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ON THE IRREDUCIBILITY OF LINEAR REPRESENTATIONS

OF THE PURE BRAID GROUP

MOHAMMAD N. ABDULRAHIM

Abstract. Following up on our result in [1], we find a milder sufficient condition for

the tensor product of specializations of the reduced Gassner representation of the

pure braid group to be irreducible. We prove that Gn(x1, . . . , xn)⊗Gn(y1, . . . , yn) :

Pn → GL(Cn−1 ⊗ C
n−1) is irreducible if xi 6= ±yi and xj 6= ±yj

−1 for some i

and j.

1. Introduction

The pure braid group, Pn , is a normal subgroup of the braid group, Bn , on n

strings. It has a lot of linear representations. One of them is the Gassner representation
which comes from the embedding Pn → Aut(Fn), by means of Magnus representation
[3, p.119]. In our work, we consider the tensor product of complex specializations of
irreducible Gassner representation of the pure braid group, namely,

Gn(x1, . . . , xn) ⊗ Gn(y1, . . . , yn) : Pn → GL(Cn−1 ⊗ C
n−1).

Our previous work in [1] asserts that for n ≥ 3 and x1, . . . , xn, y1, . . . , yn ∈ C−{0, 1} ,
the representation above is irreducible under the following condition: for some i and j ∈
{1, . . . , n}, i < j, xixj 6= yiyj and xαxjyαyj 6= 1, for every α ∈ {1, . . . , j −
1} and xα+1xjyα+1yj 6= 1, for every α ∈ {j, . . . , n − 1}.

In Section 1 of our work, We define the Gassner representation of a free normal
subgroup of the pure braid group of rank n − 1 denoted by Ur where 1 ≤ r ≤ n. We
consider C[Ur] to be the group algebra of Ur over C, and let A be the augmentation
ideal of C[Ur]. On the other hand, if M is any Pn-module, then AM is a Pn-submodule
of M . We first show that if Cn−1 is made into a Pn-module via the specialization of
the reduced Gassner representation Gn(x1, . . . , xn) : Pn → GL(Cn−1), then ACn−1 is its
unique minimal nonzero Pn-submodule. Of course ACn−1 = Cn−1 when Gn(x1, . . . , xn)

is irreducible.
In Section 2, we give a summary of the proofs of the important results published in

[1], which will help us to prove our main theorem.
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In Section 3, we let x1, . . . , xn, y1, . . . , yn ∈ C−{0}, so that Gn(x1, . . . , xn)⊗Gn(y1, . . .,

yn) defines a diagonal action of Pn on Cn−1 ⊗Cn−1. The main technical result is Propo-

sition 1, which gives a sufficient condition for ACn−1 ⊗ACn−1 to be the unique minimal

nonzero Pn-submodule of Cn−1 ⊗ Cn−1. This implies the irreducibility of the tensor

product above. We then state Lemma 4 to simplify Proposition 1 and prove our main

theorem that states the following: If xi 6= ±yi and xj 6= ±yj
−1 for some i and

j ∈ {1, . . . , n} then the tensor product above is irreducible.

Notation 1. The pure braid group, Pn, is defined as the kernel of the homomorphism

Bn → Sn, defined by σi → (i, i + 1), 1 ≤ i ≤ n − 1. It has the following generators:

Ai,r = σr−1σr−2 . . . σi+1σi
2σ−1

i+1 . . . σ−1
r−2σ

−1
r−1, 1 ≤ i < r ≤ n

We will construct for each r = 1, . . . , n a free normal subgroup of rank n − 1, namely,

Ur. Let Ur be the subgroup generated by the elements

A1,r, A2,r, . . . , Ar−1,r, Ar,r+1, . . . , Ar,n,

where Ai,r are those generators of Pn that become trivial after the deletion of the r-th

strand. For a fixed value of r , the image of Air under the reduced Gassner representation

is denoted by τi,r , where τi,r = I − Pi,rQi,r . In other words, the generators of Ur are

Ai,r where Ai,r = Ar,i whenever i > r. It is known that Ur generates a free subgroup of

Pn which is isomorphic to the subgroup Un freely generated by {A1,n, A2,n, . . . , An−1,n}.

This is intuitively clear because it is quite arbitrary how we assign indices to the braid

”strings”.

