ALMOST p_s-CONTINUOUS FUNCTIONS

ALIAS B. KHALAF AND BARAVAN A. ASAAD

Abstract. The purpose of this paper is to introduce a new class of functions called almost p_s-continuous function by using p_s-open sets in topological spaces. Some properties and characterizations of this function are given.

1. Introduction

Throughout this paper, a space X mean a topological space with out any separation axiom. We recall the following definitions, notations and terminology. The closure (resp. interior) of a subset A of X is denoted by ClA (resp. $IntA$). A subset A of X is said to be preopen [19] (resp. semi-open [17], α-open [22], β-open [1], regular open [31] and regular semi-open [5]) if $A \subseteq IntClA$ (resp. $A \subseteq ClIntA$, $A \subseteq IntClIntA$, $A \subseteq ClIntClA$, $A = IntClA$ and $A = sIntsClA$). The complement of a preopen (resp. semi-open, α-open, β-open, regular open and regular semi-open) set is said to be preclosed (resp. semi-closed, α-closed, β-closed, regular closed and regular semi-open). The family of all preopen (resp. semi-open, α-open, regular open, regular semi-open and regular closed) subsets of a topological space X is denoted by $PO(X)$ (resp. $SO(X)$, $\alpha O(X)$, $RO(X)$, $R SO(X)$ and $RC(X)$). A function $f : X \rightarrow Y$ is said to be precontinuous [19] (resp. super continuous [20]) if the inverse image of each open subset of Y is preopen (resp. δ-open) in X. A function $f : X \rightarrow Y$ is said to be almost precontinuous [11] (resp. almost continuous in the sense of Singal and Singal [30], almost α-continuous [23], R-map [6], almost strongly θ-continuous [27], almost s-continuous [14], weakly θ-irresolute [10] and θ-irresolute [16]) if the inverse image of each regular open subset of Y is preopen (resp., open, α-open, regular open, θ-open, closed, semi-closed and intersection of regular open sets) in X. A function $f : X \rightarrow Y$ is said to be δ-continuous [24] (resp., almost strongly θ-continuous [27]) if for each $x \in X$ and each open set V of Y containing $f(x)$, there exists an open set U of X containing x such that $f(IntClU) \subseteq IntClV$ (resp., $f(ClU) \subseteq sClV$). A function $f : X \rightarrow Y$ is said to be irresolute [7] if the inverse image of each semi-open subset of Y is semi-open in X. A function $f : X \rightarrow Y$ is said to be weakly quasi-continuous [25] (resp. S-continuous [33]) if for every $F \in RC(Y)$, $f^{-1}(F) \in SO(X)$ (resp. $f^{-1}(F)$

Corresponding author: Alias B. Khalaf.
2010 Mathematics Subject Classification. Primary: 54A05, 54A10; Secondary: 54C05.
Key words and phrases. p_s-continuous, precontinuous, almost precontinuous functions.
is the union of regular closed sets of \(X \). A function \(f : X \to Y \) is said to be preopen \([19]\) (resp., semi-open \([26]\)) if the image of each open set of \(X \) is preopen (resp., semi-open) in \(Y \).

Definition 1.1 ([15]). A preopen subset \(A \) of a space \(X \) is called \(p_s \)-open if for each \(x \in A \), there exists a semi-closed set \(F \) such that \(x \in F \subseteq A \).

The family of all \(p_s \)-open subsets of a topological space \(X \) is denoted by \(P_s O(X) \).

Definition 1.2 ([32]). A subset \(A \) of a space \(X \) is called \(\delta \)-open (resp., \(\theta \)-open) if for each \(x \in A \), there exists an open set \(G \) such that \(x \in G \subseteq \text{IntCl} G \subseteq A \) (resp., \(x \in G \subseteq \text{Cl} G \subseteq A \)).

The intersection of all \(p_s \)-closed (resp. preclosed, semi-closed, \(\alpha \)-closed and \(\delta \)-closed) sets of \(X \) containing \(A \) is called the \(p_s \)-closure (resp. preclosure, semi-closure, \(\alpha \)-closure and \(\delta \)-closure) of \(A \) and is denoted by \(P_s \text{Cl} A \) (resp. \(p \text{Cl} A, s \text{Cl} A, \alpha \text{Cl} A \) and \(\text{Cl}_\delta A \)). The union of all \(p_s \)-open (resp. preopen, semi-open, \(\alpha \)-open and \(\delta \)-open) sets of \(X \) contained in \(A \) is called the \(p_s \)-interior (resp. preinterior, semi-interior, \(\alpha \)-interior and \(\delta \)-interior) of \(A \) and is denoted by \(P_s \text{Int} A \) (resp. \(p \text{Int} A, s \text{Int} A, \alpha \text{Int} A \) and \(\text{Int}_\delta A \)).

