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EXISTENCE OF SOLUTIONS FOR HIGH ORDER ORDINARY

DIFFERENTIAL EQUATIONS WITH SOME

PERIODIC-TYPE BOUNDARY CONDITION

S. C. JHUANG, W. C. LIAN, S. P. WANG AND F. H. WONG

Abstract. We consider the following high order periodic-type boundary value

problem

(PBV P )

8

>

>

<

>

>

:

(E) u(n)(t) = f(t, u(t), u(1)(t), · · · , u(n−2)(t), u(n−1)(t)) for t ∈ (0, T )

(PBC)

8

<

:

u(i)(0) = 0, 0 ≤ i ≤ n − 3,

u(n−2)(0) = u(n−2)(T ),

u(n−1)(0) = u(n−1)(T ),

where f ∈ C([0, T ] × R
n, R), n ≥ 2 and satisfies the so-called Nagumo’s condition.

In this article, we will use a general upper and lower solution method to establish

an existence theorem for solutions of (PBV P ).

1. Introduction

In this paper, we construct an upper and lower solution theory for the existence of
solutions of the high order periodic-type boundary value problem as follows:

(PBV P )















(E) u(n)(t) = f(t, u(t), u(1)(t), · · · , u(n−2)(t), u(n−1)(t)) for t ∈ (0, T )

(PBC)







u(i)(0) = 0, 0 ≤ i ≤ n − 3,

u(n−2)(0) = u(n−2)(T ),

u(n−1)(0) = u(n−1)(T ),

where f ∈ C([0, T ]× R
n, R), n ≥ 2.

Mawhin in [11] first gave the upper and lower solution method for the following
Duffing equation

u′′ + ku′ + f(t, u) = 0 on (0, T )

with boundary condition
u(0) = u(T ), u′(0) = u′(T )
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under the continuity of f . Nkashama generalized this method to the Carathéodory case

in [12] for the first order differential equation. In [8], Habets et al. obtained some similar

results to the Carathéodory case for Liénard equation, which is more general than the

Duffing equation. But their results are only applicable to the case k > 0. In [13], Nieto et

al. extended these results in a way. Moreover, Wang in [14] extended these results under

a Carathéodory case for k ∈ R \ {0}, the upper and lower solutions which he used may

no longer be periodic. Recently, more and more authors pay attention to second order

periodic boundary value problems, such as [9, 15]. In this article, we want to generalize

the upper and lower solution theory for the existence of second order periodic BVPs,

mentioned in [6, Theorem 2.1].

In 1934, J. Leray and J. Schauder introduced some “Nonlinear Alternative” theorems

for compact maps. These theorems have enhanced greatly the theory of ordinary differ-

ential equations and are still used widely today. In this article, we attempt to generalize

the above-mentioned results with respect to the existence of solutions of second order

periodic boundary value problems to high order periodic-type boundary value problems

(PBV P ). In fact, there are many investigations extended the related topics about second

order differential equations to high order differential equations. For these investigations,

we refer to Agarwal et al. [1, 2, 3, 4] and the references therein.

This paper is organized as follows: In this section, we give an brief introduction for

our motivation. The section 2 offers some definitions and preliminaries. Our main result

is stated in our section 3, which is constructed by upper and lower solution method

associated with the related degree theory. Finally, we afford an example for applications.

2. Definitions and preliminaries

First, we introduce some extension on the well-known Nagumo’s condition[5] of our

nonlinear source term.

Definition A. Let f ∈ C([0, T ] × R
n, R) and v, w ∈ Cn([0, T ], R) with v(n−2)(t) ≤

w(n−2)(t) on [0, T ]. Then we say that f satisfies a Nagumo’s condition on [0, T ] with

respect to (v, w, h, N), if the following hypotheses hold:

(i) there exists a function h ∈ C([0,∞), (0,∞)) such that

|f(t, p1, · · · , pn−1, pn)| ≤ h(|pn|), for t ∈ [0, T ], v(i−1)(t) ≤ pi ≤ w(i−1)(t),

where i = 1, 2, . . . , n − 1;

(ii) there is an N > 0 such that |v(n−1)(t)|, |w(n−1)(t)| ≤ N on [0, T ] and

∫ N

0

s

h(s)
ds > max

t∈[0,T ]
w(n−2)(t) − min

t∈[0,T ]
v(n−2)(t)

Next, we define the corresponding lower and upper solution.
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Definition B. We call v and w ∈ Cn([0, T ], R) are lower solution and upper solution
of (PBV P ) in the following sense, respectively.


