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ON THE IRREDUCIBILITY OF LINEAR REPRESENTATIONS
OF THE PURE BRAID GROUP

MOHAMMAD N. ABDULRAHIM

Abstract. Following up on our result in [1], we find a milder sufficient condition for
the tensor product of specializations of the reduced Gassner representation of the
pure braid group to be irreducible. We prove that G (z1,...,2,) @Gn(y1,. .., yn) :
P, — GL(C" ' @ C" ') is irreducible if z; # +y; and x; # +y; * for some i
and j.

1. Introduction

The pure braid group, P, , is a normal subgroup of the braid group, B, , on n
strings. It has a lot of linear representations. One of them is the Gassner representation
which comes from the embedding P, — Aut(F),), by means of Magnus representation
[3, p.119]. In our work, we consider the tensor product of complex specializations of
irreducible Gassner representation of the pure braid group, namely,

Gn(x1, ., 20) @ Gn(Y1y -y Yn) : P — GL((C"_1 ®C" ).

Our previous work in [1] asserts that for n > 3 and z1,..., 2., y1,...,yn € C—{0,1},
the representation above is irreducible under the following condition: for some i and j €
{1,...,n}, @ < j, wmz; # yy; and z.x;yay; # 1, for every a € {1,...,j —
1} and Ta412Ya+1y; # 1, for every a € {j,...,n —1}.

In Section 1 of our work, We define the Gassner representation of a free normal
subgroup of the pure braid group of rank n — 1 denoted by U, where 1 < r < n. We
consider C[U,] to be the group algebra of U, over C, and let A be the augmentation
ideal of C[U,]. On the other hand, if M is any P,,-module, then AM is a P,,-submodule
of M. We first show that if C*~! is made into a P,-module via the specialization of
the reduced Gassner representation Gy, (71, ..., 2,) : P, — GL(C"™1), then AC" 1 is its
unique minimal nonzero P,-submodule. Of course AC"~! = C"~! when G, (z1,...,7,)
is irreducible.

In Section 2, we give a summary of the proofs of the important results published in
[1], which will help us to prove our main theorem.
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In Section 3, we let &1, ..., &n, Y1, ..., yn € C—{0}, so that G,, (21, ..., 2,)RG(y1, - . -,
yn) defines a diagonal action of P, on C*~! ® C"~!. The main technical result is Propo-
sition 1, which gives a sufficient condition for AC" ! ® AC"~! to be the unique minimal
nonzero P,-submodule of C"~! ® C"~!. This implies the irreducibility of the tensor
product above. We then state Lemma 4 to simplify Proposition 1 and prove our main
theorem that states the following: If z; # +y; and =z; # +y;~! for some i and
je{l,...,n} then the tensor product above is irreducible.

Notation 1. The pure braid group, Py, is defined as the kernel of the homomorphism
B, — Sy, defined by o; — (i,i+ 1), 1<i<mn-—1. It has the following generators:

_ 2 _—1 -1 -1 .
Ajfp = 0r10p-2...0i410, 01 ...0, 50, 1, 1<i<r<n

We will construct for each » = 1,...,n a free normal subgroup of rank n — 1, namely,
U,. Let U, be the subgroup generated by the elements

A177“7 AQ,”‘) [RRR) AT—L“ AT,7‘+17 ) AT,"I;

where A; , are those generators of P, that become trivial after the deletion of the 7-th
strand. For a fixed value of 7 , the image of A;, under the reduced Gassner representation
is denoted by 7;, , where 7, = I — P; Q) . In other words, the generators of U, are
A, where A;, = A, ; whenever ¢ > r. It is known that U, generates a free subgroup of
P, which is isomorphic to the subgroup U, freely generated by {41 n, A2ns..., An_1n}-
This is intuitively clear because it is quite arbitrary how we assign indices to the braid
”strings”.
For simplicity, we denote A; , by 7;,. That is, we have

Ti,r = Al,ra ey Tr—1,0 = Arfl,ra Tr41,r = Ar,rJrla Tr42,r = Ar,r+27 vy Tnr = Ar,n

Definition 1. The reduced Gassner representation restricted to U, is defined as follows:
Tig =1 — P Qi for 1 <i,7 <n. For i <r,F;, isthe column vector given by