Proposition 1.3 ([15]). A subset \(A \) of a space \(X \) is \(p_s \)-open if and only if \(A \) is preopen and it is a union of semi-closed sets.

Definition 1.4 ([13]). A subset \(A \) of a space \(X \) is called \(\theta \)-semi-open if for each \(x \in A \), there exists a semi-open set \(G \) such that \(x \in G \subseteq \text{Cl} G \subseteq A \). The family of all \(\theta \)-semi-open subsets of a topological space \(X \) is denoted by \(\theta \text{SO}(X) \).

Definition 1.5. A space \(X \) is \(s \)-regular \([3]\) (resp., semi-regular \([28]\)) if for each \(x \in X \) and each open set \(G \) containing \(x \), there exists a semi-open (resp., regular open) set \(H \) such that \(x \in H \subseteq s \text{Cl} H \subseteq G \) (resp., \(x \in H \subseteq \text{Cl} H \subseteq G \)).

Definition 1.6. A space \(X \) is said to be:

1. extremally disconnected \([8]\) if \(\text{Cl} U \) is open for each open set \(U \).
2. hyperconnected \([9]\) if every nonempty open subset of \(X \) is dense in \(X \).
3. locally indiscrete \([9]\) if every open subset of \(X \) is closed.
4. semi-\(T_1 \) \([18]\) if to each pair of distinct points \(x, y \) of \(X \), there exists a pair of semi-open sets, one containing \(x \) but not \(y \) and the other containing \(y \) but not \(x \).

Proposition 1.7. The following statements are true:

1. A space \(X \) is semi-\(T_1 \) if and only if for any point \(x \in X \), the singleton set \(\{x\} \) is semi-closed. \([18]\).
2. A space \(X \) is extremally disconnected if and only if \(\text{RO}(X) = \text{RC}(X) \). \([11]\).
(3) If a space X is semi-T_1, then $P_3O(X) = PO(X)$. [15].

(4) If a topological space (X, τ) is locally indiscrete, then $P_3O(X) = \tau$. [15].

(5) If a topological space (X, τ) is s-regular, then $\tau \subseteq P_3O(X)$. [15].

Proposition 1.8 ([15]). For any subset A of a space X. The following are equivalent:

1. A is clopen.
2. A is p_3-open and closed.
3. A is α-open and closed.
4. A is preopen and closed.

Proposition 1.9 ([15]). For any subset A of a space X. The following are equivalent:

1. A is regular open.
2. A is p_3-open and semi-closed.
3. A is open and semi-closed.
4. A is α-open and semi-closed.
5. A is preopen and semi-closed.

Lemma 1.10 ([15]). The following properties are true:

1. For any subset A of a space X. If $A \in \theta SO(X)$ and $A \in PO(X)$, then $A \in P_3O(X)$.
2. If (X, τ) is extremally disconnected space and if $A \in \theta SO(X)$, then $A \in P_3O(X)$.
3. If (Y, τ_Y) is a subspace of a space (X, τ), if $A \in P_3O(Y, \tau_Y)$ and $Y \in RO(X, \tau)$, then $A \in P_3O(X)$.
4. If either $B \in RSO(X)$ or B is an open subspace of a space X and $A \in P_3O(X)$, then $A \cap B \in P_3O(B)$.

Lemma 1.11. The following statements are true:

1. If $R \in RO(X)$ and $P \in PO(X)$, then $R \cap P \in RO(P)$. [9].
2. Let A be a subset of a space (X, τ). Then $A \in PO(X, \tau)$ if and only if $sClA = IntClA$. [12].
3. Let Y be a dense subspace of X. If O is regular open in Y, then $O = Y \cap IntClO$. [29].
4. A subset A of a space (X, τ) is β-open if and only if ClA is regular closed. [4].

Lemma 1.12. Let A be a subset of a topological space (X, τ), then the following statement are true:

1. If $A \in SO(X)$, then $Cl_5A = ClA = P_3ClA = pClA = \alpha ClA$. [15].
2. If $A \in \beta O(X)$, then $\alpha ClA = ClA$. [2].
Definition 1.13 ([15]). A function \(f : X \rightarrow Y \) is called \(p_s \)-continuous at a point \(x \in X \) if for each open set \(V \) of \(Y \) containing \(f(x) \), there exists a \(p_s \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq V \). Equivalently, a function \(f : X \rightarrow Y \) is \(p_s \)-continuous if and only if \(f^{-1}(V) \) is \(p_s \)-open set in \(X \) for each open set \(V \) in \(Y \).

Proposition 1.14 ([21]). A function \(f : X \rightarrow Y \) is almost precontinuous if and only if \(f^{-1}(V) \) is \(p_s \)-open set in \(X \), for every \(\delta \)-open set \(V \) in \(Y \).

Lemma 1.15. The following results can be proved easily:

1. If \(f : X \rightarrow Y \) is almost precontinuous and \(Y \) is semi-regular, then \(f \) is precontinuous.
2. If \(f : X \rightarrow Y \) is almost continuous and \(Y \) is semi-regular, then \(f \) is continuous.

