thu edu tw/

Available online at http://journals.math.tku.edu.tw/

S_i -OPEN SETS AND S_i -CONTINUITY IN BITOPOLOGICAL SPACES

ALIAS B. KHALAF AND ALAN M. OMER

Abstract. In this paper, we introduce and define a new class of sets, called S_i -open sets, in bitopological spaces. By using this set, we introduce and define the notion of S_i -continuity and investigate some of its properties. In particular, S_i -open sets and S_i -continuity are used to extend some known results of continuity.

1. Introduction and Preliminaries

In the literature notions of semi open, pre open, α -open, β -open and regular open sets in topological space have been introduced and studied respectively by Levine [2], Mashhour [3], Njastad [4], Monsef [1], Stone [5], and in 1968 Velicko [7], defined the concepts of δ -open and θ -open sets.

The study of bitopological spaces was first initiated by J.C.Kelly [6], and thereafter a large number of paper have been done to generalize the topological concepts to bitopological setting.

Throughout this paper, by a space *X* we mean a bitopological space (*X*, τ_1 , τ_2). By $\iota Int(A)$ and $\iota Cl(A)$ we shall mean the interior and the closure of a subset *A* of *X* with respect to τ_i , respectively, where $\iota, j = 1$ or 2 and $\iota \neq j$.

A subset *A* of *X* is said to be *ij*-semi open [13] (resp., *ij*-pre open [11], *ij* – α -open [12], *ij*-semi-preopen [16], *ij*-regular open [10]) if $A \subseteq jCl(iInt(A))$ (resp., $A \subseteq iInt(jCl(A))$, $A \subseteq iInt(jCl(A))$, $A \subseteq jCl(iInt(JCl(A)))$, $A \subseteq jCl(iInt(JCl(A)))$, A = iInt(jCl(A))).

A point *x* of *X* is said to be $ij - \delta$ -cluster point [15] of *A* if $A \cap U \neq \phi$ for every ij-reguler open set *U* containing *x*, the set of all $ij - \delta$ -cluster points of *A* is called $ij - \delta$ -closure of *A*, a subset *A* of *X* is said to be $ij - \delta$ -closed if the set of $ij - \delta$ -cluster points of *A* is a subset of *A*, the complement of $ij - \delta$ -closed set is $ij - \delta$ -open. A point $x \in X$ is said to be in the $ij - \theta$ -closure [14] of *A*, denoted by ij- $Cl_{\theta}(A)$, if $A \cap jCl(U) \neq \phi$ for every *i*-open set *U* containing *x*. A subset

Corresponding author: Alias B. Khalaf.

²⁰¹⁰ Mathematics Subject Classification. Primary: 54A05, 54A10; Secondary: 54E55.

Key words and phrases. S_i -open, i-open, S_i -continuous functions and ij-almost S_i -continuous functions, i-continuous functions, ij-almost continuous functions.

A of *X* is said to be $\iota_J - \theta$ -closed if $A = \iota_J - Cl_{\theta}(A)$. A subset *A* of *X* is said to be $\iota_J - \theta$ -open if $X \setminus A$ is $\iota_J - \theta$ -closed.

The complement of *ij*-semi open (resp., *ij*-pre open, *ij*- α -open, *ij*-semi-preopen, *ij*-regular open) set is said to be *ij*-semi closed (resp., *ij*-pre closed, *ij*- α -closed, *ij*-semi-preclosed, *ij*-regular closed).

In 1991, Kheder [15] defined a function $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ to be ι_J -super continuous if $f^{-1}(V)$ is $\iota_J - \delta$ -open set in X for every ι -open set V of Y, and a function f is said to be $\iota_J - \delta$ -continuous [8] (resp., ι_J -almost continuous [9]) if $f^{-1}(V)$ is $\iota_J - \delta$ -open (resp., ι -open)set in X for every ι_J -regular open set V of Y.

In the present paper we introduce a new class of *i*-open sets called S_i -open, this class of sets lies strictly between the classes of $ij - \delta$ -open and *i*-open sets. We also study its fundamental properties and compare it with some other types of sets, and then we define and further topological properties such as, S_i -neighborhood, S_i -interior, S_i -closure, S_i -derived and S_i -boundary of sets. Also in this paper we introduce and investigate the concept of S_i -continuity functions and ij-almost S_i -continuity. It will be shown that S_i -continuity is weaker than ij-super continuity while it is stronger than both *i*-continuity and ij-almost S_i -continuity, and ij-almost S_i -continuity is weaker than $ij - \delta$ -continuity so it is stronger than ij-almost continuity.

2. S₁-Open Sets

Definition 2.1. An *i*-open subset *A* of a space *X* is called S_i -open if for each $x \in A$, there exists an *ji*-semi closed set *F* such that $x \in F \subseteq A$. The family of all S_i -open subsets of bitopological space (X, τ_1, τ_2) is denoted by $S_iO(X, \tau_1, \tau_2)$ or $S_iO(X)$.

Proposition 2.2. A subset A of a space X is S_1 -open if and only if A is ι -open and it is a union of ι -semi closed sets. That is, $A = \bigcup F_{\alpha}$ where A is ι -open set and F_{α} is ι -semi closed sets for each α .

Proof. Obvious.

It is clear from the definition that every S_i -open subset of a space X is i-open, but the converse is not true in general as shown by the following example.

Example 2.3. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{a, b\}, \{a, c\}\}$ and $\tau_2 = \{X, \phi, \{b\}, \{b, c\}\}$, then $\{a, b\}$ is *i*-open but not S_i -open.

Example 2.4. If *X* is an infinite set. In a bitopological space (*X*, τ_1 , τ_2) with two cofinite topologies $\tau_1 = \tau_2$ every infinite set is *S*_{*i*}-open, but it is not *ji*-semi closed.

Remark 2.5. S_1 -open sets means that a subset A is τ_1 -open and for all $x \in A$, there exists a 21-semi closed set F such that $x \in F \subseteq A$ and S_2 -open sets means that a subset A is τ_2 -open and for all $x \in A$, there exists a 12-semi closed set F such that $x \in F \subseteq A$.

It can be easily seen that S_1 -open sets and S_2 -open sets are incomparable in general as shown by the following example.

Example 2.6. Consider $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{c\}, \{a, b\}\}$ and $\tau_2 = \{X, \phi, \{b\}, \{b, c\}\}$, then $\{c\}$ is S_1 -open but not S_2 -open set and $\{b\}$ is S_2 -open but not S_1 -open set.

