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HYPERLATTICE FORMED BY THE IDEMPOTENTS

OF A HYPERRING

A. ASOKKUMAR

Abstract. In this paper we prove that under certain conditions, the idempotent elements of a

hyperring form a hyperlattice and the orthogonal idempotnet elements form a quasi-distributive

hyperboolean algebra.

1. Introduction

The theory of hyperstructures was introduced in 1934 by Marty [8] at the 8th congress

of Scandinavian Mathematicians. This theory has been subsequently developed by the

contribution of various authors. Some basic definitions and propositions about the hy-

perstructures are found in [2] and [10]. Krasner [7] has studied the notion of hyperfields,

hyperrings and then some researchers, namely, Dasic [3], Davvaz [4, 5], Gontineac [6],

Massouros [9], Vougiouklis [10] and others followed him.

Hyperrings are essentially rings with approximately modified axioms in which addi-

tion is a hyperoperation and multiplication is a binary operation. Basic definitions and

results about the theory of lattices and Boolean algebra are found in [1]. Throughout

this paper we are using the definition of a hyperlattice as discussed by Zhao Bin, Han

Sheng Wei, Xiao Ying [11].

In this paper the concepts of hyperrings and hyperlattices are discussed. Also, we

relate Boolean hyperring with hyperboolean algebra.

2. Basic definitions and notations

This section explains some of the basic definitions that have been used in the sequel.

A hyperoperation ∗ on a non-empty set H is a mapping of H × H into the family of

non-empty subsets of H (i.e., x ∗ y ⊆ H , for x, y ∈ H). In the sense of Marty [8], a

hypergroup (H , ∗) is a non-empty set H equipped with a hypercomposition ∗, which

satisfies the following axioms:

(i) (x ∗ y) ∗ z = x ∗ (y ∗ z) for every x, y, z ∈ H (the associative axiom).
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(ii) x ∗ H = H ∗ x = H for every x ∈ H (the reproductive axiom).

The comprehensive review of the theory of hypergroups appears in [2]. Now we recall

the following definition of a hyperring from Krasner [7].

Definition 2.1. A hyperring is an algebraic structure (R, +, ·) which satisfies the

following axioms.

(1) (R, +) is an abelian canonical hypergroup under the hyperoperation +. That is,

(i) for every x, y, z ∈ R, x + (y + z) = (x + y) + z;

(ii) for every x, y ∈ R, x + y = y + x;

(iii) there exits 0 ∈ R such that 0 + x = x for all x ∈ R;

(iv) for every x ∈ R there exists an unique element denoted by −x ∈ R such that

0 ∈ x + (−x),

(v) for every x, y, z ∈ R, z ∈ x + y implies y ∈ −x + z and x ∈ z − y.

(2) (R, ·) is a semigroup under the multiplication · having 0 ∈ R as a bilaterally absorbing

element. That is,

(i) for every x, y, z ∈ R, x · (y · z) = (x · y) · z;

(ii) x · 0 = 0 · x = 0 for all x ∈ R.

(3) The multiplication · is distributive with respect to the hyperoperation +. That is,

for every x, y, z ∈ R, x · (y + z) = x · y + x · z, and (x + y) · z = x · z + y · z hold.

We denote xy instead of x.y. In a hyperring R, suppose S, T ⊆ R and x ∈ R, then

S + T =
⋃

s∈S,t∈T

s + t, ST = {ab | a ∈ S and b ∈ T }. Moreover x + T =
⋃

t∈T

x + t and

xT = {xt | t ∈ T } also −T = {−t | t ∈ T }.

The following elementary facts in a hyperring follow easily from the axioms.

(i) −(−a) = a for every a ∈ R;

(ii) 0 is the unique element such that for every a ∈ R there is an element −a ∈ R with

the property that 0 ∈ a + (−a);

(iii) a + R = R for all a ∈ R;

(iv) −(a + b) = −a − b for every a, b ∈ R;

(v) x(−y) = −(xy) = (−x)y for every x, y ∈ R.

