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S ı-OPEN SETS AND S ı-CONTINUITY

IN BITOPOLOGICAL SPACES

ALIAS B. KHALAF AND ALAN M. OMER

Abstract. In this paper, we introduce and define a new class of sets, called Sı -open

sets, in bitopological spaces. By using this set, we introduce and define the notion of

Sı -continuity and investigate some of its properties. In particular, Sı -open sets and Sı -

continuity are used to extend some known results of continuity.

1. Introduction and Preliminaries

In the literature notions of semi open, pre open, α-open, β-open and regular open sets

in topological space have been introduced and studied respectively by Levine [2], Mashhour

[3], Njastad [4], Monsef [1], Stone [5], and in 1968 Velicko [7], defined the concepts of δ-open

and θ-open sets.

The study of bitopological spaces was first initiated by J.C.Kelly [6], and thereafter a large

number of paper have been done to generalize the topological concepts to bitopological set-

ting.

Throughout this paper, by a space X we mean a bitopological space (X , τ1, τ2). By ı Int (A)

and ıC l (A) we shall mean the interior and the closure of a subset A of X with respect to τı ,

respectively, where ı ,  = 1 or 2 and ı 6=  .

A subset A of X is said to be ı -semi open [13] (resp., ı -pre open [11], ı −α-open [12], ı -

semi-preopen [16], ı -regular open [10]) if A ⊆ C l (ı Int (A)) (resp., A ⊆ ı Int ( C l (A)), A ⊆

ı Int ( C l (ı Int (A))), A ⊆ C l (ı Int ( C l (A))), A = ı Int ( C l (A))).

A point x of X is said to be ı −δ-cluster point [15] of A if A∩U 6=φ for every ı -reguler open

set U containing x, the set of all ı −δ-cluster points of A is called ı −δ-closure of A, a subset

A of X is said to be ı −δ-closed if the set of ı −δ-cluster points of A is a subset of A, the com-

plement of ı −δ-closed set is ı −δ-open. A point x ∈ X is said to be in the ı −θ-closure [14]

of A, denoted by ı -C lθ(A), if A ∩ C l (U ) 6= φ for every ı-open set U containing x. A subset
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A of X is said to be ı  −θ-closed if A = ı -C lθ(A). A subset A of X is said to be ı  −θ-open if

X \ A is ı −θ-closed.

The complement of ı -semi open (resp., ı -pre open, ı −α-open, ı -semi-preopen, ı -regular

open) set is said to be ı -semi closed (resp., ı -pre closed, ı  −α-closed, ı -semi-preclosed,

ı -regular closed).

In 1991, Kheder [15] defined a function f : (X ,τ1,τ2) → (Y ,σ1,σ2) to be ı -super continuous if

f −1(V ) is ı −δ-open set in X for every ı-open set V of Y , and a function f is said to be ı −δ-

continuous [8] (resp., ı -almost continuous [9]) if f −1(V ) is ı −δ-open (resp., ı-open)set in

X for every ı -regular open set V of Y .

In the present paper we introduce a new class of ı-open sets called S ı -open, this class of sets

lies strictly between the classes of ı −δ-open and ı-open sets. We also study its fundamen-

tal properties and compare it with some other types of sets, and then we define and further

topological properties such as, S ı -neighborhood, S ı -interior, S ı -closure, S ı -derived and S ı -

boundary of sets. Also in this paper we introduce and investigate the concept of S ı -continuity

functions and ı -almost S ı -continuity. It will be shown that S ı -continuity is weaker than ı -

super continuity while it is stronger than both ı-continuity and ı -almost S ı -continuity, and

ı -almost S ı -continuity is weaker than ı  −δ-continuity so it is stronger than ı -almost con-

tinuity.

2. S ı -Open Sets

Definition 2.1. An ı-open subset A of a space X is called S ı -open if for each x ∈ A, there exists

an  ı-semi closed set F such that x ∈ F ⊆ A.The family of all S ı -open subsets of bitopological

space (X , τ1, τ2) is denoted by S ıO(X , τ1, τ2) or S ıO(X ).

Proposition 2.2. A subset A of a space X is S ı-open if and only if A is ı-open and it is a union

of  ı-semi closed sets. That is, A =
⋃

Fα where A is ı-open set and Fα is  ı-semi closed sets for

each α.

Proof. Obvious. ���

It is clear from the definition that every S ı -open subset of a space X is ı-open, but the

converse is not true in general as shown by the following example.

Example 2.3. Let X ={a,b,c}, τ1 = {X , φ, {a}, {a,b}, {a,c}} and τ2 = {X , φ, {b}, {b,c}}, then {a,b}

is ı-open but not S ı -open.

Example 2.4. If X is an infinite set. In a bitopological space (X , τ1, τ2) with two cofinite

topologies τ1 = τ2 every infinite set is S ı -open, but it is not  ı-semi closed.
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Remark 2.5. S1-open sets means that a subset A is τ1-open and for all x ∈ A, there exists a

21-semi closed set F such that x ∈ F ⊆ A and S2-open sets means that a subset A is τ2-open

and for all x ∈ A, there exists a 12-semi closed set F such that x ∈ F ⊆ A.

It can be easily seen that S1-open sets and S2-open sets are incomparable in general as

shown by the following example.

Example 2.6. Consider X ={a,b,c}, τ1 = {X , φ, {c}, {a,b}} and τ2 = {X , φ, {b}, {b,c}}, then {c} is

S1-open but not S2-open set and {b} is S2-open but not S1-open set.