The next example shows that even if $\tau_1 \subseteq \tau_2$, then $S_1O(X) \subseteq S_2O(X)$ need not be true in general.

Example 2.7. If $X = \{a, b, c\}$, $\tau_1 = \{X, \phi, \{a\}\}$ and $\tau_2 = \{X, \phi, \{a\}, \{b, c\}\}$, then $\tau_1 \subseteq \tau_2$, $\{a\}$ is S_1 -open but not S_2 -open.

Proposition 2.8. Let $\{A_{\alpha}, \alpha \in \Delta\}$ be a collection of S_i -open sets in a bitopological space X. Then $\bigcup \{A_{\alpha}, \alpha \in \Delta\}$ is S_i -open set.

Proof. Since A_{α} is as S_i -open set for each α , then A_{α} is *i*-open and $\bigcup \{A_{\alpha}, \alpha \in \Delta\}$ is *i*-open, then for all $x \in A_{\alpha}$, there exists *ji*-semi closed set *F* such that $x \in F \subseteq A_{\alpha}$ this implies that for all $x \in \bigcup \{A_{\alpha}, \alpha \in \Delta\}$ we have $x \in F \subseteq A_{\alpha} \subseteq \bigcup \{A_{\alpha}, \alpha \in \Delta\}$, then $x \in F \subseteq \bigcup \{A_{\alpha}, \alpha \in \Delta\}$, $\bigcup \{A_{\alpha}, \alpha \in \Delta\}$ is S_i -open set.

Proposition 2.9. The intersection of two S_1 -open sets is S_1 -open.

Proof. Let *A* and *B* be two S_i -open sets, then *A* and *B* are *i*-open sets this implies that $A \cap B$ is an *i*-open set, we have to prove that $A \cap B$ is S_i -open, let $x \in A \cap B$ then $x \in A$ and $x \in B$, for all $x \in A$ there exists *ji*-semi closed *F* such that $x \in F \subseteq A$ and for all $x \in B$ there exists *ji*-semi closed *E* such that $x \in E \subseteq B$. Since the intersection of two *ji*-semi closed sets is *ji*-semi closed, then for all $x \in F \cap E \subseteq A \cap B$. This shows that $A \cap B$ is S_i -open set.

From propositions 2.8 and 2.9 we proved that the family of all S_t -open subsets of a space *X* is a topology.

Proposition 2.10. A subset A of a space (X, τ_1, τ_2) is S_i -open if and only if for each $x \in A$, there exists an S_i -open set B such that $x \in B \subseteq A$.

Proof. Assume that *A* is S_i -open set in the (X, τ_1, τ_2) , then for each $x \in A$, put B = A is S_i -open set containing *x* such that $x \in B \subseteq A$.

conversely, suppose that for each $x \in A$, there exists an S_i -open set B such that $x \in B_x \subseteq A$, thus $A = \bigcup B_x$ where $B_x \in S_i O(X)$ for each x, therefore A is S_i -open.

Proposition 2.11. If (X, τ_1) is T_1 space, then $S_j O(X) \equiv \tau_j$.

Proof. Let *A* be any subset of a space *X* and $A \in \tau_J$, if $A = \phi$, then $A \in S_J O(X)$. If $A \neq \phi$ let $x \in A$, since (X, τ_i) is a T_1 space, then every singlton is *i*-closed this implies that every singlton is *ij*-semi closed and hence $x \in \{x\} \subseteq A$. Therefore, $A \in S_J O(X)$. Hence, $\tau_J \subseteq S_J O(X)$, but from definition of S_J -open sets we have $S_J O(X) \subseteq \tau_J$. Thus $S_J O(X) \equiv \tau_J$.

Remark 2.12. Let (X, τ_i) is T_1 space, then the family of i_J -SC(X) is discreate topology in X.

Proposition 2.13. *Every* $i_J - \delta$ *-open set of a space* X *is* S_i *-open.*

Proof. Let *A* be $ij - \delta$ -open set in *X*, then for each $x \in A$, there exists an *i*-open set *G* such that $x \in G \subseteq i$ -*int*j-*c* $lG \subseteq A$, so $A = \bigcup \{x\} \subseteq \bigcup G \subseteq \bigcup clG \subseteq A$ for each $x \in A$, this implies that $A = \bigcup G$ is an *i*-open set and $A = \bigcup i$ -*int*j-*c*lG is a union of ji-semi closed sets, so by proposition2.2, *A* is *S*_{*i*}-open set.

However, the converse of proposition may not be true in general as we show in the following example:

Example 2.14. Consider the space given in example2.4 is T_1 , then the family of *i*-open, *ij*-semi open and S_i -open sets are identical. Hence, any *i*-open set *G* is S_i -open but not $ij - \delta$ -open.

The proof of the following corollaries are clear and directly follow from their definitions.

Corollary 2.15. Every $ij - \theta$ -open set is S_i -open.

Corollary 2.16. *Every* i_j *-reguler open set is* S_i *-open.*

Proposition 2.17. Let (X, τ_1, τ_2) be a bitopological space, and $A, B \subseteq X$. If $A \in S_iO(X)$ and B is *i*-open and *j*-closed, then $A \cap B \in S_iO(X)$.

Proof. Let $A \in S_i O(X)$ and *B* is *i*-open and *j*-closed, then *A* is *i*-open set. This implies that $A \cap B \in i - O(X)$, now let $x \in A \cap B$, then $x \in A$ and $x \in B$, therefore there exists a *ji*-semi closed set *F* such that $x \in F \subseteq A$. Since *B* is *j*-closed, so *B* is *ji*-semi closed set implying that $F \cap B$ is *ji*-semi closed, therefore $x \in F \cap B \subseteq A \cap B$. Thus, $A \cap B$ is S_i -open set in *X*.

The following diagram shows the relations among ι_J -reguler open, S_i -open, $\iota_J - \delta$ -open, $\iota_J - \theta$ -open, τ_i , $\iota_J - \alpha$ -open, ι_J -semi open, ι_J -pre-open, ι_J -semi-preopen sets in a bitopolog-

ical space (X, τ_1 , τ_2).

The proof of the following corollaries are directly as shown in the above diagram.

Corollary 2.18. *Every* S_i *-open set is* ij*-semi open.*

Corollary 2.19. *Every* S_i *-open set is* ij*-pre-open.*

This example show that the converse of the above two corollaries is not true.