T
(I=t1,..., 1=timg, L= tity, tp(L—tig1), .o tr (L= tp1) b — Litpgo— 1,8 — 1),
W_/ N——
K3 T

and for n >+¢ > r,P;, is the column vector given by

T
(tr(tr=1), .oy to(trmy = 1), L=ty L=ty L= tigate, b (L= tiga), .. b (1= 1) )

=7

Here T is the transpose and @);, is the row vector given by

Qir=(0,...,0, 1 ,0,...,0), 1<ir<n.
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The definition of the reduced Gassner representation restricted to a free normal sub-
group is the same, up to equivalence, as the definition in [3]. Representations given
by pseudoreflections I — A;B; and I — C;D; are equivalent if the inner products
(B;A;) and (D,;Cj) are conjugate by a diagonal matrix. Here, A;, C; are column
vectors and B;, D; are row vectors. For more details, see [4].

We identify C*~! with (n — 1) x 1 column vectors. We let e1,...,e, 1 denote the
standard basis for C"~!, and we consider matrices to act by left multiplication on column
vectors.

Definition 2. If r = aje; +---+a,_16,_1 € C*7 1, the support of r, denoted supp(r), is
the set {e; | a; # 0}. If s = Sa;;(e; ® ej) € C"1 @ C"~1, the support of s, also denoted
supp(s), is the set {e; ® e; | a;; # 0}, and a;; is called the coefficient of e; ® ¢; in s.

Definition 3. Given an integer 1 < r <n and a vector t = (t1,...,t,) . We define
vir(t) =€ — i (t)(ei) = (I —7ir(t))(e;). In other words, we have the following:

For 1 <i<r—1, we have v;,(t) =

T
(T=t1, ..., 1=timt, L= tity, tp (L= tig1), .ot (L= tpe1) b — Litpgo— 1,8 — 1)
W_/ N——
3 T

and for n >4 >r, we have v; ,.(t) =

(tr(tr=1), .oy to(trmr = 1), L=ty L=, L=ttt (L= tiga), ..t (1= t0) )

=7

Next, we state a lemma similar to that used in [1].

Lemma 1. Fort = (t1,...,t,), we have

(1) Tir(®)(0is (D) = vis + (tits — Dvsn(t)  for 1<i<s—1,
Tir () (Vi,s (1) = vis + (tig1ts — 1)vi (1) for 1<s<i,

(2) 7o () (vs,s(t)) = vj,s(t) + (ti — Dvir(t) for i< j<s,

Tir ()0 s(t) = v s(t) +ts(ti — Dvip(t)  for j<i<s,
Tir (8)(0),5(1)) = vj,s(t) + (1 — tip1)vip(B)  for j<s<i,
(3) 7ir(t)(v.s(t) = vj.s(t) + t:s(1 = ti)vip(t)  for i<s<j,
Tir(O)(0)s(#) = v s(t) + (tigr — Dvip(t)  for s<i<j,
)

)
Tir (8) (Vg5 (

=0, s(t) +ts(tivn — Vv o (t)  for s<j<i.
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For a fixed value of r, we use Lemma 1 to determine elements in the group algbera
C(P,) over C that send the vector v;, to the vector vy, and other elements that
send the vector v;, to v;_1 .

Definition 4. Given an integer r such that 1 < r < n . Consider the following
elements of the pure braid group algebra.

Tiw — (it ) Tig1r, 1<i<r—1
Ji = Tiw — (tity)Tigor, i=1—1
Tir — (tip1te)Tig1r, 1<r<i<n-—1
and
Tir — (City)Tic1r, 1<i<r—1
Gigr = Tir — (Lig1tr)Ticopy, i=r+1<n-—-1

Tiw — (tigrte)Tic1e, T+1<i<n-—1.

Then we have the following lemma.

Lemma 2. Fizx an integer 1 <r <n. For all integers 1 < i <n — 1, the action of the
elements of the pure braid group algebra, namely, f;, and g;, , on the vectors v, is
given by

7titr2(ti+1 — ].)UiJrLT, 1<i<r-—1

(1) fi,r(vi,r) = 7157«,1@0(1 - tr+2)vr+1,ra t=r—1<n-3
—tip1te®(tige — Dvig1,, 1 <7 <i<n—2

and
—tity(tic1 — Dvim1,, 1 <i<r—1

(11) gi,r(vi,r) = 7tr+2tr2(1 - trfl)vrfl,ra t=r+1<n-1
—tH_lt,«(ti — 1)’()1'_1,7-, r+l<i<n-—1.