For simplicity, we denote Ai,r by τi,r . That is, we have

τ1,r = A1,r, . . . , τr−1,r = Ar−1,r, τr+1,r = Ar,r+1, τr+2,r = Ar,r+2, . . . , τn,r = Ar,n

Definition 1. The reduced Gassner representation restricted to Ur is defined as follows:

τi,r = I − Pi,rQi,r for 1 ≤ i, r ≤ n. For i < r , Pi,r is the column vector given by

(
1− t1, . . . , 1− ti−1, 1 − titr

︸ ︷︷ ︸

i

, tr(1− ti+1), . . . , tr(1− tr−1), tr+1 − 1
︸ ︷︷ ︸

r

, tr+2−1, . . . , tn−1
)T

,

and for n ≥ i > r , Pi,r is the column vector given by

(
tr(t1 − 1), . . . , tr(tr−1 − 1), 1 − tr+1, . . . , 1 − ti

︸ ︷︷ ︸

i−r

, 1− ti+1tr, tr(1− ti+2), . . . , tr(1− tn)
)T

.

Here T is the transpose and Qi,r is the row vector given by

Qi,r =
(
0, . . . , 0, 1

︸︷︷︸

i

, 0, . . . , 0
)
, 1 ≤ i, r ≤ n.
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The definition of the reduced Gassner representation restricted to a free normal sub-

group is the same, up to equivalence, as the definition in [3]. Representations given

by pseudoreflections I − AiBi and I − CiDi are equivalent if the inner products

(BiAj) and (DiCj) are conjugate by a diagonal matrix. Here, Ai, Ci are column

vectors and Bi, Di are row vectors. For more details, see [4].

We identify Cn−1 with (n − 1) × 1 column vectors. We let e1, . . . , en−1 denote the

standard basis for Cn−1, and we consider matrices to act by left multiplication on column

vectors.

Definition 2. If r = a1e1 + · · ·+an−1en−1 ∈ Cn−1, the support of r, denoted supp(r), is

the set {ei | ai 6= 0}. If s = Σaij(ei ⊗ ej) ∈ Cn−1 ⊗ Cn−1, the support of s, also denoted

supp(s), is the set {ei ⊗ ej | aij 6= 0}, and aij is called the coefficient of ei ⊗ ej in s.

Definition 3. Given an integer 1 ≤ r ≤ n and a vector t = (t1, . . . , tn) . We define

vi,r(t) = ei − τi,r(t)(ei) = (I − τi,r(t))(ei). In other words, we have the following:

For 1 ≤ i ≤ r − 1, we have vi,r(t) =

(
1− t1, . . . , 1− ti−1, 1 − titr

︸ ︷︷ ︸

i

, tr(1− ti+1), . . . , tr(1− tr−1), tr+1 − 1
︸ ︷︷ ︸

r

, tr+2−1, . . . , tn−1
)T

.

and for n ≥ i > r , we have vi,r(t) =

(
tr(t1 − 1), . . . , tr(tr−1 − 1), 1 − tr+1, . . . , 1 − ti

︸ ︷︷ ︸

i−r

, 1− ti+1tr, tr(1− ti+2), . . . , tr(1− tn)
)T

.

Next, we state a lemma similar to that used in [1].

Lemma 1. For t = (t1, . . . , tn), we have

(1) τi,r(t)(vi,s(t)) = vi,s + (tits − 1)vi,r(t) for 1 ≤ i ≤ s − 1,

τi,r(t)(vi,s(t)) = vi,s + (ti+1ts − 1)vi,r(t) for 1 ≤ s < i,

(2) τi,r(t)(vj,s(t)) = vj,s(t) + (ti − 1)vi,r(t) for i < j < s,

τi,r(t)(vj,s(t)) = vj,s(t) + ts(ti − 1)vi,r(t) for j < i < s,

τi,r(t)(vj,s(t)) = vj,s(t) + (1 − ti+1)vi,r(t) for j < s < i,

(3) τi,r(t)(vj,s(t)) = vj,s(t) + ts(1 − ti)vi,r(t) for i < s < j,

τi,r(t)(vj,s(t)) = vj,s(t) + (ti+1 − 1)vi,r(t) for s < i < j,

τi,r(t)(vj,s(t)) = vj,s(t) + ts(ti+1 − 1)vi,r(t) for s < j < i.
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For a fixed value of r, we use Lemma 1 to determine elements in the group algbera
C(Pn) over C that send the vector vi,r to the vector vi+1,r and other elements that
send the vector vi,r to vi−1,r.