Example 2.20. Considering the space given in example 2.3 the set $\{a, b\}$ is ι_J -semi open and ι_J -pre-open, but it is not S_ι -open set.

Proposition 2.21. For any bitopological space (X, τ_1, τ_2) . We have:

- (1) If τ_1 is indiscreate, then $S_1O(X)$ is also indiscreate.
- (2) If $S_1O(X)$ is discrease, then τ_1 is discrease.
- (3) τ_1 and τ_1 are discreate if and only if $S_1O(X)$ is discreate.

Proof. Obvious.

Proposition 2.22. For any subset A of a space (X, τ_1, τ_2) . The following statements are equivalent:

- (1) A is i-open and j-closed.
- (2) A is S_1 -open and j-closed.
- (3) A is $\iota_J \alpha$ -open and j-closed.
- (4) A is 11-pre-open and 1-closed.

Proof. Straightforward.

Proposition 2.23. For any subset A of a space (X, τ_1, τ_2) . The following statements are equivalent:

- (1) A is 1 j-regular open.
- (2) A is S_i -open and ji-semi closed.
- (3) A is 1-open and 11-semi closed.
- (4) A is $\iota_J \alpha$ -open and ι_J -semi closed.
- (5) A is 11-pre-open and 11-semi closed.

Proof. Straightforward.

Proposition 2.24. Let (X, τ_1, τ_2) be a space and $x \in X$. If $\{x\}$ is S_i -open, then $\{x\}$ is ji-semi closed.

Proof. Obvious.

Proposition 2.25. Let (X, τ_1, τ_2) be a space and $x \in X$. Then $\{x\}$ is S_1 -open if and only if $\{x\}$ is i_j -reguler open.

Proof. Obvious.

Proposition 2.26. Let Y be a subset of a space (X, τ_1, τ_2) . If $A \in S_iO(X)$ and $A \subseteq Y$, then $A \in S_iO(Y)$.

Proof. Let $A \in S_1O(X)$, then $A \in \iota - O(X)$ and for each $x \in A$, there exists a $j\iota$ -semi closed set F in X such that $x \in F \subseteq A$. Since $A \in \iota - O(X)$ and $A \subseteq Y$. Then $A \in \iota - O(Y)$. Since $F \in j\iota - SC(X)$ and $F \subseteq Y$. Then $F \in j\iota - SC(Y)$. Hence $A \in S_iO(Y)$.

Definition 2.27. Let *Y* be a subset of the bitopological space (*X*, τ_1 , τ_2), we say that a subset *A* is *S*_{*i*}-open in *Y* if it is *S*_{*i*}-open in the relative bitoplogical space *Y*.

Proposition 2.28. Let Y be a subset of a space (X, τ_1, τ_2) . If $A \in S_1O(Y)$ and $Y \in \iota_J \text{-}RO(X)$, then $A \in S_1O(X)$.

Proof. Let $A \in S_i O(Y)$, then $A \in i \cdot O(Y)$ and for each $x \in A$, there exists a ji-semi closed set F in Y such that $x \in F \subseteq A$. Since $Y \in ij \cdot RO(X)$, then $Y \in i \cdot O(X)$ and Since $A \in i \cdot O(Y)$, then $A \in i \cdot O(X)$. Again since $Y \in ij \cdot RO(X)$, then $Y \in ji \cdot SC(X)$ and since $F \in ji \cdot SC(Y)$. Then $F \in ji \cdot SC(X)$. Hence, $A \in S_i O(X)$.

From Proposition 2.26 and Proposition 2.28 we obtain the following result:

Corollary 2.29. Let (X, τ_1, τ_2) be a bitopological space and A, Y subsets of X such that $A \subseteq Y \subseteq X$ and $Y \in \iota_J$ -RO(X). Then $A \in S_\iota O(Y)$ if and only if $A \in S_\iota O(X)$.

Proposition 2.30. Let Y be a subset of a space (X, τ_1, τ_2) . If $A \in S_1O(Y)$ and $Y \in j_1$ -SC(X), then for each $x \in A$, there exists a j_1 -semi closed set F in X such that $x \in F \subseteq A$.

Proof. Let $A \in S_i O(Y)$, then $A \in \iota - O(Y)$ and for each $x \in A$, there exists a $j\iota$ -semi closed set F in Y such that $x \in F \subseteq A$. Since $Y \in j\iota$ -SC(X), Then $F \in j\iota$ -SC(X), which completes the proof.

The following example satisfies the conditions stated in Proposition 2.30, but $A \notin S_1 O(X)$.

Example 2.31. Consider $X = \{a, b, c, d\}$, with two topologies $\tau_1 = \{X, \phi, \{b\}, \{a, b\}, \{b, c\}, \{a, b, c\}\}$ and $\tau_2 = \{X, \phi, \{b\}, \{c, d\}, \{b, c, d\}\}$. And let (Y, σ_1, σ_2) be a subspace of a space (X, τ_1, τ_2) such that $Y = \{a, c, d\} \in j_1$ -SC(X) with the relative topologies σ_1 and σ_2 in Y such that $\sigma_1 = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}$ and $\sigma_2 = \{X, \phi, \{c, d\}\}$. Then the subset $\{a\}$ is S_1 -open in (Y, σ_1, σ_2) but $\{a\}$ is not S_1 -open in (X, τ_1, τ_2) .

Proposition 2.32. Let A and Y be any subsets of a space X. If $A \in S_1O(X)$ and $Y \in \iota_J \text{-}RO(X)$, then $A \cap Y \in S_1O(X)$.

Proof. Obvious.

Definition 2.33. A subset *B* of a space *X* is called S_i -closed if $X \setminus B$ is S_i -open. The family of all S_i -closed subsets of bitopological space (X, τ_1, τ_2) is denoted by $S_iC(X, \tau_1, \tau_2)$ or $S_iC(X)$.

Proposition 2.34. A subset B of a space X is S_1 -closed if and only if B is an 1-closed set and it is an intersection of j_1 -semi open sets.

Proof. Obvious.

Proposition 2.35. Let $\{B_{\alpha}, \alpha \in \Delta\}$ be a collection of S_1 -closed sets in a bitopological space X. Then $\bigcap \{B_{\alpha}, \alpha \in \Delta\}$ is S_1 -closed set.

Proof. Follows from Proposition 2.8.

Proposition 2.36. The union of two S_1 -closed sets is S_1 -closed.

Proof. Follows from Proposition 2.9.

All of the following results are true by using complement.