Notation 2. Let Gy, (x1,...,x,) denote the reduced Gassner representation of P, under
the specialization t; — x;, where x; is a non-zero complex number.

Lemma 3. Having U, a free normal subgroup of the pure braid group, we let G, (x1,. ..,
xp) : Ur — GL(C"1) be a specialization of the reduced Gassner representation restricted
to U, making C"~' into a U,-module, where n > 3. Then

(a) Let A be the kernel of the homomorphism C[U,| — C induced by 7;, — 1 (the
augmentation ideal). Let x be the vector (z1,...,2,). Then AC™™! is equal to the
C-vector space spanned by vi (), ..., Up—1 0 (T), Vrg1ry. -, U r.

(b) If M is a nonzero U,-submodule of C"~', then AC"~!' C M. Hence AC" ! is the
unique minimal nonzero U,.-submodule of C*~ 1.
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(c) If p(x1,...,mp) = (2, — )" 2(z129...70, — 1) # 0, then AC"! = C" !, and
Gn(x1,22,...,2,) restricted to U, is irreducible.

Proof. The proof is similar to that in [2]. Here, we will take the free normal subgroup,
U, of rank n — 1. Notice that, in the proof of (b), we need the fact that if v;, € M
for some j and r then all v;, € M . This is due to Lemma 1. As for (c),
the determinant of the matrix, whose columns are the vectors vy ,(x),..., v, (), is
p(z) = (z, — )" 2(z122... 205 — 1) , s0 if p(z) # 0 then vy ,.(z),...v,.(z) is a basis
for C"~! and AC"~!' =C"~!. For more details, see [4].

Hence, AC"~! is its unique minimal nonzero U,-submodule. Of course AC"~! =
C" ! when G, (21, ...,,) is irreducible. A result in [1] states that if for some i and j (i <
J)  xixj # vy and zax;yay; # 1 forevery a € {1,...,5 — 1} and za412Yat1yj #
1 for every a € {j,...,n—1} then G,,(2)® G, (y) : P, — GL(C""1®C"~1) is irreducible
(see [1]). In our work, we improve the result by replacing the conditions above by the
conditions x;x; # y;y; for some ¢ # j and xaTrYayr # 1 for some a and k (o # k).

2. Claims in [1] and a summary of their proofs

Before we proceed in proving Proposition 1, we state the main results obtained in our
previous work [1]. The notations used here are the same as in Section 1.

Let M be a non zero P,- submodule of C*~! ® C*~!, when n > 3. First, we observe
that if e, ® e, € supp(m) for some m € M then e, @ e, € supp(yr(ey, ® e,)) for every
choice of @« = 1,...,n — 1 and v # u. This is clear because of our assumption that none
of the parameters t;’s is equal to zero or one.

(1) Claim 1. If z;x; # y;y; for some ¢ and j then there exists an s € {1,...,n —1}
such that e; ® es € supp(m) for some m € M and s € {1,...,n—1}.

Proof of Claim 1. Here, we may take r to be the given integer j.
Case 1: Suppose that there exists an s and m € M such that e;®es € supp(m)
then we are done.

Case 2: Suppose that there exists (s,t) with 1 <s,t <n—1 and s # ¢ such that

m=ales @er) + W,

where a € C* and supp(WW) does not contain e; ® e;,e; ® es. We also assume that
supp(W) does not contain e, ® e, for any a.

Then 7¢;(m) = a(es ® ex — vy,j) + 7¢,;(W), which implies that e; ® e; € supp(7:;(m))
and so we are done .

Case 3: Suppose that for any pair (s,t) and any m € M such that e;®e; €
supp(m), we have that e; ® es € supp(m) as well. That is, consider m € M such that

m=a(es @er) +bler @es) + W, where
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supp(W) does not contain e; ® e;, e; @ e; and e, ® e, for any « . In this case, W is
either zero or its elements are of the form Z(CW er@e +diy e ®ep).
k,l
Here the constants a, b, ¢, di € C*.
Applying 7 ; , we observe that e; € supp(r:,j(e:)), where 4 is the integer given by
the hypothesis of Proposition 1. Then

7,5 (m) = ales @ e;) + b(e; ® es) + W,  where

supp(W) does not contain es ®e;, e; ® es, and both of a,b are not zeros. For simplicity,
we denote 7 ;(m) by m.
If eq ® eo € supp(W) for some « , then we are done. If not, we see that

aM + DN = coeflicient of e; ® es in 7; j(m) and
aM(1+ y;y;) + bN(1 + x;2;) = coefficient of es ® ey in (7;,;)%(m).