The next example shows that even if τ1 ⊆ τ2, then S1O(X ) ⊆ S2O(X ) need not be true in

general.

Example 2.7. If X ={a,b,c}, τ1 = {X , φ, {a}} and τ2 = {X , φ, {a}, {b,c}}, then τ1 ⊆ τ2, {a} is

S1-open but not S2-open.

Proposition 2.8. Let {Aα, α ∈∆} be a collection of S ı -open sets in a bitopological space X . Then
⋃

{Aα, α ∈∆} is S ı -open set.

Proof. Since Aα is as S ı -open set for each α, then Aα is ı-open and
⋃

{Aα, α ∈ ∆} is ı-open,

then for all x ∈ Aα, there exists  ı-semi closed set F such that x ∈ F ⊆ Aα this implies that for

all x ∈
⋃

{Aα, α ∈∆} we have x ∈ F ⊆ Aα ⊆
⋃

{Aα, α ∈∆}, then x ∈ F ⊆
⋃

{Aα, α ∈∆},
⋃

{Aα, α ∈∆}

is S ı -open set. ���

Proposition 2.9. The intersection of two S ı -open sets is S ı -open.

Proof. Let A and B be two S ı -open sets, then A and B are ı-open sets this implies that A∩B

is an ı-open set, we have to prove that A∩B is S ı-open, let x ∈ A∩B then x ∈ A and x ∈ B , for

all x ∈ A there exists  ı-semi closed F such that x ∈ F ⊆ A and for all x ∈ B there exists  ı-

semi closed E such that x ∈ E ⊆ B . Since the intersection of two  ı-semi closed sets is  ı-semi

closed, then for all x ∈ F∩E ⊆ A∩B . This shows that A∩B is S ı -open set. ���

From propositions 2.8 and 2.9 we proved that the family of all S ı -open subsets of a space

X is a topology.

Proposition 2.10. A subset A of a space (X , τ1, τ2) is S ı-open if and only if for each x ∈ A, there

exists an S ı -open set B such that x ∈ B ⊆ A.

Proof. Assume that A is S ı -open set in the (X , τ1, τ2), then for each x ∈ A, put B = A is S ı -open

set containing x such that x ∈ B ⊆ A.

conversely, suppose that for each x ∈ A, there exists an S ı -open set B such that x ∈ Bx ⊆ A,

thus A = ∪Bx where Bx ∈ S ıO(X ) for each x, therefore A is S ı -open. ���
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Proposition 2.11. If (X , τı ) is T1 space, then S O(X ) ≡ τ  .

Proof. Let A be any subset of a space X and A ∈ τ  , if A = φ, then A ∈ S O(X ). If A 6= φ let

x ∈ A, since (X , τı ) is a T1 space, then every singlton is ı-closed this implies that every singlton

is ı -semi closed and hence x ∈ {x} ⊆ A. Therefore, A ∈ S O(X ). Hence, τ  ⊆ S O(X ), but from

definition of S -open sets we have S O(X ) ⊆ τ  . Thus S O(X ) ≡ τ  . ���

Remark 2.12. Let (X , τı ) is T1 space, then the family of ı -SC (X ) is discreate topology in X .

Proposition 2.13. Every ı −δ-open set of a space X is S ı -open.

Proof. Let A be ı −δ-open set in X , then for each x ∈ A, there exists an ı-open set G such that

x ∈G ⊆ ı-i nt -clG ⊆ A, so A =
⋃

{x} ⊆
⋃

G ⊆
⋃

clG ⊆ A for each x ∈ A, this implies that A =
⋃

G

is an ı-open set and A =
⋃

ı-i nt -clG is a union of  ı-semi closed sets, so by proposition2.2,

A is S ı -open set. ���

However, the converse of proposition may not be true in general as we show in the fol-

lowing example:

Example 2.14. Consider the space given in example2.4 is T1, then the family of ı-open, ı -

semi open and S ı -open sets are identical. Hence, any ı-open set G is S ı -open but not ı  −δ-

open.

The proof of the following corollaries are clear and directly follow from their definitions.

Corollary 2.15. Every ı −θ-open set is S ı -open.

Corollary 2.16. Every ı -reguler open set is S ı -open.

Proposition 2.17. Let (X , τ1, τ2) be a bitopological space, and A, B ⊆ X . If A ∈ S ıO(X ) and B

is ı-open and -closed, then A∩B ∈ S ıO(X ).

Proof. Let A ∈ S ıO(X ) and B is ı-open and -closed, then A is ı-open set. This implies that

A∩B ∈ ı-O(X ), now let x ∈ A∩B , then x ∈ A and x ∈ B , therefore there exists a  ı-semi closed

set F such that x ∈ F ⊆ A. Since B is -closed, so B is  ı-semi closed set implying that F∩B is

 ı-semi closed, therefore x ∈ F∩B ⊆ A∩B . Thus, A∩B is S ı -open set in X . ���

The following diagram shows the relations among ı -reguler open, S ı -open, ı −δ-open,

ı −θ-open, τı , ı −α-open, ı -semi open, ı -pre-open, ı -semi-preopen sets in a bitopolog-
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ical space (X , τ1, τ2).

ı -reguler open

��

S ı -open

��

ı −δ-openoo ı −θ-openoo

τı
// ı −α-open //

��

ı -semi open

��

ı -pre-open // ı -semi-preopen

Diagram 1

The proof of the following corollaries are directtly as shown in the above diagram.