Proposition 2.37. If (X, τ_1) is T_1 space, then $S_1C(X) \equiv \iota - C(X)$.

Proof. The proof is directly from Proposition 2.11.

Remark 2.38. Let (X, τ_1) is T_1 space, then the family of $j \iota$ -SO(X) is discreate topology in X.

Proposition 2.39. Let B be any subset of a space X. If $B \in \iota_1 - \delta C(X)$, then $B \in S_1C(X)$.

Proof. Similar to Proposition 2.13 taking $A = X \setminus B$.

Corollary 2.40. Each $(i, j) - \theta$ -closed set is S_i -closed.

Corollary 2.41. Every ι_1 -reguler closed set is S_1 -closed.

Proposition 2.42. For any subset B of a space (X, τ_1, τ_2) . The following statements are equivalent:

- (1) B is *i*-closed and *j*-open.
- (2) *B* is S_1 -closed and j-open.
- (3) *B* is $i_1 \alpha$ -closed and j-open.
- (4) *B* is *i*₁-pre-closed and ₁-open.

Proof. Similar to Proposition 2.22 taking $A = X \setminus B$.

Proposition 2.43. For any subset A of a space (X, τ_1, τ_2) . The following statements are equivalent:

- (1) A is 11-regular closed.
- (2) A is S_1 -closed and 11-semi open.
- (3) A is *i*-closed and *ji*-semi open.
- (4) A is $i_1 \alpha$ -closed and j_1 -semi open.
- (5) A is 11-pre-closed and 11-semi open.

Proof. Similar to Proposition 2.23 taking $A = X \setminus B$.

Proposition 2.44. Let Y be a subset of a space (X, τ_1, τ_2) . If $B \in S_1C(X)$ and $B \subseteq Y$, then $B \in S_l C(Y)$.

Proof. The proof is similar to Proposition 2.26.

Proposition 2.45. Let Y be a subset of a space (X, τ_1, τ_2) . If $B \in S_1C(Y)$ and $Y \in \iota_1 \operatorname{-RC}(X)$, then $B \in S_{I}C(X)$.

Proof. The proof is similar to Proposition 2.28.

From Proposition 2.44 and Proposition 2.45 we obtain the following result:

Corollary 2.46. Let (X, τ_1, τ_2) be a bitopological space and B, Y subsets of X such that $B \subseteq Y$ $\subseteq X$ and $Y \in \iota_I \operatorname{-RC}(X)$. Then $B \in S_i C(Y)$ if and only if $B \in S_i C(X)$.

Proposition 2.47. Let B and Y be any subsets of a space X. If $B \in S_1C(X)$ and $Y \in \iota_J \operatorname{-RC}(X)$, then $B \cup Y \in S_1C(X)$.

Proof. The proof is directly from Proposition 2.32, and using complements.

Definition 2.48. For a subset *A* of a space *X* and $x \in X$, we introduce the following statements:

- (1) A subset *N* of *X* is said to be S_i -neighborhood of *x*, if there exists an S_i -open set *U* in *X* such that $x \in U \subseteq N$.
- (2) S_t -interior of a set A (briefly, $S_t Int(A)$) is the union of all S_t -open sets which are contained in A.
- (3) A point x ∈ X is said to be S_i-limit point of A if for each S_i-open set U containing x, U ∩ (A \ {x}) ≠ φ. The set of all S_i-limit points of A is called a S_i-derived set of A and is denoted by S_iD(A).
- (4) A point $x \in X$ is said to be in S_i -closure of A if for each S_i -open set U containing x such that $U \cap A \neq \phi$.
- (5) S_i -closure of a set A (briefly $S_iCl(A)$) is the intersection of all S_i -closed sets containing A.
- (6) S_i -boundary of A is defined as $S_iCl(A) \setminus S_iInt(A)$ and is denoted by $S_iBd(A)$.

3. S₁-Continuous Functions

Definition 3.1. A function $f : X \to Y$ is called S_i -continuous at a point $x \in X$ if for each *i*-open set *V* of *Y* containing f(x), there exists an S_i -open set *U* of *X* containing *x* such that $f(U) \subseteq V$. If *f* is S_i -continuous at every point *x* of *X*, then it is called S_i -continuous.

Definition 3.2. A function $f : X \to Y$ is called ι_J -almost S_i -continuous at a point $x \in X$ if for each ι -open set V of Y containing f(x), there exists an S_i -open set U of X containing x such that $f(U) \subseteq \iota Int(jClV)$. If f is ι_J -almost S_i -continuous at every point x of X, then it is called ι_J -almost S_i -continuous.

It is obvious from the definition that S_i -continuity implies i_j -almost S_i -continuity. However, the converse is not true in general as it is shown in the following example.

Example 3.3. Let $X = \{a, b, c\}, \tau_1 = \{X, \phi, \{a\}, \{a, b\}\}, \tau_2 = \{X, \phi, \{c\}, \{b, c\}\}, \sigma_1 = \{X, \phi, \{a\}, \{c\}, \{a, c\}\}, \sigma_2 = \{X, \phi, \{b, c\}\}$. We define a function $f : (X, \tau_1, \tau_2) \rightarrow (X, \sigma_1, \sigma_2)$ as an identity function. Then f is ι_J -almost S_ι -continuous but not S_ι -continuous at c, because $\{c\}$ is an ι -open set in (X, σ_1, σ_2) containing f(c) = c, there exists no S_ι -open set U in (X, τ_1, τ_2) containing c such that $x \in f(U) \subseteq \{c\}$.

Proposition 3.4. Let X and Y be bitopological spaces. A function $f : X \to Y$ is S_i -continuous if and only if the inverse image under f of every *i*-open set in Y is an S_i -open in X.

Proof. It is clear.

The proof of the following corollaries follows directly from thier definitions.

Corollary 3.5. *Every* S_i *-continuous function is i-continuous.*

Corollary 3.6. *Every* i_J *-super continuous function is* S_i *-continuous.*

Corollary 3.7. Every $ij - \delta$ -continuous function is ij-almost S_i -continuous.

Corollary 3.8. Every i_j -almost S_i -continuous function is i_j -almost continuous.

By Definition 3.1, Definition 3.2, Corollary 3.5, Corollary 3.6, Corollary 3.7, Corollary 3.8, we obtain the following diagram.

Diagram 2

In the sequel, we shall show that none of the implications that concerning S_i -continuity and i_j -almost S_i -continuity in Diagram 2 is reversible.