The values of M and N are not zeros and can be obtained directly from Definition
3. The determinant

M N
et (M(l +yiy;) N(1+ :L'Zg;j)> = MN(ziz; — yiy;)
is nonzero, since x;x; — y;y; # 0 by hypothesis. Then one of 7; j(m), (7 ;)%(m) has

es ® eg in its support.

(2) Claim 2. Suppose that e, ® eq € supp(m) for some m € M. Then v, x(z) ®
Vo k(y) € M if zoxpyayr #1 for a=1,....k—1 and xq11TkYat1yr # 1 for a =
k,...,n—1.

Proof of Claim 2. A calculation shows that

(Ta,k - 1)(7—01,]9 77ayk)(7_a,k 76amk)(ea®ea) = 7a6amkyk (6axk7ayk - 1)(va,k(x)®va,k(y))

and
(Task = 1) (Tak — YaUk)(Task — Batr)(eu @ €y) =0 if (u,v) # (o, ).

Here, we have
Bo =Ty, Ya=Ya for a=1,....k—1

and
ﬂa:maJrla Yo = Ya+1 fOI'Ot:k,...,Tl*]..

3. Main Theorem

To prove our main theorem, Theorem 1, we introduce Proposition 1 and Lemma 4.
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Proposition 1. Suppose that x = (x1,...,2,) andy = (y1,...,yn) € C"* ,where x,,ys €
C—{0,1} for1 < s <mn. Suppose also that x;x; # y;y; for somei # j and ToTkYalYs 7#
1 for some « # k. Let M be a nonzero P,-submodule of C* ' @ C"~! under the
action of Gy (z) @ Gp(y) : P, — GL(C"t @ C"1), where n > 3. Then M contains all
vy, () @0y (y) forp,qge{1,...,5—1,j+1,...,n}. Thus M contains AC" '@ AC"1,
where the action of P, on the first factor is induced by G, (x1,...,x,) and the action of
P, on the second factor is induced by G, (y1,...,Yn).

Proof. We will show that once there exists a vector v, ®v, € M for some a then all
other vectors vy, ® vy will also be in M using the hypothesis of our proposition and
Lemma 2. Here k is the integer given by the proposition and ! € {1,...,k—1,k+1,...,n}.

By Claim 1 of [1, p.14], we have that es ® e5 € supp(m) for some s. This is due to
the fact that x;x; # y;y; for some ¢ and j. Having that e; ® e; € supp(m) for some
m € M, we write m = ases @ es + W and supp(W) does not contain es ® e . Here
as € C* . Tt follows that

To (M) = asTo (€5 @ €5) + 751 (W)
== as(es — VUs,k ®es — vs,k) + Ts,k(W)

n—1 n—1
as(z Ae ® Z Bier) + Ts,k(W)'
=1 =1

This implies that e; ® e; € supp(7s,x(m)) for every [ € {1,...,n—1}. In particular,
let I = a such that z,zryayr # 1. Then we get, by Claim 2 of [1, p.14], that

Va,k ® Va ik € M.

Applying Lemma 2, we have that fo k(v ®va k) € M , which implies that ve41,, ®
Vat1,5 € M. Similarly, we also have that ga k(vax @ Vax) € M , which implies that
Va—1kQVa—1,5 € M. After a consecuitive use of fo i, fatik, ---a0d Ga ks Ga—1,k)---»
we obtain that

vE®ur €M foreveryl e {1,....k—1,k+1,...,n}. (1)

As in Lemma 2, for that integer k£ and any integer [, we find elements in the group
algebra C(P,) over C that send the vectors v i, to the vectors v z41 when 1 < k < n, and
other elements in C(P,) that send the vectors v to the vectors v; ,—1. For example, we
can consider the element

Yk =Ti—1,6 — (ti—1tk)Ti k41 when [ <k.