Definition 4. Given an integer r such that 1 ≤ r ≤ n . Consider the following
elements of the pure braid group algebra.

fi,r =







τi,r − (titr)τi+1,r, 1 ≤ i < r − 1

τi,r − (titr)τi+2,r, i = r − 1

τi,r − (ti+1tr)τi+1,r, 1 ≤ r < i ≤ n − 1

and

gi,r =







τi,r − (titr)τi−1,r, 1 ≤ i ≤ r − 1

τi,r − (ti+1tr)τi−2,r, i = r + 1 ≤ n − 1

τi,r − (ti+1tr)τi−1,r, r + 1 < i ≤ n − 1.

Then we have the following lemma.

Lemma 2. Fix an integer 1 ≤ r ≤ n. For all integers 1 ≤ i ≤ n − 1, the action of the
elements of the pure braid group algebra, namely, fi,r and gi,r , on the vectors vi,r is
given by

(i) fi,r(vi,r) =







−titr
2(ti+1 − 1)vi+1,r, 1 ≤ i < r − 1

−tr−1tr(1 − tr+2)vr+1,r, i = r − 1 ≤ n − 3

−ti+1tr
2(ti+2 − 1)vi+1,r, 1 ≤ r < i ≤ n − 2

and

(ii) gi,r(vi,r) =







−titr(ti−1 − 1)vi−1,r, 1 ≤ i ≤ r − 1

−tr+2tr
2(1 − tr−1)vr−1,r, i = r + 1 ≤ n − 1

−ti+1tr(ti − 1)vi−1,r, r + 1 < i ≤ n − 1.

Notation 2. Let Gn(x1, . . . , xn) denote the reduced Gassner representation of Pn under
the specialization ti → xi, where xi is a non-zero complex number.

Lemma 3. Having Ur a free normal subgroup of the pure braid group, we let Gn(x1, . . .,
xn) : Ur → GL(Cn−1) be a specialization of the reduced Gassner representation restricted
to Ur making Cn−1 into a Ur-module, where n ≥ 3. Then

(a) Let A be the kernel of the homomorphism C[Ur] → C induced by τi,r → 1 (the
augmentation ideal). Let x be the vector (x1, . . . , xn).Then ACn−1 is equal to the
C-vector space spanned by v1,r(x), . . . , vr−1,r(x), vr+1,r, . . . , vn,r.

(b) If M is a nonzero Ur-submodule of C
n−1, then AC

n−1 ⊆ M . Hence AC
n−1 is the

unique minimal nonzero Ur-submodule of Cn−1.



LINEAR REPRESENTATIONS 287

(c) If p(x1, . . . , xn) = (xr − 1)n−2(x1x2 . . . xn − 1) 6= 0, then ACn−1 = Cn−1, and
Gn(x1, x2, . . . , xn) restricted to Ur is irreducible.

Proof. The proof is similar to that in [2]. Here, we will take the free normal subgroup,
Ur, of rank n − 1. Notice that, in the proof of (b), we need the fact that if vj,r ∈ M

for some j and r then all vi,r ∈ M . This is due to Lemma 1. As for (c),
the determinant of the matrix, whose columns are the vectors v1,r(x), . . . , vn,r(x), is
p(x) = (xr − 1)n−2(x1x2 . . . xn − 1) , so if p(x) 6= 0 then v1,r(x), . . . vn,r(x) is a basis
for Cn−1 and ACn−1 = Cn−1 . For more details, see [4].

Hence, AC
n−1 is its unique minimal nonzero Ur-submodule. Of course AC

n−1 =
Cn−1 when Gn(x1, . . . , xn) is irreducible. A result in [1] states that if for some i and j (i <

j) xixj 6= yiyj and xαxjyαyj 6= 1 for every α ∈ {1, . . . , j − 1} and xα+1xjyα+1yj 6=
1 for every α ∈ {j, . . . , n−1} then Gn(x)⊗Gn(y) : Pn → GL(Cn−1⊗Cn−1) is irreducible
(see [1]). In our work, we improve the result by replacing the conditions above by the
conditions xixj 6= yiyj for some i 6= j and xαxkyαyk 6= 1 for some α and k (α 6= k).