Corollary 2.18. Every S ı -open set is ı -semi open.

Corollary 2.19. Every S ı -open set is ı -pre-open.

This example show that the converse of the above two corollaries is not true.

Example 2.20. Considering the space given in example 2.3 the set {a,b} is ı -semi open and

ı -pre-open, but it is not S ı -open set.

Proposition 2.21. For any bitopological space (X , τ1, τ2). We have:

(1) If τ  is indiscreate, then S ıO(X ) is also indiscreate.

(2) If S ıO(X ) is discreate, then τ  is discreate.

(3) τı and τ  are discreate if and only if S ıO(X ) is discreate.

Proof. Obvious. ���

Proposition 2.22. For any subset A of a space (X , τ1, τ2). The following statements are equiv-

alent:

(1) A is ı-open and -closed.

(2) A is S ı -open and -closed.

(3) A is ı −α-open and -closed.

(4) A is ı -pre-open and -closed.

Proof. Straightforward. ���
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Proposition 2.23. For any subset A of a space (X , τ1, τ2). The following statements are equiv-

alent:

(1) A is ı -regular open.

(2) A is S ı -open and  ı-semi closed.

(3) A is ı-open and  ı-semi closed.

(4) A is ı −α-open and  ı-semi closed.

(5) A is ı -pre-open and  ı-semi closed.

Proof. Straightforward. ���

Proposition 2.24. Let (X , τ1, τ2) be a space and x ∈ X . If {x} is S ı -open, then {x} is  ı-semi

closed.

Proof. Obvious. ���

Proposition 2.25. Let (X , τ1, τ2) be a space and x ∈ X . Then {x} is S ı -open if and only if {x} is

ı -reguler open.

Proof. Obvious. ���

Proposition 2.26. Let Y be a subset of a space (X , τ1, τ2). If A ∈ S ıO(X ) and A ⊆ Y , then

A ∈ S ıO(Y ).

Proof. Let A ∈ S ıO(X ), then A ∈ ı-O(X ) and for each x ∈ A, there exists a  ı-semi closed set F

in X such that x ∈ F ⊆ A. Since A ∈ ı-O(X ) and A ⊆ Y . Then A ∈ ı-O(Y ). Since F ∈  ı-SC (X )

and F ⊆ Y . Then F ∈  ı-SC (Y ). Hence A ∈ S ıO(Y ). ���

Definition 2.27. Let Y be a subset of the bitopological space (X , τ1, τ2), we say that a subset

A is S ı -open in Y if it is S ı -open in the relative bitoplogical space Y .

Proposition 2.28. Let Y be a subset of a space (X , τ1, τ2). If A ∈ S ıO(Y ) and Y ∈ ı -RO(X ),

then A ∈ S ıO(X ).

Proof. Let A ∈ S ıO(Y ), then A ∈ ı-O(Y ) and for each x ∈ A, there exists a  ı-semi closed set

F in Y such that x ∈ F ⊆ A. Since Y ∈ ı -RO(X ), then Y ∈ ı-O(X ) and Since A ∈ ı-O(Y ), then

A ∈ ı-O(X ). Again since Y ∈ ı -RO(X ), then Y ∈  ı-SC (X ) and since F ∈  ı-SC (Y ). Then

F ∈  ı-SC (X ). Hence, A ∈ S ıO(X ). ���

From Proposition 2.26 and Proposition 2.28 we obtain the following result:

Corollary 2.29. Let (X , τ1, τ2) be a bitopological space and A, Y subsets of X such that A ⊆ Y

⊆ X and Y ∈ ı -RO(X ). Then A ∈ S ıO(Y ) if and only if A ∈ S ıO(X ).
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Proposition 2.30. Let Y be a subset of a space (X , τ1, τ2). If A ∈ S ıO(Y ) and Y ∈  ı-SC (X ),

then for each x ∈ A, there exists a  ı-semi closed set F in X such that x ∈ F ⊆ A.

Proof. Let A ∈ S ıO(Y ), then A ∈ ı-O(Y ) and for each x ∈ A, there exists a  ı-semi closed set

F in Y such that x ∈ F ⊆ A. Since Y ∈  ı-SC (X ), Then F ∈  ı-SC (X ), which compleates the

proof. ���

The following example satisfies the conditions stated in Proposition 2.30, but A ∉ S ıO(X ).

Example 2.31. Consider X ={a,b,c ,d }, with two topologies τ1 = {X , φ, {b}, {a,b}, {b,c}, {a,b,c}}

and τ2 = {X , φ, {b}, {c ,d }, {b,c ,d }}. And let (Y , σ1, σ2) be a subspace of a space (X , τ1, τ2)

such that Y = {a,c ,d } ∈  ı-SC (X ) with the relative topologies σ1 and σ2 in Y such that σ1 =

{X ,φ, {a}, {c}, {a,c}} and σ2 = {X ,φ, {c ,d }}. Then the subset {a} is S1-open in (Y ,σ1,σ2) but {a}

is not S1-open in (X ,τ1,τ2).

Proposition 2.32. Let A and Y be any subsets of a space X . If A ∈ S ıO(X ) and Y ∈ ı -RO(X ),

then A∩Y ∈ S ıO(X ).