Here, k is the integer given in proposition 1 and [ is any integer in {1,...,k — 1,k +
1, n} We have m,k(vl_l,k) = —tl_ltk2(tl — 1)Ul,k+1-
Since vj_1 5 @ vi—1,1x € M for every value of [, it follows that v; 41 @ vy 11 € M (1 <
k < mn). Now apply g; r+1 from Lemma 2, we obtain that v;_1 p+1 ® vi—1 k41 € M for
every value of [.
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Similarly, we find other elements in C(P,) to show that given any integer ! € {1,...,k—
1,k+1,n} such that v;_1 y ®v;_1 ; € M, we obtain that vj_; 1 ®v;_1 5—1 € M . There-
fore, by direct computations, and for all integers p and ¢, we get

Upt @ Upy € M. (2)

In particular, let ¢ = j. Then we have that v, ; ® v, ; € M. Given integers p,q €
{1,...,5—1,7+1,...,n} and p# ¢ . We will show that v, ; ® vq; € M. We consider
two cases.

Case 1: Let p =i. (i and j are the integers given by the hypothesis of Proposition 1).
By our assumption, we have that ¢ # i. By applying 7,; on (v;; ® v; ;) , we obtain

avg; @i +bu; Qvg; € M (a#0, b#0). (3)
Applying 7; j, we obtain
ay;Y;jvq,; @ Vi j + bxixjv; j @ vg; € M. (4)
Combining (3) and (4), we get
b(yiy; — xix;)vi; @ vg; € M
Since x;x; # yiy; , it follows that

Vij @ vg,; € M.

Case 2: Let p#1i, ¢ #¢ and p # ¢. By applying 7,; on (vp; ® vp ;) , we obtain
avi; @ vp;+buy ;@i ; € M (a#0, b#0). (5)
Applying 7; ; again, we obtain
axT; TV 5 @ Vp i + byiyivp ; @ vi; € M. (6)
Combining (5) and (6), we get that
Up,j ® ;5 € M.
Now apply 7,, , we get that for p,g e {1,...,5—1,7+1,...,n}
Vp,j @ Ug,j € M.
In order to simplify the conditions in Proposition 1 further, we prove the next Lemma.

Lemma 4. Given n > 3 and non-zero complex numbers x1,...,T, and yi,...,Yn-
Then the following holds.

(i) If m, # ty, for some v then x,xp # Yoy for some distinct a,b.

(ii) If @y # 2y, for some u then zyxpy,yn # 1 for some distinct g, h.
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Proof. (i) Assume, to get contradiction, that x,x, = yayp for a # b. Then, we have
that

L1Tn = Y1Yn,

Tn—-1Tn = Yn—1Yn-

By solving the above equations, we get that x,y, = Tyyy, where 1 < u < v <
n — 1. Since we also have that x,z, = Y.y, , it follows that =z, = 4y, for every
ve{l,...,n}, a contradiction.

(ii) Assume, to get contradiction, that xyxpysyn, =1 for g # h. Then, we have that

T1TnY1Yn = 1,

Tp—1TnYn—1Yn = L.

This implies that z,Yy, = Zyt1Yutr1 , where u € {1,...,n — 2}. Having that
TuTut1YuYui1 = 1, it follows that x, = +y,~! for every w € {1,...,n}, a contradic-
tion.

Consider the representation G, (t1,...,t,) : Pn — GL,_1(Clt;Tt, ... t,TY]),
where t1,...,t, are indeterminates. Specializing t1,...,t, to nonzero complex numbers
T1,...,%, defines a representation G (z1,...,z,) : P, — GL,_1(C) = GL(C"1)
which is irreducible if and only if g(z1,...,2,) =21...2, — 1 # 0. (see [1] and [4]).

By combining Proposition 1 and Lemma 4, we get our main theorem.

Theorem 1. For n > 3, consider the tensor product of irreducible representations
Gn(r1,. . 20) @ Gu(Y1y -y yn) @ P — GL(C" ! @ C*71), where q(x1,...,2,) #
0 and q(y1,...,yn) # 0. If for some i and j, x; # +y; and x; # +y;~' then the
above representation is irreducible.

Proof. By Lemma 4 and Proposition 1, we have that AC" ! @ AC"! is the unique
minimal nonzero P,-submodule of C"~! @ C"~!. In particular, it is an irreducible P,-
module. The fact that ¢(x1,...,2,) # 0 and q(y1,...,yn) # 0 implies that the
left factor AC™~! corresponds to the representation G,,(z1,...,,) and the right factor
AC™~1 corresponds to the representation Gy, (y1,- - -, Yn)-
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