Example 3.9. Let $X = \{a, b, c, d\}$ with four topologies $\tau_1 = \{X, \phi, \{c\}, \{a, d\}, \{a, c, d\}\}, \tau_2 = \{X, \phi, \{b\}, \{a, b, d\}\}, \sigma_1 = \{X, \phi, \{a\}, \{b, c\}, \{a, b, c\}\}$ and $\sigma_2 = \{X, \phi, \{d\}, \{a, b, c\}\}$, then the family of S_t -open subset of X with respect to τ_1 and τ_2 is:

 $S_t O(X) = \{X, \phi, \{c\}, \{a, c, d\}\}$. We define a function $f : (X, \tau_1, \tau_2) \rightarrow (X, \sigma_1, \sigma_2)$ as follows f(a) = b, f(b) = d, f(c) = a, f(d) = c. Then f is 1-continuous but not S_1 -continuous, because $\{b, c\}$ is an ι -open set in (X, σ_1, σ_2) containing f(a) = b, there exists no S_ι -open set U in (X, τ_1, τ_2) containing a such that $b \in f(U) \subseteq \{b, c\}$.

Example 3.10. In Example 3.9. If we have $f : (X, \tau_1, \tau_2) \to (X, \sigma_1, \sigma_2)$ be a function defined as follows f(a) = a, f(b) = f(c) = d, f(d) = b. Then f is ι_J -almost continuous but not ι_J -almost S_i -continuous, because $\{a\}$ is an ι -open set in (X, σ_1, σ_2) containing f(a) = a, there exists no S_i -open set U in (X, τ_1, τ_2) containing a such that $x \in f(U) \subseteq \iota_Int(JCl\{a\})$ implies that $f(U) \subseteq \{a, b, c\}$.

 \Box

Example 3.11. Consider a space *X* with co-finite topology. Let $f : X \to X$ be an identity function. Since *X* is T_1 , then the family of *i*-open sets and S_i -open sets of *X* are identical. Hence *f* is S_i -continuous but not *ij*-super continuous, because the *j*-closure of every *i*-open set is the whole space *X*. So there exists no *i*-open set *U* containing *x* such that $f(iInt(jCl(U)) \subseteq V)$ where *V* is an *i*-open set in *Y*.

Example 3.12. Let X = Z with co-finite topology, and $Y = \{a, b\}$ with discrete topology. Let $f : X \to Y$ defined by f(x) = a, if *x* is even

f(x) = b, if x is odd.

Hence *f* is *i*_J-almost *S*_{*i*}-continuous but not *i*_J – δ -continuous, because the *j*-closure of every *i*-open set in *X* is the whole space *X*. So there exists no *i*-open set *U* containing *x* such that $f(iInt(jCl(U)) \subseteq iInt(jCl(V)))$ where *V* is an *i*-open set in *Y*.

Here, we begin with the following characterizations of S_1 -continuous functions.

Proposition 3.13. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is S_1 -continuous.
- (2) $f^{-1}(V)$ is S_i -open set in X, for each i-open set V in Y.
- (3) $f^{-1}(F)$ is S_i -closed set in X, for each i-closed set F in Y.
- (4) $f(S_{\iota}Cl(A)) \subseteq \iota Cl(f(A))$, for each subset A of X.
- (5) $S_{\iota}Cl(f^{-1}(B)) \subseteq f^{-1}(\iota Cl(B))$, for each subset B of Y.
- (6) $f^{-1}(\iota Int(B)) \subseteq S_{\iota} Int(f^{-1}(B))$, for each subset B of Y.
- (7) $\iota Int(f(A)) \subseteq f(S_{\iota}Int(A))$, for each subset A of X.

Proof. Straightforward.

Proposition 3.14. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is ι_J -almost S_ι -continuous.
- (2) For each $x \in X$ and each ij-regular open set V of Y containing f(x), there exists a S_i -open U in X containing x such that $f(U) \subseteq V$.
- (3) For each $x \in X$ and each $ij \delta$ open set V of Y containing f(x), there exists a S_i -open U in X containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and let V be any ι_J -regular open set of Y containing f(x). By (1), there exists a S_i -open set U of X containing x such that $f(U) \subseteq \iota Int(jCl(V))$. since V is ι_J -regular open, then $\iota Int(jCl(V)) = V$. Therefore, $f(U) \subseteq V$.

(2) \Rightarrow (3). Let $x \in X$ and let V be any $\iota_J - \delta$ -open set of Y containing f(x). Then for each $f(x) \in V$, there exists an ι -open set G containing f(x) such that $G \subseteq \iota Int(JCl(G)) \subseteq V$. Since $\iota Int(JCl(G))$ is ι_J -regular open set of Y containing f(x). By (2), there exists a S_ι -open set U in X containing x such that $f(U) \subseteq \iota Int(JCl(G)) \subseteq V$. This completes the proof.

 $(3) \Rightarrow (1)$. Let *x* ∈ *X* and let *V* be any *i*-open set of *Y* containing *f*(*x*). Then *iInt*(*jCl*(*V*) is $ij - \delta$ -open set of *Y* containing *f*(*x*). By (3), there exists a *S*_{*i*}-open set *U* in *X* containing *x* such that *f*(*U*) ⊆ *iInt*(*jCl*(*V*)). Therefore, *f* is *ij*-almost *S*_{*i*}-continuous. □

Proposition 3.15. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is ι_J -almost S_ι -continuous.
- (2) $f^{-1}(\iota Int(jCl(V)))$ is S_{ι} -open set in X, for each ι -open set V in Y.
- (3) $f^{-1}(\iota Cl(j Int(F)))$ is S_{ι} -closed set in X, for each ι -closed set F in Y.
- (4) $f^{-1}(F)$ is S_i -closed set in X, for each ij-regular closed set F of Y.
- (5) $f^{-1}(V)$ is S_i -open set in X, for each ij-regular open set V of Y.