Proof. Obvious. ���

Definition 2.33. A subset B of a space X is called S ı -closed if X \ B is S ı -open. The family of

all S ı -closed subsets of bitopological space (X , τ1, τ2) is denoted by S ıC (X ,τ1,τ2) or S ıC (X ).

Proposition 2.34. A subset B of a space X is S ı -closed if and only if B is an ı-closed set and it is

an intersection of  ı-semi open sets.

Proof. Obvious. ���

Proposition 2.35. Let {Bα, α ∈ ∆} be a collection of S ı -closed sets in a bitopological space X .

Then
⋂

{Bα,α ∈∆} is S ı -closed set.

Proof. Follows from Proposition 2.8. ���

Proposition 2.36. The union of two S ı -closed sets is S ı -closed.

Proof. Follows from Proposition 2.9. ���

All of the following results are true by using complement.

Proposition 2.37. If (X , τ ) is T1 space, then S ıC (X ) ≡ ı −C (X ).

Proof. The proof is directly from Proposition 2.11. ���

Remark 2.38. Let (X , τ ) is T1 space, then the family of  ı-SO(X ) is discreate topology in X .
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Proposition 2.39. Let B be any subset of a space X . If B ∈ ı −δC (X ), then B ∈ S ıC (X ).

Proof. Similar to Proposition 2.13 taking A = X \ B . ���

Corollary 2.40. Each (ı , )−θ-closed set is S ı -closed.

Corollary 2.41. Every ı -reguler closed set is S ı-closed.

Proposition 2.42. For any subset B of a space (X , τ1, τ2). The following statements are equiv-

alent:

(1) B is ı-closed and -open.

(2) B is S ı -closed and -open.

(3) B is ı −α-closed and -open.

(4) B is ı -pre-closed and -open.

Proof. Similar to Proposition 2.22 taking A = X \ B . ���

Proposition 2.43. For any subset A of a space (X , τ1, τ2). The following statements are equiva-

lent:

(1) A is ı -regular closed.

(2) A is S ı -closed and  ı-semi open.

(3) A is ı-closed and  ı-semi open.

(4) A is ı −α-closed and  ı-semi open.

(5) A is ı -pre-closed and  ı-semi open.

Proof. Similar to Proposition 2.23 taking A = X \ B . ���

Proposition 2.44. Let Y be a subset of a space (X , τ1, τ2). If B ∈ S ıC (X ) and B ⊆ Y , then

B ∈ S ıC (Y ).

Proof. The proof is similar to Proposition 2.26. ���

Proposition 2.45. Let Y be a subset of a space (X , τ1, τ2). If B ∈ S ıC (Y ) and Y ∈ ı -RC (X ),

then B ∈ S ıC (X ).

Proof. The proof is similar to Proposition 2.28. ���

From Proposition 2.44 and Proposition 2.45 we obtain the following result:

Corollary 2.46. Let (X , τ1, τ2) be a bitopological space and B, Y subsets of X such that B ⊆ Y

⊆ X and Y ∈ ı -RC (X ). Then B ∈ S ıC (Y ) if and only if B ∈ S ıC (X ).
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Proposition 2.47. Let B and Y be any subsets of a space X . If B ∈ S ıC (X ) and Y ∈ ı -RC (X ),

then B∪Y ∈ S ıC (X ).

Proof. The proof is directly from Proposition 2.32, and using complements. ���

Definition 2.48. For a subset A of a space X and x ∈ X , we introduce the following statements:

(1) A subset N of X is said to be S ı -neighborhood of x, if there exists an S ı -open set U in X

such that x ∈U ⊆ N .

(2) S ı -interior of a set A (briefly, S ı Int (A)) is the union of all S ı-open sets which are contained

in A.

(3) A point x ∈ X is said to be S ı -limit point of A if for each S ı -open set U containing x,

U ∩ (A \ {x}) 6= φ. The set of all S ı -limit points of A is called a S ı -derived set of A and is

denoted by S ı D(A).

(4) A point x ∈ X is said to be in S ı -closure of A if for each S ı -open set U containing x such

that U ∩ A 6=φ.

(5) S ı -closure of a set A (briefly S ıC l (A)) is the intersection of all S ı -closed sets containing A.

(6) S ı -boundary of A is defined as S ıC l (A) \ S ı Int (A) and is denoted by S ı Bd (A).

3. S ı -Continuous Functions

Definition 3.1. A function f : X → Y is called S ı -continuous at a point x ∈ X if for each ı-open

set V of Y containing f (x), there exists an S ı-open set U of X containing x such that f (U ) ⊆V .

If f is S ı -continuous at every point x of X , then it is called S ı -continuous.

Definition 3.2. A function f : X → Y is called ı -almost S ı -continuous at a point x ∈ X if for

each ı-open set V of Y containing f (x), there exists an S ı -open set U of X containing x such

that f (U ) ⊆ ı Int ( C lV ). If f is ı -almost S ı -continuous at every point x of X , then it is called

ı -almost S ı -continuous.

It is obvious from the definition that S ı -continuity implies ı -almost S ı-continuity. How-

ever, the converse is not true in general as it is shown in the following example.

Example 3.3. Let X = {a,b,c}, τ1 = {X , φ, {a}, {a,b}}, τ2 = {X , φ, {c}, {b,c}}, σ1 = {X , φ, {a}, {c},

{a,c}}, σ2 = {X , φ, {b,c}}. We define a function f : (X ,τ1,τ2) → (X ,σ1,σ2) as an identity func-

tion. Then f is ı -almost S ı -continuous but not S ı -continuous at c , because {c} is an ı-open

set in (X , σ1, σ2) containing f (c) = c , there exists no S ı -open set U in (X , τ1, τ2) containing c

such that x ∈ f (U ) ⊆ {c}.