In a hyperring R if there exists an element 1 ∈ R such that 1a = a1 = a for every

a ∈ R then the element 1 is called the identity element of the hyperring R. In fact, the

element 1 is unique. Further if ab = ba for every a, b ∈ R then the hyperring R is called

a commutative hyperring. An element a of a hyperring R is called idempotent if a = a2.

A hyperring R is called a Boolean hyperring if every element a of the hyperring R is an

idempotent. Any two elements x, y of a hyperring R are said to be orthogonal if xy = 0

and yx = 0.

Example 2.2. The set R = {0, 1} with the following hyperoperation + and multi-

plication · is a hyperring.
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+ 0 1

0 0 1

1 1 {0, 1}

· 0 1

0 0 0

1 0 1

Example 2.3. M. Krasner [7] constructed a class of hyperrings as follows.
Let (P, +, ·) be a ring and G be a normal subgroup of its multiplicative semi-group

(i.e., xG = Gx for every x ∈ P ). Consider the set P = {x = xG | x ∈ P} of classes
modulo G.

Define hyperaddition ⊕ and multiplication ⊗ on P as follows.
For any two elements x, y ∈ P , x ⊕ y = xG ⊕ yG = {(xp + yq)G | p, q ∈ G} and

x ⊗ y = xG ⊗ yG = xyG then P becomes a hyperring.

Now we recall the definition of lattice as in [1].

Definition 2.4. A lattice (L,∨,∧) is a non-empty set with two binary operations ∧
and ∨ satisfying the following properties.
(L1) for every a ∈ L, a = a ∨ a and a = a ∧ a,
(L2) for every a, b ∈ L, a ∨ b = b ∨ a and a ∧ b = b ∧ a,
(L3) for every a, b, c ∈ L, (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c),
(L4) for every a, b ∈ L, a = a ∧ (a ∨ b) and a = a ∨ (a ∧ b).

Definition 2.5.([11]) A hyperlattice (L,∨,∧) is a non-empty set with two hyperop-
erations ∧ and ∨ such that the following properties hold.
(H1) for every a ∈ L, a ∈ a ∨ a and a ∈ a ∧ a,
(H2) for every a, b ∈ L, a ∨ b = b ∨ a and a ∧ b = b ∧ a,
(H3) for every a, b, c ∈ L, (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c),
(H4) for every a, b ∈ L, a ∈ a ∧ (a ∨ b) and a ∈ a ∨ (a ∧ b).

Example 2.6. Let L = {a, b}, ∨ and ∧ be two hyperoperations defined on L as
follows.

∨ a b

a {a, b} {a, b}

b {a, b} {b}

∧ a b

a {a, b} {b}

b {b} {b}

It can be easily verified that ∨ and ∧ satisfy (H1)-(H4) and therefore (L,∨,∧) is a
hyperlattice. For any element x and any subset S of a hyperlattice L, x ∨ S means the
set ∪{x ∨ a | a ∈ S} and by x ∧ S we mean the set ∪{x ∧ a | a ∈ S}.

Theorem 2.7. Let R be a hyperring with identity 1 and B be the set of all idempotent

elements of R. Suppose that idempotents are central and for x, y ∈ B, every element of

the set x+y−xy is idempotent and x, y ∈ x+y−xy. Moreoever, if (x+y−xy)(1−z) =
x + y − xy − xz − yz + xyz holds for every x, y, z ∈ B then B is a hyperlattice.

Proof. For x, y ∈ B, define hyperjoin ∨ and hypermeet ∧ on B as x∨ y = x+ y−xy

and x ∧ y = {xy}. Now x = x2 = x ∧ x and therefore we say x ∈ x ∧ x.
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We know that 0 ∈ x − x, so x + 0 ⊆ x + (x − x) = x + x − x = x + x − x2 = x ∨ x.
Thus x ∈ x ∨ x. Since idempotents are central yx = xy. This means that y ∧ x = x ∧ y.
Since R is a hyperring we get x+y = y+x. Now x∨y = x+y−xy = y +x−yx = y∨x.
Suppose x, y, z ∈ B then

x ∨ (y ∨ z) = x ∨ (y + z − yz)

= ∪{x ∨ r | r ∈ y + z − yz}

= ∪{x + r − xr | r ∈ y + z − yz}

= ∪{x + r(1 − x) | r ∈ y + z − yz}

= x + (y + z − yz)(1 − x)

= x + (y + z − yz)− (y + z − yz)x

= x + y + z − yz − yx − zx + yzx

= x + y + z − xy − yz − zx + xyz.