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
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
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





















(10) v(n)(t) ≥ f(t, v(t), v(1)(t), · · · , v(n−2)(t), v(n−1)(t)) for t ∈ (0, T ),

(20) w(n)(t) ≤ f(t, w(t), w(1)(t), · · · , w(n−2)(t), w(n−1)(t)) for t ∈ (0, T ),

(30)







v(i)(0) ≤ 0, i = 0, . . . , n − 3,

v(n−2)(0) = v(n−2)(T ),

v(n−1)(0) ≥ v(n−1)(T ),

(40)







w(i)(0) ≥ 0, i = 0, . . . , n − 3,

w(n−2)(0) = w(n−2)(T ),

w(n−1)(0) ≤ w(n−1)(T ).

The following tool is essential as looking for fixed points of maps by means of a
“homotopic invariance” type of approach.

Theorem C.([10]). Let B be a Banach space, and Ω be a bounded open neighborhood of

p ∈ B. Let T : Ω → B be a continuous and compact map. Define a map H : Ω×[0, 1] → B
by

H(u, λ) = u − λTu, for u ∈ Ω, λ ∈ [0, 1].

Suppose that H(u, λ) 6= p for all λ ∈ [0, 1], u ∈ ∂Ω. Then the equation:

H(u, 1) = p, that is, Tu = u − p

has a solution u ∈ Ω.

3. Main results

Throughout this paper, we assume:
(H1) v and w are the given lower and upper solutions of (PBV P ) with

v(n−2)(t) ≤ w(n−2)(t) for t ∈ [0, T ],

(H2) f satisfies a Nagumo’s condition with respect to (v, w, h, N),
and
(H3) for fixed (t, pn−1) ∈ [0, T ] × [v(n−2)(t), w(n−2)(t)], f(t, p1, · · · , pn−2, pn−1, pn) is
decreasing with respect to (p1, · · · , pn−2, pn) ∈ [v(t), w(t)]×· · ·×[v(n−3)(t), w(n−3)(t)]×R.

From (H2), we define the modification f∗(t, p1, · · · , pn−1, pn) of f(t, p1, · · · , pn−1, pn)
associated with the triple (v(t), w(t), N) as follows:

(1) f∗(t, p1, · · · , pn−1, pn) := f(t, η1, η2, · · · , ηn−1, ηn) + pn−1 − ηn−1,

where, for i = 1, 2, . . . , n − 1, t ∈ [0, T ],

ηi =







w(i−1)(t), if pi > w(i−1)(t),

pi, if v(i−1)(t) ≤ pi ≤ w(i−1)(t),

v(i−1)(t), if pi < v(i−1)(t),
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and

ηn =







N, if pn > N,

pn, if −N ≤ pn ≤ N,

−N, if pn < −N.

Note that f∗ is bounded on [0, T ]×R. Immediately, we can define the modified periodic
boundary value problem of (PBV P )

(P ∗)















(E∗) u(n)(t) = f∗(t, u(t), u(1)(t), · · · , u(n−2)(t), u(n−1)(t)) for t ∈ (0, T )

(PBC)







u(i)(0) = 0, 0 ≤ i ≤ n − 3,

u(n−2)(0) = u(n−2)(T ),

u(n−1)(0) = u(n−1)(T ),

where f∗ is the modification of f associated with the triple (v(t), w(t), N) defined as (1).

Lemma 1. Under assumptions (H1), (H2) and (H3), if u ∈ Cn([0, T ], R) is a solution

of (P ∗), then u is also a solution of (PBV P ).

Proof. Suppose u is a solution of (P ∗), it follows from (1) that we suffices to show that,
for all t ∈ [0, T ], i = 0, 1, . . . , n − 3, n − 2,

v(i)(t) ≤ u(i)(t) ≤ w(i)(t) and |u(n−1)(t)| ≤ N.

In order to compete the proof, we separate the proof into the following two steps:
Step 1 We claim that v(n−2)(t) ≤ u(n−2)(t) ≤ w(n−2)(t) for all t ∈ [0, T ]. Suppose
to the contrary that there exists a t̄ ∈ [0, T ] such that u(n−2)(t̄) > w(n−2)(t̄). Let
H(t) := u(n−2)(t)−w(n−2)(t) on [0, T ] and t0 ∈ [0, T ] satisfy H(t0) = maxt∈[0,T ] H(t) > 0.
Now, we show that t0 /∈ (0, T ). Assume to the contrary that t0 ∈ (0, T ), then H ′(t0) = 0.
Hence it follows that

u(n−2)(t0) > w(n−2)(t0), u(n−1)(t0) = w(n−1)(t0)

and
|u(n−1)(t0)| = |w(n−1)(t0)| ≤ N.