90 ALIAS B. KHALAF AND ALAN M. OMER

Proposition 3.4. Let X and Y be bitopological spaces. A function f : X → Y is S ı -continuous if

and only if the inverse image under f of every ı-open set in Y is an S ı -open in X .

Proof. It is clear. ���

The proof of the following corollaries follows directly from thier definitions.

Corollary 3.5. Every S ı -continuous function is ı-continuous.

Corollary 3.6. Every ı -super continuous function is S ı -continuous.

Corollary 3.7. Every ı −δ-continuous function is ı -almost S ı -continuous.

Corollary 3.8. Every ı -almost S ı -continuous function is ı -almost continuous.

By Definition 3.1, Definition 3.2, Corollary 3.5, Corollary 3.6, Corollary 3.7, Corollary 3.8,

we obtain the following diagram.

ı -super continuous //

��

S ı -continuous //

��

ı-continuous

��

ı −δ-continuous // ı -almost S ı -continuous // ı -almost continuous

Diagram 2

In the sequel, we shall show that none of the implications that concerning S ı -continuity

and ı -almost S ı -continuity in Diagram 2 is reversible.

Example 3.9. Let X = {a,b,c ,d } with four topologies τ1 = {X , φ, {c}, {a,d }, {a,c ,d }}, τ2 = {X ,

φ, {b}, {a,b,d }}, σ1 = {X , φ, {a}, {b,c}, {a,b,c}} and σ2 = {X , φ, {d }, {a,b,c}}, then the family of

S ı -open subset of X with respect to τ1 and τ2 is:

S ıO(X ) = {X , φ, {c}, {a,c ,d }}. We define a function f : (X ,τ1,τ2) → (X ,σ1,σ2) as follows f (a) =

b, f (b) = d , f (c) = a, f (d ) = c . Then f is 1-continuous but not S1-continuous, because {b,c}

is an ı-open set in (X , σ1, σ2) containing f (a) = b, there exists no S ı -open set U in (X , τ1, τ2)

containing a such that b ∈ f (U ) ⊆ {b,c}.

Example 3.10. In Example 3.9. If we have f : (X ,τ1,τ2) → (X ,σ1,σ2) be a function defined as

follows f (a) = a, f (b)= f (c) = d , f (d ) = b. Then f is ı -almost continuous but not ı -almost

S ı -continuous, because {a} is an ı-open set in (X , σ1, σ2) containing f (a) = a, there exists

no S ı -open set U in (X , τ1, τ2) containing a such that x ∈ f (U ) ⊆ ı Int ( C l {a}) implies that

f (U ) ⊆ {a,b,c}.
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Example 3.11. Consider a space X with co-finite topology. Let f : X → X be an identity func-

tion. Since X is T1, then the family of ı-open sets and S ı -open sets of X are identical. Hence

f is S ı-continuous but not ı -super continuous, because the -closure of every ı-open set is

the whole space X . So there exists no ı-open set U containing x such that f (ı Int ( C l (U ))⊆V

where V is an ı-open set in Y .

Example 3.12. Let X = Z with co-finite topology, and Y = {a,b} with discrete topology. Let

f : X → Y defined by

f (x)= a , if x is even

f (x)= b , if x is odd.

Hence f is ı -almost S ı -continuous but not ı −δ-continuous, because the -closure of every

ı-open set in X is the whole space X . So there exists no ı-open set U containing x such that

f (ı Int ( C l (U ))⊆ ı Int ( C l (V )) where V is an ı-open set in Y .

Here, we begin with the following characterizations of S ı -continuous functions.

Proposition 3.13. For a function f : X → Y , the following statements are equivalent:

(1) f is S ı -continuous.

(2) f −1(V ) is S ı -open set in X , for each ı-open set V in Y .

(3) f −1(F ) is S ı -closed set in X , for each ı-closed set F in Y .

(4) f (S ıC l (A)) ⊆ ıC l ( f (A)), for each subset A of X .

(5) S ıC l ( f −1(B )) ⊆ f −1(ıC l (B )), for each subset B of Y .

(6) f −1(ı Int (B ))⊆ S ı Int ( f −1(B )), for each subset B of Y .

(7) ı Int ( f (A)) ⊆ f (S ı Int (A)), for each subset A of X .

Proof. Straightforward. ���

Proposition 3.14. For a function f : X → Y , the following statements are equivalent:

(1) f is ı -almost S ı -continuous.

(2) For each x ∈ X and each ı -regular open set V of Y containing f (x), there exists a S ı -open

U in X containing x such that f (U ) ⊆V .

(3) For each x ∈ X and each ı −δ open set V of Y containing f (x), there exists a S ı -open U in

X containing x such that f (U ) ⊆V .

Proof. (1) ⇒ (2). Let x ∈ X and let V be any ı -regular open set of Y containing f (x). By

(1), there exists a S ı -open set U of X containing x such that f (U ) ⊆ ı Int ( C l (V )). since V is

ı -regular open, then ı Int ( C l (V )) =V . Therefore, f (U ) ⊆V .
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(2) ⇒ (3). Let x ∈ X and let V be any ı  −δ-open set of Y containing f (x). Then for each

f (x) ∈ V , there exists an ı-open set G containing f (x) such that G ⊆ ı Int ( C l (G)) ⊆ V . Since

ı Int ( C l (G)) is ı -regular open set of Y containing f (x). By (2), there exists a S ı -open set U

in X containing x such that f (U ) ⊆ ı Int ( C l (G))⊆V . This completes the proof.