Proof. (1) \Rightarrow (2). Let *V* be any *i*-open set in *Y*. We have to show that $f^{-1}(iInt(jCl(V)))$ is S_i -open set in *X*. Let $x \in f^{-1}(iInt(jCl(V)))$. Then $f(x) \in iInt(jCl(V))$ and iInt(jCl(V)) is an *ij*-regular open set in *Y*. Since *f* is *ij*-almost S_i -continuous. Then by Proposition 3.14, there exists a S_i -open set *U* of *X* containing *x* such that $f(U) \subseteq iInt(jCl(V))$. Which implies that $x \in U \subseteq f^{-1}(iInt(jCl(V)))$. Therefore, $f^{-1}(iInt(jCl(V)))$ is S_i -open set in *X*. (2) \Rightarrow (3). Let *F* be any *i*-closed set of *Y*. Then *Y**F* is an *i*-open set of *Y*. By (2), $f^{-1}(iInt(jCl(Y \setminus F))) = f^{-1}(iInt(jCl(Y \setminus F))) = f^{-1}(iInt(jCl(Y \setminus F))) = f^{-1}(iCl(jInt(F))) = f^{-1}(iCl(jInt(F))) = X \setminus f^{-1}(iCl(jInt(F)))$ is S_i -open set in *X* and hence $f^{-1}(iCl(jInt(F)))$ is S_i -closed set in *X*. (3) \Rightarrow (4). Let *F* be any *ij*-regular closed set of *Y*. Then *F* is an *i*-closed set of *Y*. By (3), $f^{-1}(iCl(jInt(F)))$ is S_i -closed set in *X*. Since *F* is *ij*-regular closed set. Then $f^{-1}(iCl(jInt(F))) = f^{-1}(F)$. Therefore, $f^{-1}(F)$ is S_i -closed set in *X*.

(4) \Rightarrow (5). Let *V* be any *ij*-regular open set of *Y*. Then *Y* \ *V* is *ij*-regular closed set of *Y* and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is S_i -closed set in *X* and hence $f^{-1}(V)$ is S_i -open set in *X*.

(5) ⇒ (1). Let $x \in X$ and let V be any ι_J -regular open set of Y containing f(x). Then $x \in f^{-1}(V)$. By (5), we have $f^{-1}(V)$ is S_i -open set in X. Therefore, we obtain $f(f^{-1}(V)) \subseteq V$. Hence by Proposition 3.14, f is ι_J -almost S_i -continuous.

Proposition 3.16. For a function $f: X \to Y$, the following statements are equivalent:

- (1) f is ι_J -almost S_ι -continuous.
- (2) $S_{\iota}Cl(f^{-1}(V)) \subseteq f^{-1}(\iota Cl(V))$, for each $\iota \iota \beta$ -open set V of Y.
- (3) $f^{-1}(\iota Int(F)) \subseteq S_{\iota} Int(f^{-1}(F))$, for each $\iota \iota \beta$ -closed set F of Y.

- (4) $f^{-1}(\iota Int(F)) \subseteq S_{\iota} Int(f^{-1}(F))$, for each ι -semi closed set F of Y.
- (5) $S_{\iota}Cl(f^{-1}(V)) \subseteq f^{-1}(\iota Cl(V))$, for each ι -semi open set V of Y.

Proof. (1) \Rightarrow (2). Let *V* be any $ji - \beta$ -open set of *Y*. Since iCl(V) is ij-reguler closed set in *Y* and *f* is ij-almost S_i -continuous. Then by Proposition 3.15, $f^{-1}(V)$ is S_i -closed set in *X*. Therefore, we obtain $S_iCl(f^{-1}(V)) \subseteq f^{-1}(iCl(V))$.

 $\begin{array}{l} (2) \Rightarrow (3). \ \text{Let } F \ \text{be any } \jmath \iota - \beta \text{-closed set of } Y. \ \text{Then } Y \setminus F \ \text{is } \jmath \iota - \beta \text{-open set of } Y \ \text{and by} \\ (2), \ \text{we have } S_{\iota} Cl(f^{-1}(Y \setminus F)) \subseteq f^{-1}(\iota Cl(Y \setminus F)) \Leftrightarrow S_{\iota} Cl(X \setminus f^{-1}(F)) \subseteq f^{-1}(Y \setminus \iota Int(F)) \Leftrightarrow X \setminus S_{\iota} Int(f^{-1}(F)) \subseteq X \setminus f^{-1}(\iota Int(F)). \ \text{Therefore, } f^{-1}(\iota Int(F)) \subseteq S_{\iota} Int(f^{-1}(F)). \end{array}$

(3) \Rightarrow (4). This is obvious since every ji-semi closed set is $ji - \beta$ -closed set.

(4) \Rightarrow (5). Let *V* be any *ji*-semi open set of *Y*. Then $Y \setminus V$ is *ji*-semi closed set and by (4), we have $f^{-1}(iInt(Y \setminus V)) \subseteq S_iInt(f^{-1}(Y \setminus V)) \Leftrightarrow f^{-1}(Y \setminus iCl(V)) \subseteq S_iInt(X \setminus f^{-1}(V)) \Leftrightarrow X \setminus f^{-1}(iCl(V)) \subseteq X \setminus S_iCl(f^{-1}(V))$. Therefore, $S_iCl(f^{-1}(V)) \subseteq f^{-1}(iCl(V))$.

 $(5) \Rightarrow (1)$. Let *F* be any *ij*-reguler closed set of *Y*. Then *F* is *ji*-semi open set of *Y*. By (5), we have $S_i Cl(f^{-1}(F)) \subseteq f^{-1}(iCl(F)) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is S_i -closed set in *X*. Therefore, by Proposition 3.15, *f* is *ij*-almost S_i -continuous.

Proposition 3.17. A function $f : X \to Y$ is ι_J -almost S_ι -continuous if and only if $f^{-1}(V) \subseteq S_\iota Int(f^{-1}(\iota Int(jCl(V))))$ for each ι -open set V of Y.

Proof. Necessity. Let *V* be any *i*-open set of *Y*. Then $V \subseteq iInt(jCl(V))$ and iInt(jCl(V)) is *i*_{*j*}-reguler open set in *Y*. Since *f* is *i*_{*j*}-almost *S*_{*i*}-continuous, by Proposition 3.15, $f^{-1}(iInt(jCl(V)))$ is *S*_{*i*}-open set in *X* and hence we obtain that $f^{-1}(V) \subseteq f^{-1}(iInt(jCl(V))) = S_iInt(f^{-1}(iInt(jCl(V))))$.

Sufficiency. Let *V* be any ι_J -regular open set of *Y*. Then *V* is ι -open set of *Y*. By hypothesis, we have $f^{-1}(V) \subseteq S_{\iota}Int(f^{-1}(\iota Int(JCl(V)))) = S_{\iota}Int(f^{-1}(V))$. Therefore, $f^{-1}(V)$ is S_{ι} -open set in *X* and hence by Proposition 3.15, *f* is ι_J -almost S_{ι} -continuous.