2. Claims in [1] and a summary of their proofs

Before we proceed in proving Proposition 1, we state the main results obtained in our
previous work [1]. The notations used here are the same as in Section 1.

Let M be a non zero Pn- submodule of Cn−1 ⊗Cn−1, when n ≥ 3. First, we observe
that if eu ⊗ ev ∈ supp(m) for some m ∈ M then eα ⊗ ev ∈ supp(τu,r(eu ⊗ ev)) for every
choice of α = 1, . . . , n − 1 and v 6= u. This is clear because of our assumption that none
of the parameters ti’s is equal to zero or one.

(1) Claim 1. If xixj 6= yiyj for some i and j then there exists an s ∈ {1, . . . , n− 1}
such that es ⊗ es ∈ supp(m) for some m ∈ M and s ∈ {1, . . . , n − 1}.

Proof of Claim 1. Here, we may take r to be the given integer j.

Case 1: Suppose that there exists an s and m ∈ M such that es⊗es ∈ supp(m) ,
then we are done.

Case 2: Suppose that there exists (s, t) with 1 ≤ s, t ≤ n − 1 and s 6= t such that

m = a(es ⊗ et) + W ,

where a ∈ C∗ and supp(W ) does not contain es ⊗ et, et ⊗ es. We also assume that
supp(W ) does not contain eα ⊗ eα for any α.

Then τt,j(m) = a(es ⊗ et − vt,j) + τt,j(W ), which implies that es ⊗ es ∈ supp(τt,j(m))
and so we are done .

Case 3: Suppose that for any pair (s, t) and any m ∈ M such that es ⊗ et ∈
supp(m), we have that et ⊗ es ∈ supp(m) as well. That is, consider m ∈ M such that

m = a(es ⊗ et) + b(et ⊗ es) + W, where
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supp(W ) does not contain es ⊗ et, et ⊗ es and eα ⊗ eα for any α . In this case, W is

either zero or its elements are of the form
∑

k,l

(ck,l ek ⊗ el + dl,k el ⊗ ek).

Here the constants a, b, ck,l, dl,k ∈ C∗.

Applying τt,j , we observe that ei ∈ supp(τt,j(et)), where i is the integer given by
the hypothesis of Proposition 1. Then

τt,j(m) = a(es ⊗ ei) + b(ei ⊗ es) + W, where

supp(W ) does not contain es ⊗ei, ei ⊗es, and both of a, b are not zeros. For simplicity,
we denote τt,j(m) by m.

If eα ⊗ eα ∈ supp(W ) for some α , then we are done. If not, we see that

aM + bN = coefficient of es ⊗ es in τi,j(m) and
aM(1 + yiyj) + bN(1 + xixj) = coefficient of es ⊗ es in (τi,j)

2(m).

The values of M and N are not zeros and can be obtained directly from Definition

3. The determinant

det

(
M N

M(1 + yiyj) N(1 + xixj)

)

= MN(xixj − yiyj)

is nonzero, since xixj − yiyj 6= 0 by hypothesis. Then one of τi,j(m), (τi,j)
2(m) has

es ⊗ es in its support.

(2) Claim 2. Suppose that eα ⊗ eα ∈ supp(m) for some m ∈ M . Then vα,k(x) ⊗
vα,k(y) ∈ M if xαxkyαyk 6= 1 for α = 1, . . . , k − 1 and xα+1xkyα+1yk 6= 1 for α =

k, . . . , n − 1.

Proof of Claim 2. A calculation shows that

(τα,k−1)(τα,k−γαyk)(τα,k−βαxk)(eα⊗eα) = γαβαxkyk(βαxkγαyk−1)(vα,k(x)⊗vα,k(y))

and

(τα,k − 1)(τα,k − γαyk)(τα,k − βαxk)(eu ⊗ ev) = 0 if (u, v) 6= (α, α).

Here, we have
βα = xα, γα = yα for α = 1, . . . , k − 1

and

βα = xα+1, γα = yα+1 for α = k, . . . , n − 1.