Theorem 1.16 ([15]). If \(f : X \rightarrow Y \) is a continuous and open function and \(V \) is a \(p_s \)-open set of \(Y \), then \(f^{-1}(V) \) is a \(p_s \)-open set of \(X \).

Theorem 1.17 ([12]). A function \(f : X \rightarrow Y \) is preopen if and only if \(f^{-1}(Cl(V)) \subseteq Cl(f^{-1}(V)) \), for each semi-open set \(V \) of \(Y \).

2. Almost \(p_s \)-Continuous Functions

In this section, we introduce the concept of almost \(p_s \)-continuous functions by using \(p_s \)-open sets. Some properties and characterizations are given.

Definition 2.1. A function \(f : X \rightarrow Y \) is called almost \(p_s \)-continuous at a point \(x \in X \) if for each open set \(V \) of \(Y \) containing \(f(x) \), there exists a \(p_s \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq Int(Cl(V)) \). If \(f \) is almost \(p_s \)-continuous at every point of \(X \), then it is called almost \(p_s \)-continuous.

Lemma 2.2. The following results follows directly from their definitions:

1. Every \(p_s \)-continuous function is almost \(p_s \)-continuous.
2. Every almost \(p_s \)-continuous function is almost precontinuous.

Proposition 2.3. If a function \(f : X \rightarrow Y \) is \(\delta \)-continuous, then \(f \) is almost \(p_s \)-continuous.

Proof. Let \(x \in X \) and \(V \) be any open set of \(Y \) containing \(f(x) \). Since \(f \) is \(\delta \)-continuous, there exists an open set \(U \) of \(X \) containing \(x \) such that \(f(Int(Cl(U))) \subseteq Int(Cl(V)) \). Since \(Int(Cl(U)) \) is a regular open set, hence it is \(p_s \)-open set of \(X \) containing \(x \). Therefore, \(f \) is almost \(p_s \)-continuous.

From Lemma 2.2, Proposition 2.3 and Diagram 3.1 in [15], we obtain the following diagram:
super continuous \rightarrow δ-continuous \rightarrow p_s-continuous \rightarrow almost p_s-continuous \rightarrow precontinuous \rightarrow almost precontinuous

Diagram 2.1

In the sequel, we shall show that none of the implications that concerning almost p_s-continuity in Diagram 2.1 is reversible.

Example 2.4. Let $X = \{a, b, c, d\}$ with the two topologies $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, X, \{c\}, \{a, d\}, \{a, c, d\}\}$; then the family of p_s-open subsets of X with respect to τ is: $P_sO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is almost p_s-continuous, but it is not p_s-continuous, because $\{a, d\}$ is an open set in (X, τ) containing $f(d) = d$, there exist no p_s-open set U in (X, τ) containing d such that $d \in f(U) \subseteq \{a, d\}$.

Example 2.5. Let $X = \{a, b, c, d\}$ with the two topologies $\tau = \{\phi, X, \{c\}, \{a, d\}, \{a, c, d\}\}$ and $\sigma = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$; then the family of p_s-open subsets of X with respect to τ is: $P_sO(X) = \{\phi, X, \{c\}, \{a, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be a function defined as follows: $f(a) = f(b) = f(c) = a$ and $f(d) = b$. Then f is almost precontinuous (see Example 4.5 [21]). However f is not almost p_s-continuous since $\{b, c\}$ is an open set in (X, τ) containing $f(d) = b$, there exist no p_s-open set U in (X, τ) containing d such that $f(\{d\}) = b \in f(U) \subseteq \text{IntCl}\{b, c\} = \{b, c\}$.

Example 2.6. Let $X = \{a, b, c, d\}$ with the two topologies $\tau = \{\phi, X, \{c\}, \{a, d\}, \{a, c, d\}\}$, $\{a, c, d\}$ and let $Y = \{x, y, z\}$ with the topology $\sigma = \{\phi, Y, \{x\}, \{y\}, \{x, y\}\}$; then the family of p_s-open subset of X with respect to τ is: $P_sO(X) = \{\phi, X, \{c\}, \{a, d\}, \{a, c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be a function defined as follows: $f(a) = z$ and $f(b) = f(c) = f(d) = y$. Then f is almost p_s-continuous. But f is not almost continuous [21] Example 4.2 and hence it is not δ-continuous.

Theorem 2.7. For a function $f : X \rightarrow Y$, the following statements are equivalent:

1. f is almost p_s-continuous.
2. For each $x \in X$ and each open set V of Y containing $f(x)$, there exists a p_s-open set U in X containing x such that $f(U) \subseteq sClV$.
(3) For each \(x \in X \) and each regular open set \(V \) of \(Y \) containing \(f(x) \), there exists a \(p_s \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \).