Also

(x ∨ y) ∨ z = (x + y − xy) ∨ z

= ∪{r ∨ z | r ∈ x + y − xy}

= ∪{r + z − rz | r ∈ x + y − xy}

= ∪{z + r − rz | r ∈ x + y − xy}

= ∪{z + r(1 − z) | r ∈ x + y − xy}

= z + (x + y − xy)(1 − z)

= z + x + y − xy − xz − yz + xyz

= x + y + z − xy − yz − zx + xyz

Thus x ∨ (y ∨ z) = (x ∨ y) ∨ z.
Moreover

x ∧ (x ∨ y) = x ∧ (x + y − xy)

= ∪{x ∧ r | r ∈ x + y − xy}

= ∪{xr | r ∈ x + y − xy}

= x(x + y − xy).

Since x ∈ x + y − xy we get xx ∈ x(x + y) − xxy. That is, x ∈ x(x + y) − xxy =
x((x + y) − xy) = x ∧ (x ∨ y). Thus x ∈ x ∧ (x ∨ y). Now x ∨ (x ∧ y) = x ∨ (xy) =
x+xy−xxy = x+xy−xy. Since 0 ∈ xy−xy, we have x = x+0 ∈ x+xy−xy = x∨(x∧y).
Hence x ∈ x ∨ (x ∧ y). Thus B is a hyperlattice.

Theorem 2.8. Let R be a commutative Boolean hyperring with identity 1. Suppose

that for any x, y ∈ R, x, y ∈ x+y−xy and if (x+y−xy)(1−z) = x+y−xy−xz−yz+xyz

holds for every x, y, z ∈ R then R is a hyperlattice.
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3. Quasi-distributive hyperboolean algebra

In lattice theory we have a result that the two abstract systems namely, Boolean

ring with identity and Boolean algebra are equivalent. In this section we try to extend

the result to hyperstructures and get under certain conditions, the set of all orthogonal

idempotent elements of a hyperring together with identity element, form a hyperboolean

algebra.

Definition 3.1. A hyperlattice (L,∨,∧) is said to be a quasi-distributive hyperlattice

if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) holds for every a, b, c ∈ L.

Definition 3.2. A hyperlattice (L,∨,∧) is said to be a distributive hyperlattice if

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) and a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) hold for every a, b, c ∈ L.

Definition 3.3. Let (L,∨,∧) be a hyperlattice. An element a ∈ L is called an all

element if a ∈ a ∨ x and x ∈ a ∧ x for all x ∈ L. The set of all, all elements of L, is

denoted by I.

Definition 3.4. An element b in a hyperlattice (L,∨,∧) is called a zero element of

L if x ∈ b∨ x and b ∈ b ∧ x for all x ∈ L. The set of all zero elements of L is denoted by

O.

Definition 3.5. A hyperlattice (L,∨,∧) is said to have an all element (resp. a zero

element) if I is non-empty (resp. O is non-empty).

Definition 3.6. A hyperlattice (L,∨,∧) is said to be complemented if for every a ∈ L

there exists elements a′ ∈ L, ai ∈ I and a0 ∈ O such that ai ∈ a ∨ a′ and a0 ∈ a ∧ a′.

Definition 3.7. A hyperlattice (L,∨,∧) with O, I is said to be a hyperboolean algebra

if L is distributive and complemented. Instead of the two distributive laws if for every

a, b, c ∈ L only one distributive law, namely a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) holds then

(L,∨,∧) is called a quasi-distributive hyperboolean algebra.

Theorem 3.8. Let R be a hyperring with identity 1 6= 0 and A be the set of all

orthogonal idempotent elements of R. Suppose that for any two elements x, y of A,

x, y ∈ x + y − xy ⊆ A. Moreover, if 1 − a ⊆ A ∪ {1} for every a ∈ A ∪ {1} and

(x + y − xy)(1 − z) = x + y − xy − xz − yz + xyz holds for every x, y, z ∈ A ∪ {1} then

A ∪ {1} is a quasi-distributive hyperboolean algebra.