3. Main Theorem

To prove our main theorem, Theorem 1, we introduce Proposition 1 and Lemma 4.
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Proposition 1. Suppose that x = (x1, . . . , xn) and y = (y1, . . . , yn) ∈ Cn ,where xs, ys ∈
C−{0, 1} for 1 ≤ s ≤ n. Suppose also that xixj 6= yiyj for some i 6= j and xαxkyαyk 6=
1 for some α 6= k. Let M be a nonzero Pn-submodule of C

n−1 ⊗ C
n−1 under the

action of Gn(x) ⊗ Gn(y) : Pn → GL(Cn−1 ⊗ Cn−1), where n ≥ 3. Then M contains all
vp,j(x)⊗vq,j(y) for p, q ∈ {1, . . . , j−1, j+1, . . . , n}. Thus M contains ACn−1⊗ACn−1,
where the action of Pn on the first factor is induced by Gn(x1, . . . , xn) and the action of
Pn on the second factor is induced by Gn(y1, . . . , yn).

Proof. We will show that once there exists a vector va,k⊗va,k ∈ M for some a then all
other vectors vl,k ⊗ vl,k will also be in M using the hypothesis of our proposition and
Lemma 2. Here k is the integer given by the proposition and l ∈ {1, . . . , k−1, k+1, . . . , n}.

By Claim 1 of [1, p.14], we have that es ⊗ es ∈ supp(m) for some s. This is due to
the fact that xixj 6= yiyj for some i and j. Having that es ⊗ es ∈ supp(m) for some
m ∈ M , we write m = αses ⊗ es + W and supp(W ) does not contain es ⊗ es . Here
αs ∈ C∗ . It follows that

τs,k(m) = αsτs.k(es ⊗ es) + τs,k(W )

= αs(es − vs,k ⊗ es − vs,k) + τs,k(W )

= αs(

n−1∑

l=1

Alel ⊗

n−1∑

l=1

Blel) + τs,k(W ).

This implies that el ⊗ el ∈ supp(τs,k(m)) for every l ∈ {1, . . . , n− 1}. In particular,
let l = α such that xαxkyαyk 6= 1. Then we get, by Claim 2 of [1, p.14], that

vα,k ⊗ vα,k ∈ M.

Applying Lemma 2, we have that fα,k(vα,k ⊗ vα,k) ∈ M , which implies that vα+1,k ⊗
vα+1,k ∈ M . Similarly, we also have that gα,k(vα,k ⊗ vα,k) ∈ M , which implies that
vα−1,k⊗vα−1,k ∈ M . After a consecuitive use of fα,k, fα+1,k, . . . and gα,k, gα−1,k, . . . ,,
we obtain that

vl,k ⊗ vl,k ∈ M for every l ∈ {1, . . . , k − 1, k + 1, . . . , n}. (1)

As in Lemma 2, for that integer k and any integer l, we find elements in the group
algebra C(Pn) over C that send the vectors vl,k to the vectors vl,k+1 when 1 ≤ k < n, and
other elements in C(Pn) that send the vectors vl,k to the vectors vl,k−1. For example, we
can consider the element

γl,k = τl−1,k − (tl−1tk)τl,k+1 when l ≤ k.

Here, k is the integer given in proposition 1 and l is any integer in {1, . . . , k − 1, k +
1, n}. We have γl,k(vl−1,k) = −tl−1tk

2(tl − 1)vl,k+1.
Since vl−1,k ⊗ vl−1,k ∈ M for every value of l, it follows that vl,k+1 ⊗ vl,k+1 ∈ M (1 ≤
k < n). Now apply gl,k+1 from Lemma 2, we obtain that vl−1,k+1 ⊗ vl−1,k+1 ∈ M for
every value of l.



290 MOHAMMAD N. ABDULRAHIM

Similarly, we find other elements in C(Pn) to show that given any integer l ∈ {1, . . . , k−
1, k+1, n} such that vl−1,k⊗vl−1,k ∈ M , we obtain that vl−1,k−1⊗vl−1,k−1 ∈ M . There-
fore, by direct computations, and for all integers p and t, we get

vp,t ⊗ vp,t ∈ M. (2)

In particular, let t = j. Then we have that vp,j ⊗ vp,j ∈ M . Given integers p, q ∈
{1, . . . , j − 1, j + 1, . . . , n} and p 6= q . We will show that vp,j ⊗ vq,j ∈ M . We consider
two cases.