(4) For each \(x \in X \) and each \(\delta \)-open set \(V \) of \(Y \) containing \(f(x) \), there exists a \(p_s \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq V \).

Proof. (1) \(\Rightarrow \) (2). Let \(x \in X \) and let \(V \) be any open set of \(Y \) containing \(f(x) \). By (1), there exists a \(p_s \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq IntCIV \). Since \(V \) is open, hence \(V \) is preopen set. Therefore, by Lemma 1.11(2), \(f(U) \subseteq sCIV \).

(2) \(\Rightarrow \) (3). Let \(x \in X \) and let \(V \) be any regular open set of \(Y \) containing \(f(x) \). Then \(V \) is an open set of \(Y \) containing \(f(x) \). By (2), there exists a \(p_s \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq sCIV \). Since \(V \) is regular open and hence is preopen set. Therefore, by Lemma 1.11(2), \(f(U) \subseteq IntCIV \). Since \(V \) is regular open, then \(f(U) \subseteq V \).

(3) \(\Rightarrow \) (4). Let \(x \in X \) and let \(V \) be any \(\delta \)-open set of \(Y \) containing \(f(x) \). Then for each \(f(x) \in V \), there exists an open set \(G \) containing \(f(x) \) such that \(G \subseteq IntCIG \subseteq V \). Since \(IntCIG \) is a regular open set of \(Y \) containing \(f(x) \), by (3), there exists a \(p_s \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq IntCIV \). This completes the proof.

(4) \(\Rightarrow \) (1). Let \(x \in X \) and let \(V \) be any open set of \(Y \) containing \(f(x) \). Then \(IntCIV \) is \(\delta \)-open set of \(Y \) containing \(f(x) \). By (4), there exists a \(p_s \)-open set \(U \) in \(X \) containing \(x \) such that \(f(U) \subseteq IntCIV \). Therefore, \(f \) is almost \(p_s \)-continuous. \(\Box \)

Theorem 2.8. For a function \(f : X \rightarrow Y \), the following statements are equivalent:

(1) \(f \) is almost \(p_s \)-continuous.

(2) \(f^{-1}(IntCIV) \) is \(p_s \)-open set in \(X \), for each open set \(V \) in \(Y \).

(3) \(f^{-1}(CICIntF) \) is \(p_s \)-closed set in \(X \), for each closed set \(F \) in \(Y \).

(4) \(f^{-1}(F) \) is \(p_s \)-closed set in \(X \), for each regular closed set \(F \) of \(Y \).

(5) \(f^{-1}(V) \) is \(p_s \)-open set in \(X \), for each regular open set \(V \) of \(Y \).

Proof. (1) \(\Rightarrow \) (2). Let \(V \) be any open set in \(Y \). We have to show that \(f^{-1}(IntCIV) \) is \(p_s \)-open set in \(X \). Let \(x \in f^{-1}(IntCIV) \). Then \(f(x) \in IntCIV \) and \(IntCIV \) is a regular open set in \(Y \). Since \(f \) is almost \(p_s \)-continuous, by Theorem 2.7, there exists a \(p_s \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq IntCIV \). Which implies that \(x \in U \subseteq f^{-1}(IntCIV) \). Therefore, \(f^{-1}(IntCIV) \) is \(p_s \)-open set in \(X \).

(2) \(\Rightarrow \) (3). Let \(F \) be any closed set of \(Y \). Then \(Y \setminus F \) is an open set of \(Y \). By (2), \(f^{-1}(IntCl(Y \setminus F)) \) is \(p_s \)-open set in \(X \) and \(f^{-1}(IntCl(Y \setminus F)) = f^{-1}(Int(Y \setminus IntF)) = f^{-1}(Y \setminus ClIntF) = X \setminus f^{-1}(ClIntF) \) is \(p_s \)-open set in \(X \) and hence \(f^{-1}(ClIntF) \) is \(p_s \)-closed set in \(X \).

(3) \(\Rightarrow \) (4). Let \(F \) be any regular closed set of \(Y \). Then \(F \) is a closed set of \(Y \). By (3), \(f^{-1}(ClIntF) \) is \(p_s \)-closed set in \(X \). Since \(F \) is regular closed set, then \(f^{-1}(ClIntF) = f^{-1}(F) \). Therefore,
$f^{-1}(F)$ is p_s-closed set in X.

(4) \Rightarrow (5). Let V be any regular open set of Y. Then $Y \setminus V$ is regular closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is p_s-closed set in X and hence $f^{-1}(V)$ is p_s-open set in X.

(5) \Rightarrow (1). Let $x \in X$ and let V be any regular open set of Y containing $f(x)$. Then $x \in f^{-1}(V)$. By (5), we have $f^{-1}(V)$ is p_s-open set in X. Therefore, we obtain $f(f^{-1}(V)) \subseteq V$. Hence by Theorem 2.7, f is almost p_s-continuous.