Thus, by Definition B and (1) we have

u(n)(t0) = f∗(t, u(t0), u
(1)(t0), · · · , u(n−3)(t0), u

(n−2)(t0), u
(n−1)(t0))

= f(t, η1, η2, · · · , ηn−2, ηn−1, ηn) + u(n−2)(t0) − ηn−1

= f(t, η1, η2, · · · , ηn−2, w
(n−2)(t0), w

(n−1)(t0)) + u(n−2)(t0) − w(n−2)(t0)

> f(t, w(t0), w
(1)(t0), · · · , w(n−3)(t0), w

(n−2)(t0), w
(n−1)(t0))

≥ w(n)(t0).

This implies H ′′(t0) > 0, which contradicts to the fact that H(t0) > 0 is the maximum
of H(t) in (0, T ). Thus, t0 /∈ (0, T ) and H(t0) = H(0) = H(T ) = maxt∈[0,T ] H(t) > 0.
Hence, we can see that

0 ≥ H ′(0) = u(n−1)(0) − w(n−1)(0) ≥ u(n−1)(T ) − w(n−1)(T ) = H ′(T ) ≥ 0.
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This implies H ′(0) = H ′(T ) = 0, that is, u(n−1)(0) = w(n−1)(0) = u(n−1)(T ) =

w(n−1)(T ). Moreover, for t > 0 near 0, one have

u(n−2)(s) − w(n−2)(s) > 0, and u(n−1)(s) − w(n−1)(s) ≤ 0, for all s ∈ (0, t).

Thus, again by Definition B and (H3),

u(n−1)(
t

2
) − w(n−1)(

t

2
) =

∫ t

2

0

(u(n)(s) − w(n)(s))ds

=

∫ t

2

0

f∗(s, u(s), · · · , u(n−1)(s)) − w(n)(s)ds

≥

∫ t

2

0

f(s, w(s), · · · , w(n−1)(s)) + u(n−2)(s) − w(n−2)(s) − w(n)(s)ds

> 0,

a contradiction. So far we already show that u(n−2)(t) ≤ w(n−2)(t) on [0, T ]. Similarly,

we can prove that v(n−2)(t) ≤ u(n−2)(t) on [0, T ]. Finally, since

v(i)(0) ≤ u(i)(0) ≤ w(i)(0), for i = 0, 1, . . . , n − 3,

we conclude that

v(i)(t) ≤ u(i)(t) ≤ w(i)(t) on [0, T ], for i = 0, 1, . . . , n − 3, n − 2.

Step 2 Note that by the mean value theorem, there exists a point t̃ ∈ (0, T ) such that

|u(n−1)(t̃)| =

∣

∣

∣

∣

u(n−2)(T ) − u(n−2)(0)

T − 0

∣

∣

∣

∣

= 0.

We claim that |u(n−1)(t)| ≤ N on [0, T ]. Suppose to the contrary that |u(n−1)(t)| > N

for some t ∈ [0, T ]. Then there exists an interval [t1, t2] ⊂ [0, T ] such that one of the

following cases holds:

Case(10) u(n−1)(t1) = 0, u(n−1)(t2) = N (or u(n−1)(t1) = N, u(n−1)(t2) = 0) and

0 < u(n−1)(t) < N in (t1, t2);

Case(20) u(n−1)(t1) = 0, u(n−1)(t2) = −N (or u(n−1)(t1) = −N, u(n−1)(t2) = 0) and

−N < u(n−1)(t) < 0 on (t1, t2).

Let us consider the Case(10). Since we have proved that v(i)(t) ≤ u(i)(t) ≤ w(i)(t) on

[0, T ] for i = 0, 1, . . . , n − 2, it follows from Definition A and (1) that

|u(n)(t)|u(n−1)(t) = |f(t, u(t), u(1)(t), · · · , u(n−2)(t), u(n−1)(t))|u(n−1)(t)

≤ h(|u(n−1)(t)|)u(n−1)(t)
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on [t1, t2]. Therefore, we see that

u(n−2)(t2) − u(n−2)(t1) =

∫ t2

t1

u(n−1)(s)ds

≥

∫ t2

t1

|u(n)(s)|u(n−1)(s)

h(|u(n−1)(s)|)
ds

≥

∣

∣

∣

∣

∫ t2

t1

u(n)(s)u(n−1)(s)

h(|u(n−1)(s)|)
ds

∣

∣

∣

∣

=

∫ N

0

θ

h(θ)
ds

> max
t∈[0,T ]

w(n−2)(t) − min
t∈[0,T ]

v(n−2)(t)

≥ u(n−2)(t2) − u(n−2)(t1).

This leads a contradiction. One can deal with Case(20) in a similar way and conclude

that |u(n−1)(t)| ≤ N on [0, T ]. Hence, we complete the proof.