Proof. If 1 ∈ A then for any 1 6= x ∈ A we get 1x = 0. This implies that x = 0.

That is, A = {0, 1}. By the hypothesis 0, 1 ∈ 0 + 1 − 0 = {1}. This means that 0 = 1,

which is a contradiction. Thus identity element 1 is not an element of A.

Let A′ = A ∪ {1}. Define hyperjoin ∨ and hypermeet ∧ on A′ as follows. For every

x, y ∈ A′, x ∨ y = x + y − xy and x ∧ y = {xy}. It is clear that A′ is a hyperlattice.

Suppose that a, b, c ∈ A′. If a = b = c then a∧ (b∨ c) = a∧ (a∨a) = aa+ aa− aaa =

a + a − a and (a ∧ b) ∨ (a ∧ c) = a ∨ a = a + a − a. Thus a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).
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If a = b and c 6= a, c 6= b then a ∧ (b ∨ c) = aa + ac − aac = a + ac − ac and

(a ∧ b) ∨ (a ∧ c) = aa + ac − aac = a + ac − ac. Thus a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

If a = c and b 6= a, b 6= c then a ∧ (b ∨ c) = a ∧ (b + a − ba) = ab + a − aba

and (a ∧ b) ∨ (a ∧ c) = ab ∨ (a ∧ a) = ab ∨ a = ab + a − aba. Therefore, we see

a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Now for the case when b = c and a 6= b, a 6= c, we get a∧(b∨c) = a∧(b∨b) = ab+ab−ab

and (a ∧ b) ∨ (a ∧ c) = ab ∨ ab = ab + ab − abab. If a, b, c ∈ A then a ∧ (b ∨ c) = 0 =

(a∧b)∨(a∧c). If b = c ∈ A and a = 1 then a∧(b∨c) = b+b−b = (a∧b)∨(a∧c). If a ∈ A

and b = c = 1 then a∧(b∨c) = a+a−a = (a∧b)∨(a∧c). Thus a∧(b∨c) = (a∧b)∨(a∧c).

We suppose now a 6= b, a 6= c, b 6= c.

If a, b, c ∈ A then a ∧ (b ∨ c) = 0 = (a ∧ b) ∨ (a ∧ c).

If b, c ∈ A and a = 1 then a∧(b∨c) = 1∧(b+c−bc) = b+c and (a∧b)∨(a∧c) =

b ∨ c = b + c − bc = b + c.

If a, c ∈ A and b = 1 then a ∧ (b ∨ c) = a ∧ (1 + c − c) = a + ac − ac = a and

(a ∧ b) ∨ (a ∧ c) = a ∨ (ac) = a ∨ 0 = a. In the same way, for a, b ∈ A and c = 1, we

obtain that a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

Thus a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) is true for every a, b, c ∈ A′ and hence A′ is a

quasi-distributive lattice.

For any element a ∈ A′, 1+0 ∈ 1+a−a = a+1−a1 = a∨1. That is, 1 ∈ a∨1. Since

a1 = a, we see that a ∈ 1∧a. Thus the identity element of the hyperring is an all element

of the hyperlattice A′. Clearly, x ∈ 0 ∨ x and 0 ∈ 0 ∧ x for all x ∈ A′. Thus the zero

element of the hyperring is a zero element of the hyperlattice A′. Let 0 6= a ∈ A′, then

0 ∈ a− a = a− a2 = a(1 − a). This implies that 0 = aa′ for some a′ ∈ 1− a ⊆ A′. That

is, 0 ∈ a∧ a′. Since a′ ∈ 1− a we see that 1 ∈ a′ + a = a′ + a− 0 = a′ + a− a′a = a∨ a′.

In fact every element of 1 − a is a complement of a. Hence A′ is a complemented quasi-

distributive lattice with all elements set I and zero elements set O. That is, A′ is a

quasi-distributive hyperboolean algebra.
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