The following result can be proved easily from the above theorem.

Proposition 2.9. Let $f : X \to Y$ be a function. Let B be any basis for τ_s in Y. Then f is almost p_s-continuous if and only if for each $B \in B$, $f^{-1}(B)$ is a p_s-open subset of X.

Theorem 2.10. For a function $f : X \to Y$, the following statements are equivalent:

1. f is almost p_s-continuous.
2. $f(P_sClA) \subseteq Cl_\delta f(A)$, for each $A \subseteq X$.
3. $P_sCl f^{-1}(B) \subseteq f^{-1}Cl_\delta(B)$, for each $B \subseteq Y$.
4. $f^{-1}(F)$ is p_s-closed set in X, for each δ-closed set F of Y.
5. $f^{-1}(V)$ is p_s-open set in X, for each δ-open set V of Y.
6. $f^{-1}(Int_\delta B) \subseteq P_sInt f^{-1}(B)$, for each $B \subseteq Y$.

Proof. (1) \Rightarrow (2). Let A be a subset of X. Since $Cl_\delta f(A)$ is δ-closed set in Y, so $Cl_\delta f(A) = \cap \{F_\alpha : F_\alpha \in RC(Y), \alpha \in \Lambda\}$, where Λ is an index set. Then $A \subseteq f^{-1}(Cl_\delta f(A)) = f^{-1}(\cap \{F_\alpha : \alpha \in \Lambda\}) = \cap \{f^{-1}(F_\alpha) : \alpha \in \Lambda\}$. By (1) and Theorem 2.8, $f^{-1}(Cl_\delta f(A))$ is p_s-closed set of X. Hence $P_sCl A \subseteq f^{-1}(Cl_\delta f(A))$. Therefore, we obtain that $f(P_sCl A) \subseteq Cl_\delta f(A)$.

(2) \Rightarrow (3). Let B be any subset of Y. Then $f^{-1}(B)$ is a subset of X. By (2), we have $f(P_sCl f^{-1}(B)) \subseteq Cl_\delta f(f^{-1}(B)) = Cl_\delta B$. Hence $P_sCl f^{-1}(B) \subseteq f^{-1}(Cl_\delta B)$.

(3) \Rightarrow (4). Let F be any δ-closed set of Y. By (3), we have $P_sCl f^{-1}(F) \subseteq f^{-1}(Cl_\delta F) = f^{-1}(F)$ and hence $f^{-1}(F)$ is p_s-closed set in X.

(4) \Rightarrow (5). Let V be any δ-open set of Y. Then $Y \setminus V$ is δ-closed set of Y and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is p_s-closed set in X. Hence $f^{-1}(V)$ is p_s-open set in X.

(5) \Rightarrow (6). For each subset B of Y. We have $Int_\delta B \subseteq B$. Then $f^{-1}(Int_\delta B) \subseteq f^{-1}(B)$. By (5), $f^{-1}(Int_\delta B)$ is p_s-open set in X. Then $f^{-1}(Int_\delta B) \subseteq P_sInt f^{-1}(B)$.

(6) \Rightarrow (1). Let $x \in X$ and V be any regular open set of Y containing $f(x)$. Since V is a regular open set, hence it is δ-open and by (6), $f^{-1}(Int_\delta V) \subseteq P_sInt f^{-1}(V)$. Therefore, $f^{-1}(V) \subseteq P_sInt f^{-1}(V)$, so $f^{-1}(V)$ is a p_s-open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence, by Theorem 2.7, f is almost p_s-continuous.

Theorem 2.11. For a function $f : X \to Y$, the following statements are equivalent:
(1) f is almost p_s-continuous.

(2) $P_sCl f^{-1}(V) \subseteq f^{-1}(CIV)$, for each β-open set V of Y.

(3) $f^{-1}(Int F) \subseteq P_sInt f^{-1}(F)$, for each β-closed set F of Y.

(4) $f^{-1}(Int F) \subseteq P_sInt f^{-1}(F)$, for each semi-closed set F of Y.

(5) $P_sCl f^{-1}(V) \subseteq f^{-1}(CIV)$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Let V be any β-open set of Y. It follows from Lemma 1.11(4) that CIV is regular closed set in Y. Since f is almost p_s-continuous, by Theorem 2.8, $f^{-1}(CIV)$ is p_s-closed set in X. Therefore, we obtain $P_sCl f^{-1}(V) \subseteq f^{-1}(CIV)$.

(2) \Rightarrow (3). Let F be any β-closed set of Y. Then $Y \setminus F$ is β-open set of Y and by (2), we have $P_sCl f^{-1}(Y \setminus F) \subseteq f^{-1}(Cl(Y \setminus F))$ and $P_sCl(X \setminus f^{-1}(F)) \subseteq f^{-1}(Y \setminus Int F)$ and hence, $X \setminus P_sInt f^{-1}(F) \subseteq X \setminus f^{-1}(Int F)$. Therefore, $f^{-1}(Int F) \subseteq P_sInt f^{-1}(F)$.