(3) ⇒ (1). Let x ∈ X and let V be any ı-open set of Y containing f (x). Then ı Int ( C l (V ) is

ı  −δ-open set of Y containing f (x). By (3), there exists a S ı -open set U in X containing x

such that f (U ) ⊆ ı Int ( C l (V )). Therefore, f is ı -almost S ı -continuous. ���

Proposition 3.15. For a function f : X → Y , the following statements are equivalent:

(1) f is ı -almost S ı -continuous.

(2) f −1(ı Int ( C l (V ))) is S ı -open set in X , for each ı-open set V in Y .

(3) f −1(ıC l (  Int (F ))) is S ı -closed set in X , for each ı-closed set F in Y .

(4) f −1(F ) is S ı -closed set in X , for each ı -regular closed set F of Y .

(5) f −1(V ) is S ı -open set in X , for each ı -regular open set V of Y .

Proof. (1) ⇒ (2). Let V be any ı-open set in Y . We have to show that f −1(ı Int ( C l (V ))) is

S ı -open set in X . Let x ∈ f −1(ı Int ( C l (V ))). Then f (x) ∈ ı Int ( C l (V )) and ı Int ( C l (V )) is an

ı -regular open set in Y . Since f is ı -almost S ı -continuous. Then by Proposition 3.14, there

exists a S ı -open set U of X containing x such that f (U ) ⊆ ı Int ( C l (V )). Which implies that

x ∈U ⊆ f −1(ı Int ( C l (V ))). Therefore, f −1(ı Int ( C l (V ))) is S ı -open set in X .

(2) ⇒ (3). Let F be any ı-closed set of Y . Then Y \F is an ı-open set of Y . By (2), f −1(ı Int ( C l (Y \

F ))) is S ı -open set in X and f −1(ı Int ( C l (Y \F ))) = f −1(ı Int (Y \  Int (F )))= f −1(Y \ıC l (  Int (F )))=

X \ f −1( ıC l (  Int (F ))) is S ı -open set in X and hence f −1(ıC l (  Int (F ))) is S ı -closed set in X .

(3) ⇒ (4). Let F be any ı -regular closed set of Y . Then F is an ı-closed set of Y . By (3),

f −1(ıC l (  Int (F ))) is S ı -closed set in X . Since F is ı -regular closed set. Then f −1(ıC l (  Int (F )))=

f −1(F ). Therefore, f −1(F ) is S ı -closed set in X .

(4) ⇒ (5). Let V be any ı -regular open set of Y . Then Y \ V is ı -regular closed set of Y and

by (4), we have f −1(Y \ V ) = X \ f −1(V ) is S ı -closed set in X and hence f −1(V ) is S ı -open set

in X .

(5) ⇒ (1). Let x ∈ X and let V be any ı -regular open set of Y containing f (x). Then x ∈ f −1(V ).

By (5), we have f −1(V ) is S ı -open set in X . Therefore, we obtain f ( f −1(V )) ⊆ V . Hence by

Proposition 3.14, f is ı -almost S ı -continuous. ���

Proposition 3.16. For a function f : X → Y , the following statements are equivalent:

(1) f is ı -almost S ı -continuous.

(2) S ıC l ( f −1(V )) ⊆ f −1(ıC l (V )), for each  ı −β-open set V of Y .

(3) f −1(ı Int (F ))⊆ S ı Int ( f −1(F )), for each  ı −β-closed set F of Y .
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(4) f −1(ı Int (F ))⊆ S ı Int ( f −1(F )), for each  ı-semi closed set F of Y .

(5) S ıC l ( f −1(V )) ⊆ f −1(ıC l (V )), for each  ı-semi open set V of Y .

Proof. (1) ⇒ (2). Let V be any  ı −β-open set of Y . Since ıC l (V ) is ı -reguler closed set in

Y and f is ı -almost S ı -continuous. Then by Proposition 3.15, f −1(V ) is S ı -closed set in X .

Therefore, we obtain S ıC l ( f −1(V )) ⊆ f −1(ıC l (V )).

(2) ⇒ (3). Let F be any  ı −β-closed set of Y . Then Y \ F is  ı −β-open set of Y and by

(2), we have S ıC l ( f −1(Y \ F )) ⊆ f −1(ıC l (Y \ F )) ⇔ S ıC l (X \ f −1(F )) ⊆ f −1(Y \ ı Int (F )) ⇔ X \

S ı Int ( f −1(F )) ⊆ X \ f −1(ı Int (F )). Therefore, f −1(ı Int (F ))⊆ S ı Int ( f −1(F )).

(3) ⇒ (4). This is obvious since every  ı-semi closed set is  ı −β-closed set.

(4) ⇒ (5). Let V be any  ı-semi open set of Y . Then Y \ V is  ı-semi closed set and by (4),

we have f −1(ı Int (Y \ V )) ⊆ S ı Int ( f −1(Y \ V )) ⇔ f −1(Y \ ıC l (V )) ⊆ S ı Int (X \ f −1(V )) ⇔ X \

f −1(ıC l (V )) ⊆ X \ S ıC l ( f −1(V )). Therefore, S ıC l ( f −1(V )) ⊆ f −1(ıC l (V )).