Case 1: Let p = i. (i and j are the integers given by the hypothesis of Proposition 1).
By our assumption, we have that q 6= i. By applying τq,j on (vi,j ⊗ vi,j) , we obtain

avq,j ⊗ vi,j + bvi,j ⊗ vq,j ∈ M (a 6= 0, b 6= 0). (3)

Applying τi,j , we obtain

ayiyjvq,j ⊗ vi,j + bxixjvi,j ⊗ vq,j ∈ M. (4)

Combining (3) and (4), we get

b(yiyj − xixj)vi,j ⊗ vq,j ∈ M

Since xixj 6= yiyj , it follows that

vi,j ⊗ vq,j ∈ M.

Case 2: Let p 6= i, q 6= i and p 6= q. By applying τi,j on (vp,j ⊗ vp,j) , we obtain

avi,j ⊗ vp,j + bvp,j ⊗ vi,j ∈ M (a 6= 0, b 6= 0). (5)

Applying τi,j again, we obtain

axixjvi,j ⊗ vp,j + byiyjvp,j ⊗ vi,j ∈ M. (6)

Combining (5) and (6), we get that

vp,j ⊗ vi,j ∈ M.

Now apply τq,j , we get that for p, q ∈ {1, . . . , j − 1, j + 1, . . . , n}

vp,j ⊗ vq,j ∈ M.

In order to simplify the conditions in Proposition 1 further, we prove the next Lemma.

Lemma 4. Given n ≥ 3 and non-zero complex numbers x1, . . . , xn and y1, . . . , yn.
Then the following holds.

(i) If xv 6= ±yv for some v then xaxb 6= yayb for some distinct a, b.

(ii) If xu 6= ±yu
−1 for some u then xgxhygyh 6= 1 for some distinct g, h.



LINEAR REPRESENTATIONS 291

Proof. (i) Assume, to get contradiction, that xaxb = yayb for a 6= b. Then, we have
that

x1xn = y1yn,

...

xn−1xn = yn−1yn.

By solving the above equations, we get that xuyv = xvyu, where 1 ≤ u < v ≤
n − 1. Since we also have that xuxv = yuyv , it follows that xv = ±yv for every
v ∈ {1, . . . , n} , a contradiction.

(ii) Assume, to get contradiction, that xgxhygyh = 1 for g 6= h. Then, we have that

x1xny1yn = 1,

...

xn−1xnyn−1yn = 1.

This implies that xuyu = xu+1yu+1 , where u ∈ {1, . . . , n − 2}. Having that
xuxu+1yuyu+1 = 1 , it follows that xu = ±yu

−1 for every u ∈ {1, . . . , n}, a contradic-
tion.

Consider the representation Gn(t1, . . . , tn) : Pn → GLn−1(C[t1
±1, . . . , tn

±1]),
where t1, . . . , tn are indeterminates. Specializing t1, . . . , tn to nonzero complex numbers
x1, . . . , xn defines a representation Gn(x1, . . . , xn) : Pn → GLn−1(C) = GL(Cn−1)
which is irreducible if and only if q(x1, . . . , xn) = x1 . . . xn − 1 6= 0. (see [1] and [4]).

By combining Proposition 1 and Lemma 4, we get our main theorem.

Theorem 1. For n ≥ 3, consider the tensor product of irreducible representations
Gn(x1, . . . , xn) ⊗ Gn(y1, . . . , yn) : Pn → GL(Cn−1 ⊗ Cn−1), where q(x1, . . . , xn) 6=
0 and q(y1, . . . , yn) 6= 0. If for some i and j, xi 6= ±yi and xj 6= ±yj

−1 then the
above representation is irreducible.

Proof. By Lemma 4 and Proposition 1, we have that ACn−1 ⊗ ACn−1 is the unique
minimal nonzero Pn-submodule of C

n−1 ⊗ C
n−1. In particular, it is an irreducible Pn-

module. The fact that q(x1, . . . , xn) 6= 0 and q(y1, . . . , yn) 6= 0 implies that the
left factor AC

n−1 corresponds to the representation Gn(x1, . . . , xn) and the right factor
ACn−1 corresponds to the representation Gn(y1, . . . , yn).
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