Corollary 3.18. A function $f: X \to Y$ is ι_J -almost S_ι -continuous if and only if $S_\iota Cl(f^{-1}(\iota Cl(JInt(F)))) \subseteq f^{-1}(F)$ for each ι -closed set F of Y.

Proposition 3.19. Let $f : X \to Y$ is an ι_J -almost S_ι -continuous function and let V be any ι -open subset of Y. If $x \in S_\iota Cl(f^{-1}(V)) \setminus f^{-1}(V)$, then $f(x) \in S_\iota Cl(V)$.

Proof. Let $x \in X$ be such that $x \in S_i Cl(f^{-1}(V)) \setminus f^{-1}(V)$ and suppose $f(x) \notin S_i Cl(V)$. Then there exists an S_i -open set H containing f(x) such that $H \cap V = \phi$. Then $jCl(H) \cap V = \phi$ implies $iInt(jCl(H)) \cap V = \phi$ and iInt(jCl(H)) is ij-regular open set. Since f is ij-almost S_i -continuous, by Proposition 3.15, there exists an S_i -open set U in X containing x such that $f(U) \subseteq iInt(jCl(H))$. Therefore, $f(U) \cap V = \phi$. However, since $x \in S_iCl(f^{-1}(V)), U \cap f^{-1}(V) \neq \phi$ for every S_i -open set U in X containing x, so that $f(U) \cap V \neq \phi$. We have a contradiction. It follows that $f(x) \in S_iCl(V)$. **Proposition 3.20.** A function $f : X \to Y$ is S_1 -continuous if and only if f is i-continuous and for each $x \in X$ and each i-open set V of Y containing f(x), there exists an ji-semi closed set F in X containing x such that $f(F) \subseteq V$.

Proof. Necessity. Let $x \in X$ and let V be any i-open set of Y containing f(x). Since f is S_i continuous, there exists an S_i -open set U of X containing x such that $f(U) \subseteq V$. Since U is S_i -open set. Then for each $x \in U$, there exists an ji-semi closed set F of X such that $x \in F \subseteq U$.
Therefore, we have $f(F) \subseteq V$. And also since f is S_i -continuous. Then f is i-continuous.

Sufficiency. Let *V* be any *i*-open set of *Y*. We have to show that $f^{-1}(V)$ is S_i -open set in *X*. Since *f* is *i*-continuous, then $f^{-1}(V)$ is *i*-open set in *X*. Let $x \in f^{-1}(V)$. Then $f(x) \in V$. By hypothesis, there exists *ji*-semi closed set *F* of *X* containing *x* such that $f(F) \subseteq V$. Which implies that $x \in F \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is S_i -open set in *X*. Hence by Proposition 3.13, *f* is S_i -continuous.

Proposition 3.21. The set of all points x of X at which $f : X \to Y$ is not ij-almost S_i -continuous is identical with the union of the S_i -boundaries of the inverse images of ij-regular open subsets of Y containing f(x).

Proof. If *f* is not *i*_J-almost S_i -continuousat $x \in X$, then there exists an *i*_J-regular open set *V* containing f(x) such that for every S_i -open set *U* of *X* containing x, $f(U) \cap (Y \setminus V) \neq \phi$. This means that for every S_i -open set *U* of *X* containing x, we must have $U \cap (X \setminus f^{-1}(V)) \neq \phi$. Hence, it follows that $x \in S_i Cl(X \setminus f^{-1}(V))$. But $x \in f^{-1}(V)$ and hence $x \in S_i Cl(f^{-1}(V))$. This means that x belongs to the S_i -boundary of $f^{-1}(V)$.

Conversely, suppose that *x* belongs to the S_i -boundary of $f^{-1}(V_1)$ for some ij-regular open subset V_1 of *Y* such that $f(x) \in V_1$. Suppose that *f* is ij-almost S_i -continuousat at *x*. Then by Proposition 3.14, there exists an S_i -open set *U* of *X* containing *x* such that $f(U) \subseteq V_1$. Then we have $U \subseteq f^{-1}(V_1)$. This shows that $x \in S_i Int(f^{-1}(V_1))$. Therefore, we have $x \notin S_i Cl(X \setminus f^{-1}(V_1))$ and $x \notin S_i Bd(f^{-1}(V_1))$. But this is a contradiction. This means that *f* is not ij-almost S_i -continuous.

In the next results, we find some conditions in which the restrictions of S_i -continuous functions on subspaces are S_i -continuous.

Proposition 3.22. Let $f : X \to Y$ be S_i -continuous (resp., ij-almost S_i -continuous) function. If A is $ij - \delta$ -open subset of X, then $f|A: A \to Y$ is S_i -continuous (resp., ij-almost S_i -continuous) in the subspace A.

Proof. Let *V* be any *i*-open (resp., *i*_J-regular-open) set of *Y*. Since *f* is *S*_{*i*}-continuous (resp., *i*_J-almost *S*_{*i*}-continuous). Then by Proposition 3.13 (resp., by Proposition 3.15), $f^{-1}(V)$ is *S*_{*i*}-open set in *X*. Since *A* is $i_J - \delta$ -open subset of *X* implies that *A* is *S*_{*i*}-open. Then $(f|A)^{-1}(V) = \delta$

 $f^{-1}(V) \cap A$ is an S_i -open subset of A. This shows that $f|A: A \to Y$ is S_i -continuous (resp., i_i -continuous).

Corollary 3.23. Let $f : X \to Y$ be S_i -continuous (resp., ij-almost S_i -continuous) function. If A is either ij-regular open or $ij - \theta$ -open subset of X, then $f|A : A \to Y$ is S_i -continuous (resp., ij-almost S_i -continuous) in the subspace A.

Proof. Since every i_j -regular open or $i_j - \theta$ -open is $i_j - \delta$ -open set, This is an immediate consequence of Proposition 3.22.

Proposition 3.24. A function $f : X \to Y$ is S_i -continuous (resp., ij-almost S_i -continuous). If for each $x \in X$, there exists an ij-regular open set A of X containing x such that $f|A : A \to Y$ is S_i -continuous (resp., ij-almost S_i -continuous).

Proof. Let $x \in X$, then by hypothesis, there exists an ι_J -regular open set A containing x such that $f|A: A \to Y$ is S_i -continuous (resp., ι_J -almost S_i -continuous). Let V be any ι -open set of Y containing f(x), there exists an S_i -open set U in A containing x such that $(f|A)(U) \subseteq V$ (resp., $(f|A)(U) \subseteq \iota Int(jCl(V))$). Since A is ι_J -regular open set. By Proposition 2.28, U is S_i -open set in X and hence $f(U) \subseteq V$ (resp., $f(U) \subseteq \iota Int(jCl(V))$). This shows that f is S_i -continuous (resp., ι_J -almost S_i -continuous).