(5) ⇒ (1). Let F be any ı -reguler closed set of Y . Then F is  ı-semi open set of Y . By (5),

we have S ıC l ( f −1(F )) ⊆ f −1(ıC l (F )) = f −1(F ). This shows that f −1(F ) is S ı -closed set in X .

Therefore, by Proposition 3.15, f is ı -almost S ı -continuous. ���

Proposition 3.17. A function f : X → Y is ı -almost S ı -continuous if and only if f −1(V ) ⊆

S ı Int ( f −1(ı Int ( C l (V )))) for each ı-open set V of Y .

Proof. Necessity. Let V be any ı-open set of Y . Then V ⊆ ı Int ( C l (V )) and ı Int ( C l (V ))

is ı -reguler open set in Y . Since f is ı -almost S ı -continuous, by Proposition 3.15, f −1(

ı Int ( C l (V ))) is S ı -open set in X and hence we obtain that f −1(V ) ⊆ f −1(ı Int ( C l (V ))) =

S ı Int ( f −1(ı Int ( C l (V )))).

Sufficiency. Let V be any ı -regular open set of Y . Then V is ı-open set of Y . By hypothesis,

we have f −1(V ) ⊆ S ı Int ( f −1(ı Int ( C l (V )))) = S ı Int ( f −1(V )). Therefore, f −1(V ) is S ı -open

set in X and hence by Proposition 3.15, f is ı -almost S ı-continuous. ���

Corollary 3.18. A function f : X → Y is ı -almost S ı-continuous if and only if S ıC l ( f −1(ıC l (  Int (F ))))⊆

f −1(F ) for each ı-closed set F of Y .

Proposition 3.19. Let f : X → Y is an ı -almost S ı -continuous function and let V be any ı-

open subset of Y . If x ∈ S ıC l ( f −1(V )) \ f −1(V ), then f (x) ∈ S ıC l (V ).

Proof. Let x ∈ X be such that x ∈ S ıC l ( f −1(V )) \ f −1(V ) and suppose f (x) ∉ S ıC l (V ). Then

there exists an S ı -open set H containing f (x) such that H ∩V = φ. Then C l (H )∩V = φ

implies ı Int ( C l (H ))∩V = φ and ı Int ( C l (H )) is ı -regular open set. Since f is ı -almost

S ı -continuous, by Proposition 3.15, there exists an S ı -open set U in X containing x such that

f (U ) ⊆ ı Int ( C l (H )). Therefore, f (U )∩V =φ. However, since x ∈ S ıC l ( f −1(V )), U∩ f −1(V ) 6=

φ for every S ı -open set U in X containing x, so that f (U )∩V 6=φ. We have a contradiction. It

follows that f (x) ∈ S ıC l (V ). ���
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Proposition 3.20. A function f : X → Y is S ı -continuous if and only if f is ı-continuous and

for each x ∈ X and each ı-open set V of Y containing f (x), there exists an  ı-semi closed set F

in X containing x such that f (F ) ⊆V .

Proof. Necessity. Let x ∈ X and let V be any ı-open set of Y containing f (x). Since f is S ı -

continuous, there exists an S ı-open set U of X containing x such that f (U ) ⊆ V . Since U is

S ı -open set. Then for each x ∈U , there exists an  ı-semi closed set F of X such that x ∈ F ⊆U .

Therefore, we have f (F ) ⊆V . And also since f is S ı -continuous. Then f is ı-continuous.

Sufficiency. Let V be any ı-open set of Y . We have to show that f −1(V ) is S ı-open set in X .

Since f is ı-continuous, then f −1(V ) is ı-open set in X . Let x ∈ f −1(V ). Then f (x) ∈ V . By

hypothesis, there exists  ı-semi closed set F of X containing x such that f (F ) ⊆ V . Which

implies that x ∈ F ⊆ f −1(V ). Therefore, f −1(V ) is S ı -open set in X . Hence by Proposition 3.13,

f is S ı-continuous. ���

Proposition 3.21. The set of all points x of X at which f : X → Y is not ı -almost S ı-continuous

is identical with the union of the S ı -boundaries of the inverse images of ı -regular open subsets

of Y containing f (x).

Proof. If f is not ı -almost S ı -continuousat x ∈ X , then there exists an ı -regular open set V

containing f (x) such that for every S ı -open set U of X containing x, f (U )∩ (Y \ V ) 6=φ. This

means that for every S ı -open set U of X containing x, we must have U ∩ (X \ f −1(V )) 6= φ.

Hence, it follows that x ∈ S ıC l (X \ f −1(V )). But x ∈ f −1(V ) and hence x ∈ S ıC l ( f −1(V )). This

means that x belongs to the S ı -boundary of f −1(V ).

Conversely, suppose that x belongs to the S ı -boundary of f −1(V1) for some ı -regular open

subset V1 of Y such that f (x) ∈V1. Suppose that f is ı -almost S ı -continuousat at x. Then by

Proposition 3.14, there exists an S ı-open set U of X containing x such that f (U ) ⊆ V1. Then

we have U ⊆ f −1(V1). This shows that x ∈ S ı Int ( f −1(V1)). Therefore, we have x ∉ S ıC l (X \

f −1(V1)) and x ∉ S ı Bd ( f −1(V1)). But this is a contradiction. This means that f is not ı -almost

S ı -continuous. ���

In the next results, we find some conditions in which the restrictions of S ı -continuous

functions on subspaces are S ı -continuous.