(3) \Rightarrow (4). Obvious since every semi-closed set is β-closed.

(4) \Rightarrow (5). Let V be any semi-open set of Y. Then $Y \setminus V$ is semi-closed set in Y and by (4), we have $f^{-1}(Int(Y \setminus V)) \subseteq P_sInt f^{-1}(Y \setminus V)$ and $f^{-1}(Y \setminus CIV) \subseteq P_sInt(X \setminus f^{-1}(V))$ and hence, $X \setminus f^{-1}(CIV) \subseteq X \setminus P_sCl f^{-1}(V)$. Therefore, $P_sCl f^{-1}(V) \subseteq f^{-1}(CIV)$.

(5) \Rightarrow (1). Let F be any regular closed set of Y. Then F is a semi-open set of Y. By (5), we have $P_sCl f^{-1}(F) \subseteq f^{-1}(CIV) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is a p_s-closed set in X. Therefore, by Theorem 2.8, f is almost p_s-continuous. \Box

Corollary 2.12. For a function $f : X \rightarrow Y$, the following statements are equivalent:

(1) f is almost p_s-continuous.

(2) $P_sCl f^{-1}(V) \subseteq f^{-1}(aCIV)$, for each β-open set V of Y.

(3) $P_sCl f^{-1}(V) \subseteq f^{-1}(Cl V)$, for each β-open set V of Y.

(4) $P_sCl f^{-1}(V) \subseteq f^{-1}(P_sCIV)$, for each semi-open set V of Y.

(5) $P_sCl f^{-1}(V) \subseteq f^{-1}(pCIV)$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Follows from Theorem 2.11 and Lemma 1.12(2).

(2) \Rightarrow (3). Follows from the fact that $aCIV \subseteq Cl V$.

(3) \Rightarrow (4) and (4) \Rightarrow (5). Follows from Theorem 2.11 and Lemma 1.12(1).

(5) \Rightarrow (1). Follows from Theorem 2.11 and Lemma 1.12(1).

\Box

The following result also can be concluded directly.

Corollary 2.13. For a function $f : X \rightarrow Y$, the following statements are equivalent:

(1) f is almost p_s-continuous.
(2) $f^{-1}(\alpha \operatorname{Int} F) \subseteq P_s \operatorname{Int} f^{-1}(F)$, for each β-closed set F of Y.
(3) $f^{-1}(\operatorname{Int}_s F) \subseteq P_s \operatorname{Int} f^{-1}(F)$, for each β-closed set F of Y.
(4) $f^{-1}(P_s \operatorname{Int} F) \subseteq P_s \operatorname{Int} f^{-1}(F)$, for each semi-closed set F of Y.
(5) $f^{-1}(p \operatorname{Int} F) \subseteq P_s \operatorname{Int} f^{-1}(F)$, for each semi-closed set F of Y.

Theorem 2.14. A function $f : X \to Y$ is almost p_s-continuous if and only if $f^{-1}(V) \subseteq P_s \operatorname{Int} f^{-1}((\operatorname{Int} C l V))$ for each preopen set V of Y.

Proof. Necessity. Let V be any preopen set of Y. Then $V \subseteq \operatorname{Int} C l V$ and $\operatorname{Int} C l V$ is a regular open set in Y. Since f is almost p_s-continuous, by Theorem 2.8, $f^{-1}(\operatorname{Int} C l V)$ is p_s-open set in X and hence we obtain that $f^{-1}(V) \subseteq f^{-1}(\operatorname{Int} C l V) = p_s \operatorname{Int} f^{-1}(\operatorname{Int} C l V)$.

Sufficiency. Let V be any regular open set of Y. Then V is a preopen set of Y. By hypothesis, we have $f^{-1}(V) \subseteq P_s \operatorname{Int} f^{-1}(\operatorname{Int} C l V) = P_s \operatorname{Int} f^{-1}(V)$. Therefore, $f^{-1}(V)$ is p_s-open set in X and hence by Theorem 2.8, f is almost p_s-continuous. □

We obtain the following corollary.

Corollary 2.15. The following statements are equivalent for a function $f : X \to Y$:

(1) f is almost p_s-continuous.
(2) $f^{-1}(V) \subseteq P_s \operatorname{Int} f^{-1}(s \operatorname{Cl} V)$ for each preopen set V of Y.
(3) $P_s \operatorname{Cl} f^{-1}(C l \operatorname{Int} F) \subseteq f^{-1}(F)$ for each preclosed set F of Y.
(4) $P_s \operatorname{Cl} f^{-1}(s \operatorname{Int} F) \subseteq f^{-1}(F)$ for each preclosed set F of Y.