Corollary 3.25. Let $\{U_{\alpha} : \alpha \in \Delta\}$ be an ι_J -reguler open cover of a bitopological space X. A function $f : X \to Y$ is S_i -continuous (resp., ι_J -almost S_i -continuous) if and only if $f|U_{\alpha} : U_{\alpha} \to Y$ is S_i -continuous (resp., ι_J -almost S_i -continuous) for each $\alpha \in \Delta$.

Proof. This is an immediate consequence of Corollary 3.23 and Proposition 3.24.

Proposition 3.26. If $X = R \cup S$, where R and S are ι_J -regular open sets and $f : X \to Y$ is a function such that both f|R and f|S are S_i -continuous (resp., ι_J -almost S_i -continuous), then f is S_i -continuous (resp., ι_J -almost S_i -continuous).

Proof. Let *V* be any *i*-open (resp., *i*_J-regular open) set of *Y*. Then $f^{-1}(V) = (f|R)^{-1}(V) \cup (f|S)^{-1}(V)$. Since f|R and f|S are S_i -continuous (resp., *i*_J-almost S_i -continuous). Then by Proposition 3.13 (resp., by Proposition 3.15), $(f|R)^{-1}(V)$ and $(f|S)^{-1}(V)$ are S_i -open sets in *R* and *S*, respectively. Since *R* and *S* are *i*_J-regular open sets in *X*, then by Proposition 2.28, $(f|R)^{-1}(V)$ and $(f|S)^{-1}(V)$ are S_i -open sets in *X*. Since union of two S_i -open sets is S_i -open. Hence $f^{-1}(V)$ is S_i -open set in *X*. Therefore, by Proposition 3.13 (resp., by Proposition 3.15), *f* is S_i -continuous (resp., *i*_J-almost S_i -continuous).

In general, if $X = \bigcup \{K_{\alpha} : \alpha \in \Delta\}$, where each K_{α} is an ι_J -regular open set and $f : X \to Y$ is a function such that $f | K_{\alpha}$ is S_i -continuous (resp., ι_J -almost S_i -continuous) for each α , then f is S_i -continuous (resp., ι_J -almost S_i -continuous). **Proposition 3.27.** Let $X = R_1 \cup R_2$, where R_1 and R_2 are ij-regular open sets in X. Let $f : R_1 \rightarrow Y$ and $g : R_2 \rightarrow Y$ be S_i -continuous (resp., ij-almost S_i -continuous). If f(x) = g(x) for each $x \in R_1 \cap R_2$. Then $h : R_1 \cup R_2 \rightarrow Y$ such that

$$h(x) = \begin{cases} f(x) & \text{if } x \in R_1 \\ g(x) & \text{if } x \in R_2 \end{cases}$$

is S_1 -continuous (resp., i_j -almost S_1 -continuous).

Proof. Let *O* be an *i*-open (resp., *ij*-regular open) set of *Y*. Now $h^{-1}(O) = f^{-1}(O) \cup g^{-1}(O)$. Since *f* is S_i -continuous (resp., *ij*-almost S_i -continuous), then by Proposition 3.13 (resp., by Proposition 3.15), $f^{-1}(O)$ is S_i -open set in R_1 . But R_1 is *ij*-regular open set in *X*. Then by Proposition 2.28, $f^{-1}(O)$ is S_i -open set in *X*. Similarly, $g^{-1}(O)$ is S_i -open set in R_2 and hence, S_i -open set in *X*. Since union of two S_i -open sets is S_i -open. Therefore, $h^{-1}(O) = f^{-1}(O) \cup g^{-1}(O)$ is S_i -open set in *X*. Hence by Proposition 3.13 (resp., by Proposition 3.15), *h* is S_i -continuous (resp., *ij*-almost S_i -continuous).

References

- M. E. Abd El-Monsef, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assuit. Univ., 12 (1983), 1-18.
- [2] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [3] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, *On precontinuous and week precontinuous mappings*, Proc. Math. Phys. Soc., [Egypt], **53** (1982), 47-53.
- [4] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961-970.
- [5] M. H. Stone, Applications of the theory of boolean rings to topology, Trans. Amer. Math. Soc., 41(1937), 375-481.
- [6] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., (3), 13(1963), 71-89.
- [7] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
- [8] G. K. Banerjee, On pairwise almost strongly θ-continuous mappings, Bull. Cal. Math. Soc., 79(1987), 314-320.
- [9] S. Bose and D. Sinha, *Pairwise almost continuous map and weakly continuous map in bitopological spaces*, Bull. Cal. Math. Soc., 74(1982), 195-206.
- [10] S. Bose, and Sinha, *Almost open, Almost closed,* θ *-continuous and almost compact mapping in bitopological spaces,* Bull. Calcutta. Math. Soc., **73**(1981), 345-354.
- [11] M. Jelic, A decomposition of pairwise continuity, J. Inst. Math. Comput. Sci. Math. Ser., 3(1990), 25-29.
- [12] M. Jelic, Feebly p-continuous mappings. V International Meeting on Topology in Italy (Italian) (Lecce, 1990/Otranto, 1990). Rend. Circ. Mat. Palermo. (2) Suppl., No. 24(1990), 387-395.
- [13] S. N. Maheshwari and R. Prasad, Semi open sets and semi continuous function in bitopological spaces, Math. Notae., 26 (1977/78), 29-37.
- [14] C. G. Kariofillis, On pairwise almost compactness, Ann. Soc. Sci. Bruxelles., 100 (1986), 129-137.
- [15] F. H. Khedr and A. M. Alshibani, On pairwise super continuous mapping in bitopological spaces, Internat. J. Math. and Math. Sci., 14(1991), 715-722.
- [16] F. H. Khedr and S. M. Al-Areefi, Precontinuity and semi-precontinuity in bitopological spaces, Indian. J. pure. appl. Math., 23(1992), 625-633.

Department of Mathematics, College of Science, University of Duhok, Kurdistan-Region, Iraq. E-mail: aliasbkhalaf@gmail.com

Department of Mathematics, College of Science, University of Duhok, Kurdistan-Region, Iraq. E-mail: alan.m.omer@gmail.com