Theorem 2(Main Result). Under assumptions (H1), (H2) and (H3), (PBV P ) has

at least one solution u ∈ Cn([0, T ], R) such that, for i = 0, 1, . . . , n − 2,

v(i)(t) ≤ u(i)(t) ≤ w(i)(t) and |u(n−1)(t)| ≤ N on [0, T ].

Proof. It follows from Lemma 1 that we only have to show that the modified problem

(P ∗) has at least one solution by applying Theorem C. First, for λ ∈ [0, 1], we consider

(Pλ)

{

u(n)(t) − u(n−2)(t) = λ[f∗(t, u(t), u(1)(t), · · · , u(n−2)(t), u(n−1)(t)) − u(n−2)(t)],

(PBC).

Define two operator L : B0 → C([0, T ], R) by

(Lu)(t) := u(n)(t) − u(n−2)(t), t ∈ [0, T ],

where B0 := {u ∈ Cn([0, T ], R) | u satisfies (PBC)} and G : Cn−1([0, T ], R) → C([0, T ], R)

by

(Gu)(t) = f∗(t, u(t), u(1)(t), · · · , u(n−2)(t), u(n−1)(t)) − u(n−2)(t), t ∈ [0, T ].

Claim: L−1 : C([0, T ], R) → B0 exists and is continuous.

Now we show that ker(L) = {0}. It is clear that the equation u(n)(t)− u(n−2)(t) = 0

has a general solution

u(t) = a0 + a1t + · · · + an−3t
n−3 + c1e

t + c2e
−t,
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where a0, a1, · · · , an−3, c1, c2 are constants. Since u ∈ B0, by a simple calculation, we
obtain that a0 = a1 = · · · = an−3 = c1 = c2 = 0 which implies u(t) ≡ 0. Thus,
ker(L) = {0}, that is, L is injective. One can also verify that L is surjective via the
method of variation of parameters. Hence, L−1 exists. Finally, according to the inverse
mapping theorem we conclude that L−1 : C([0, T ], R) → B0 is also continuous and
complete this claim.

Let Ω = {u ∈ Cn−1([0, T ], R) | ||u||Cn−1 < M
r
}, where M > 0 is the bound of f∗ on

[0, T ] × R
n, and r = 1

||L−1|| < ∞ since L−1 exists and is continuous. Ω is a bounded

open neighborhood of 0 in the Banach space Cn−1([0, T ], R). Define T = L−1G. We
can show that T is a compact and continuous map from Ω into Cn−1([0, T ], R). Let
H(u, λ) = u − λTu for u ∈ Ω, λ ∈ [0, 1], then H : Ω × [0, 1] → Cn−1([0, T ], R) is of the
form as shown in Theorem C. Since 0 ∈ Ω, it is clear that H(u, λ) 6= 0 when u ∈ ∂Ω
and λ = 0. For λ = 1, if H(u, λ) = 0 for some u ∈ ∂Ω, then we already have a solution
to (P ∗). Hence, we assume here that H(u, 1) 6= 0 for u ∈ ∂Ω. It remains to show that
H(u, λ) 6= 0 for u ∈ ∂Ω, 0 < λ < 1, before applying Theorem C. Suppose not, then
there is a λ̃ ∈ (0, 1), ũ ∈ ∂Ω satisfies ũ = λ̃T ũ, that is,

Lũ(t) = Gũ(t) on [0, T ].

Moreover, since K := L−1 exists and is continuous, we have

M > ||ũ(n) − ũ(n−2)||C0 = ||Lũ||C0 ≥ ||
K

||K||
Lũ||Cn = r||ũ||Cn ,

this leads a contradiction. Hence, by Theorem C, there is a u ∈ Ω satisfying Tu = u.
In fact, u ∈ Cn([0, T ], R) is a solution of (P ∗) and we completely prove our main result.

4. An Example

Example 3. Consider

{

ǫ3u′′′(t) = (u′′(t))
3

2 + (u′(t))3 − cos
3

2 t − sin3 t on (0, 2π),
u(0) = 0, u′(0) = u′(2π), u′′(0) = u′′(2π),

where ǫ > 0 is a small parameter. It is easy to see that

v(t) = − cos t − 2ǫt − 1 and w(t) = − cos t + 2ǫt + 1

are lower and upper solutions. Moreover, f(t, p1, p2, p3) := p
3

2

3 +p3
2−cos

3

2 t−sin3 t satisfies
(H1), (H2) and (H3). By Theorem 2, this problem has a solution

u(t) = − cos t + O(ǫ).

Moreover,
u′(t) = sin t + O(ǫ) and u′′(t) = cos t.
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