Proposition 3.22. Let f : X → Y be S ı -continuous (resp., ı -almost S ı -continuous) function. If

A is ı −δ-open subset of X , then f |A : A → Y is S ı -continuous (resp., ı -almost S ı -continuous)

in the subspace A.

Proof. Let V be any ı-open (resp., ı -regular-open) set of Y . Since f is S ı -continuous (resp.,

ı -almost S ı -continuous). Then by Proposition 3.13 (resp., by Proposition 3.15), f −1(V ) is S ı -

open set in X . Since A is ı −δ-open subset of X implies that A is S ı -open. Then ( f |A)−1(V ) =
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f −1(V )∩ A is an S ı -open subset of A. This shows that f |A : A → Y is S ı -continuous (resp.,

ı -almost S ı -continuous). ���

Corollary 3.23. Let f : X → Y be S ı -continuous (resp., ı -almost S ı -continuous) function. If A

is either ı -regular open or ı  −θ-open subset of X , then f |A : A → Y is S ı -continuous (resp.,

ı -almost S ı -continuous) in the subspace A.

Proof. Since every ı -regular open or ı  −θ-open is ı  −δ-open set, This is an immediate

consequence of Proposition 3.22. ���

Proposition 3.24. A function f : X → Y is S ı -continuous (resp., ı -almost S ı -continuous). If

for each x ∈ X , there exists an ı -regular open set A of X containing x such that f |A : A → Y is

S ı -continuous (resp., ı -almost S ı -continuous).

Proof. Let x ∈ X , then by hypothesis, there exists an ı -regular open set A containing x such

that f |A : A → Y is S ı -continuous (resp., ı -almost S ı -continuous). Let V be any ı-open set

of Y containing f (x), there exists an S ı -open set U in A containing x such that ( f |A)(U ) ⊆ V

(resp., ( f |A)(U ) ⊆ ı Int ( C l (V ))). Since A is ı -reguler open set. By Proposition 2.28, U is

S ı -open set in X and hence f (U ) ⊆ V (resp., f (U ) ⊆ ı Int ( C l (V ))). This shows that f is S ı -

continuous (resp., ı -almost S ı -continuous). ���

Corollary 3.25. Let {Uα : α ∈ ∆} be an ı -reguler open cover of a bitopological space X . A

function f : X → Y is S ı -continuous (resp., ı -almost S ı -continuous) if and only if f |Uα : Uα →

Y is S ı -continuous (resp., ı -almost S ı -continuous) for each α ∈∆.

Proof. This is an immediate consequence of Corollary 3.23 and Proposition 3.24. ���

Proposition 3.26. If X = R ∪ S, where R and S are ı -regular open sets and f : X → Y is a

function such that both f |R and f |S are S ı -continuous (resp., ı -almost S ı -continuous), then

f is S ı -continuous (resp., ı -almost S ı -continuous).

Proof. Let V be any ı-open (resp., ı -regular open) set of Y . Then f −1(V ) = ( f |R)−1(V )∪

( f |S)−1(V ). Since f |R and f |S are S ı -continuous (resp., ı -almost S ı -continuous). Then by

Proposition 3.13 (resp., by Proposition 3.15), ( f |R)−1(V ) and ( f |S)−1(V ) are S ı -open sets in

R and S, respectively. Since R and S are ı -regular open sets in X , then by Proposition 2.28,

( f |R)−1(V ) and ( f |S)−1(V ) are S ı -open sets in X . Since union of two S ı -open sets is S ı -open.

Hence f −1(V ) is S ı -open set in X . Therefore, by Proposition 3.13 (resp., by Proposition 3.15),

f is S ı -continuous (resp., ı -almost S ı -continuous). ���

In general, if X =
⋃

{Kα : α ∈∆}, where each Kα is an ı -regular open set and f : X → Y is

a function such that f |Kα is S ı -continuous (resp., ı -almost S ı -continuous) for each α, then

f is S ı -continuous (resp., ı -almost S ı -continuous).
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Proposition 3.27. Let X = R1 ∪R2, where R1 and R2 are ı -regular open sets in X . Let f : R1 →

Y and g : R2 → Y be S ı -continuous (resp., ı -almost S ı -continuous). If f (x) = g (x) for each

x ∈ R1 ∩R2. Then h : R1 ∪R2 → Y such that

h(x)=

{

f (x) if x ∈ R1

g (x) if x ∈ R2

is S ı -continuous (resp., ı -almost S ı -continuous).

Proof. Let O be an ı-open (resp., ı -regular open) set of Y . Now h−1(O) = f −1(O)∪ g−1(O).

Since f is S ı -continuous (resp., ı -almost S ı -continuous), then by Proposition 3.13 (resp.,

by Proposition 3.15), f −1(O) is S ı -open set in R1. But R1 is ı -regular open set in X . Then

by Proposition 2.28, f −1(O) is S ı -open set in X . Similarly, g−1(O) is S ı -open set in R2 and

hence, S ı -open set in X . Since union of two S ı -open sets is S ı -open. Therefore, h−1(O) =

f −1(O)∪ g−1(O) is S ı -open set in X . Hence by Proposition 3.13 (resp., by Proposition 3.15), h

is S ı -continuous (resp., ı -almost S ı -continuous). ���
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