Corollary 2.16. For a function $f : X \to Y$, the following statements are equivalent:

(1) f is almost p_s-continuous.
(2) For each neighborhood V of $f(x), x \in P_s \operatorname{Int} f^{-1}(s \operatorname{Cl} V)$.
(3) For each neighborhood V of $f(x), x \in P_s \operatorname{Int} f^{-1}(\operatorname{Int} C l V)$.

Proof. Follows from Theorem 2.14 and Corollary 2.15. □

Theorem 2.17. Let $f : X \to Y$ be an almost p_s-continuous function and let V be any open subset of Y. If $x \in P_s \operatorname{Cl} f^{-1}(V) \setminus f^{-1}(V)$, then $f(x) \notin P_s \operatorname{Cl} V$.

Proof. Let $x \in X$ be such that $x \in P_s \operatorname{Cl} f^{-1}(V) \setminus f^{-1}(V)$ and suppose $f(x) \notin P_s \operatorname{Cl} V$. Then there exists a p_s-open set H containing $f(x)$ such that $H \cap V = \emptyset$. Then $\operatorname{Int} C l H \cap V = \emptyset$ implies $\operatorname{Int} C l H \cap V = \emptyset$ and $\operatorname{Int} C l H$ is a regular open set. Since f is almost p_s-continuous, by Theorem 2.7, there exists a p_s-open set U in X containing x such that $f(U) \subseteq \operatorname{Int} C l H$. Therefore, $f(U) \cap V = \emptyset$. However, since $x \in P_s \operatorname{Cl} f^{-1}(V), U \cap f^{-1}(V) \neq \emptyset$ for every p_s-open set U in X containing x, so that $f(U) \cap V \neq \emptyset$. We have a contradiction. It follows that $f(x) \in P_s \operatorname{Cl} V$. □
Theorem 2.18. If a function \(f : X \rightarrow Y \) is almost precontinuous. Then the following statements are equivalent:

1. \(f \) is almost \(p_s \)-continuous.
2. For each \(x \in X \) and each open set \(V \) of \(Y \) containing \(f(x) \), there exists a semi-closed set \(F \) in \(X \) containing \(x \) such that \(f(F) \subseteq \text{IntCl}V \).
3. For each \(x \in X \) and each open set \(V \) of \(Y \) containing \(f(x) \), there exists a semi-closed set \(F \) in \(X \) containing \(x \) such that \(f(F) \subseteq sClV \).
4. For each \(x \in X \) and each regular open set \(V \) of \(Y \) containing \(f(x) \), there exists a semi-closed set \(F \) in \(X \) containing \(x \) such that \(f(F) \subseteq V \).
5. For each \(x \in X \) and each \(\delta \)-open set \(V \) of \(Y \) containing \(f(x) \), there exists a semi-closed set \(F \) in \(X \) containing \(x \) such that \(f(F) \subseteq V \).

Proof. (1) \(\Rightarrow \) (2). Let \(x \in X \) and let \(V \) be any open set of \(Y \) containing \(f(x) \). By (1), there exists a \(p_s \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq \text{IntCl}V \). Since \(U \) is \(p_s \)-open set, so for each \(x \in U \) there exists a semi-closed set \(F \) in \(X \) such that \(x \in F \subseteq U \). Therefore, we have \(f(F) \subseteq \text{IntCl}V \).

(2) \(\Rightarrow \) (3). Obvious.

(3) \(\Rightarrow \) (4). Let \(x \in X \) and let \(V \) be any regular open set of \(Y \) containing \(f(x) \). Then \(V \) is an open set of \(Y \) containing \(f(x) \). By (3), there exists a semi-closed set \(F \) in \(X \) containing \(x \) such that \(f(F) \subseteq sClV \). Since \(V \) is regular open and hence is preopen. Therefore, by Lemma 1.11(2), \(f(F) \subseteq \text{IntCl}V \). Since \(V \) is regular open, then \(f(F) \subseteq V \).

(4) \(\Rightarrow \) (5). Let \(x \in X \) and let \(V \) be any \(\delta \)-open set of \(Y \) containing \(f(x) \). Then for each \(f(x) \in V \), there exists an open set \(G \) containing \(f(x) \) such that \(G \subseteq \text{IntClG} \subseteq V \). Since \(\text{IntClG} \) is a regular open set of \(Y \) containing \(f(x) \), by (4), there exists a semi-closed set \(F \) in \(X \) containing \(x \) such that \(f(F) \subseteq \text{IntClG} \subseteq V \). This completes the proof.

(5) \(\Rightarrow \) (1). Let \(V \) be any \(\delta \)-open set of \(Y \). We have to show that \(f^{-1}(V) \) is \(p_s \)-open set in \(X \). Since \(f \) is almost precontinuous, by Proposition 1.14, \(f^{-1}(V) \) is preopen set in \(X \). Let \(x \in f^{-1}(V) \), then \(f(x) \in V \). By hypothesis, there exists a semi-closed set \(F \) of \(X \) containing \(x \) such that \(f(F) \subseteq V \). Which implies that \(x \in F \subseteq f^{-1}(V) \). Therefore, \(f^{-1}(V) \) is \(p_s \)-open set in \(X \). Hence by Theorem 2.10, \(f \) is almost \(p_s \)-continuous.

