \otimes H^*(\mathbb{Z}_{p^{t_r}},\mathbb{Z}_p).$$

Suppose that $p \geq 3$. Then $H^*(G, \mathbb{Z}_p) \cong P[v_1, v_2, \ldots, v_r] \otimes E[u_1, u_2, \ldots, u_r]$ where deg $v_i = 2$, deg $u_i = 1$, $p^{t_i}v_i = p^{t_i}u_i = 0$ and $\Delta u_i = v_i$ $(i = 1, 2, \ldots, n)$. As an operator Δ has the property $\Delta(ab) = (\Delta a)b + (-1)^{\deg a}a(\Delta b)$. The product of these generators satisfies the anticommutative rule $ab = (-1)^{\deg a} \deg^b ba$. In particular $u_i u_j = -u_j u_i$ if $i \neq j$ and $u_i^2 = 0$. Multiplication by v_i is commutative. $\Delta \Delta = 0$. Therefore $\Delta v_i = 0$. The generators of $H^*(G, \mathbb{Z})$ are the elements of ker Δ . They are given as follows:

$$\sum_{k=1}^{j} (-1)^{i_k} u_{i_1} u_{i_2} \dots \hat{u}_{i_k} \dots u_{i_j} v_{i_k} \quad \text{where } i, j \in \{1, 2, \dots, r\}.$$

The number of such generators is $\binom{r}{j}$ for each j. Suppose now p = 2. Then $H^*(G, \mathbb{Z}_p) \cong P[v_1, v_2, \ldots, v_r]$ where deg $v_i = 1$, $p^{r_i}v_i = 0$ and $\Delta v_i = v_i^2$ $(i = 1, 2, \ldots, n)$.

Thus the generators of $H^*(G, \mathbb{Z})$ are given as follows:

$$\sum_{k=1}^{j} v_{i_1} v_{i_2} \dots v_{i_k}^2 \dots v_{i_j} \quad \text{where } i, j \in \{1, 2, \dots, r\}$$

They are also $\binom{r}{j}$ generators for each j. In each case there are $2^r - 1$ generators. Thus we have

Theorem. The integeral cohomology ring $H^*(G, \mathbb{Z})$ of an abelian p-group $G = \mathbb{Z}_{p^{t_1}} \times \mathbb{Z}_{p^{t_2}} \times \cdots \times \mathbb{Z}_{p^{t_r}}$ is generated by $\alpha_k^{(d)}$; $d = 2, \ldots, r+1$; $k = 1, \ldots, \binom{r}{d-1}$ where $\deg \alpha_k^{(d)} = d$ and its additive order is p^{t_k} . Further more $(\alpha_k^d)^2 = 0$ if d is odd.

Corollary. The exponent of $H^*(G, \mathbb{Z})$ is p^{t_r} .

Special Cases.

 $H^*(\mathbb{Z}_{p^t},\mathbb{Z})$ is generated by α where deg $\alpha = 2$ and $p^t \alpha = 0$. $H^*(\mathbb{Z}_{p^s} \times \mathbb{Z}_{p^t},\mathbb{Z})$ where $s \leq t$ is generated by α, β and μ where deg $\alpha = \text{deg }\beta = 2$ and deg $\mu = 3$ and $p^s \alpha = p^t \beta = p^s \mu = 0$ and $\mu^2 = 0$ if $p \geq 3$. $\mu^2 = \alpha^2 \beta + \alpha \beta^2$ when p = 2.

Finally $H^*((\mathbb{Z}_p)^3, \mathbb{Z})$ is generated by $\alpha, \beta, \gamma, \mu, \nu, \chi, \xi$ where deg $\alpha = \text{deg }\beta = \text{deg }\gamma = 2$, deg $\mu = \text{deg }\nu = \text{deg }\chi = 3$, deg $\xi = 4$. There are two different sets of relations for p = 2 and $p \ge 3[4]$.

272

4. Application

W. Browder [2] proved that when n is odd and p a prime if $(\mathbb{Z}_p)^r$ acts freely, preserving orientation, on $(S^n)^k$ with trivial action on the homology, then $r \leq k$. This gives the limitation on the rank r when any finite group acts freely on $(S^n)^k$. A different but simpler proof to this result is now introduced.

By [1, Proposition 1], the following sequence is exact

$$0 \to H^m(G, \mathbb{Z}) \to H^{n+1}(G, \mathbb{Z}) \to (\mathbb{Z}_{|G|})^k \to H^{m+1}(G, \mathbb{Z}) \to H^n(G, \mathbb{Z}) \to 0$$

where m = (k-1)n - k + 2. *m* is also odd. Observe that $H^{n+1}(G, \mathbb{Z})| = |G||H^m(G, \mathbb{Z})|$ and $|G| = p^r$. From the structure of $H^*(G, \mathbb{Z})$ we have $p^r \leq |H^{n+1}(G, \mathbb{Z})|$, since n + 1is even and $H^m(G, \mathbb{Z})| \leq p^{k-r}$, since m = (n-1)(k-1) + 1 is odd and n-1 is even. Then $p^r \leq p^r p^{k-r}$. Thus $r \leq k$.

The author thanks the referee for several useful comments.

References

- [1] K. H. Alzubaidy, Free actions on $(S^n)^k$, Mathematika, **32**(1985), 49–54.
- [2] W. Browder, Cohomology and group action, Invent. Math., 71(1983), 599-607.
- [3] K. S. Brown, Cohomology and Groups, Springer-Verlag, New York, 1982.
- [4] G. Lewis, The integral cohomology rings of groups of order p³, Trans. Amer. Math. Soc., 132(1968), 501-529.

Department of Mathematics, Science Faculty, Garyounis University, Benghazi, Libya. E-mail: kahtanalzubaidy@yahoo.com