\(\square \)

Theorem 2.19. A function \(f : (X, \tau) \rightarrow (Y, \sigma) \) is almost \(p_s \)-continuous if and only if \(f : (X, \tau) \rightarrow (Y, \sigma_s) \) is \(p_s \)-continuous.

Proof. Necessity. Let \(H \in \sigma_s \), then \(H \) is a regular open set in \((Y, \sigma) \). Since \(f : (X, \tau) \rightarrow (Y, \sigma) \) is almost \(p_s \)-continuous, by Theorem 2.8, \(f^{-1}(H) \) is \(p_s \)-open set in \(X \). Therefore, \(f : (X, \tau) \rightarrow (Y, \sigma_s) \) is \(p_s \)-continuous.
Sufficiency. Let \(G \) be any regular open set in \((Y, \sigma)\). Then \(G \in \sigma_S\). Since \(f : (X, \tau) \to (Y, \sigma_S) \) is \(p_s \)-continuous, by Definition 1.13, \(f^{-1}(G) \) is \(p_s \)-open set in \(X \). Therefore, by Theorem 2.8, \(f : (X, \tau) \to (Y, \sigma) \) is almost \(p_s \)-continuous.

\begin{proof}
\begin{enumerate}
\item Necessity. Let \(H \in \sigma_S\), then \(H \) is a regular open set in \((Y, \sigma)\). Since \(f : (X, \tau) \to (Y, \sigma) \) is almost \(p_s \)-continuous, by Theorem 2.8, \(f^{-1}(H) \) is \(p_s \)-open set in \(X \). Since \(X \) is locally indiscrete space, by Proposition 1.7(4), \(f^{-1}(H) \) is open set in \(X \). Therefore, \(f : (X, \tau) \to (Y, \sigma_S) \) is continuous.
\item Sufficiency. Let \(G \) be any regular open set in \((Y, \sigma)\). Then \(G \in \sigma_S\). Since \(f : (X, \tau) \to (Y, \sigma_S) \) is continuous, so \(f^{-1}(G) \) is open set in \(X \). Since \(X \) is locally indiscrete space, by Proposition 1.7(4), \(f^{-1}(G) \) is \(p_s \)-open set in \(X \). Therefore, by Theorem 2.8, \(f : (X, \tau) \to (Y, \sigma) \) is almost \(p_s \)-continuous.
\end{enumerate}
\end{proof}

3. Properties and Comparisons

In this section, we give some properties of almost \(p_s \)-continuous functions and compare it with other types of continuous functions.

\begin{proposition}
Let \(f : X \to Y \) be an almost \(p_s \)-continuous function. If \(A \) is either open or regular semi-open subset of \(X \), then \(f|A : A \to Y \) is almost \(p_s \)-continuous in the subspace \(A \).
\end{proposition}

\begin{proof}
Let \(V \) be any regular open set of \(Y \). Since \(f \) is almost \(p_s \)-continuous, by Theorem 2.8, \(f^{-1}(V) \) is \(p_s \)-open set in \(X \). Since \(A \) is either open or regular semi-open subset of \(X \). By Lemma 1.10(4), \((f|A)^{-1}(V) = f^{-1}(V) \cap A \) is a \(p_s \)-open subset of \(A \). This shows that \(f|A : A \to Y \) is almost \(p_s \)-continuous.
\end{proof}

\begin{corollary}
Let \(f : X \to Y \) be almost \(p_s \)-continuous function. If \(A \) is regular open subset of \(X \), then \(f|A : A \to Y \) is almost \(p_s \)-continuous in the subspace \(A \).
\end{corollary}

\begin{proof}
Follows from Proposition 3.1
\end{proof}

\begin{theorem}
a function \(f : X \to Y \) is almost \(p_s \)-continuous. If for each \(x \in X \), there exists a regular open set \(A \) of \(X \) containing \(x \) such that \(f|A : A \to Y \) is almost \(p_s \)-continuous.
\end{theorem}

\begin{proof}
Let \(x \in X \), then by hypothesis, there exists a regular open set \(A \) containing \(x \) such that \(f|A : A \to Y \) is almost \(p_s \)-continuous. Let \(V \) be any open set of \(Y \) containing \(f(x) \), there exists a \(p_s \)-open set \(U \) in \(A \) containing \(x \) such that \((f|A)(U) \subseteq IntCIV \). Since \(A \) is regular open, by Lemma 1.10(3), \(U \) is \(p_s \)-open set in \(X \) and hence \(f(U) \subseteq IntCIV \). This shows that \(f \) is almost \(p_s \)-continuous.
\end{proof}
Corollary 3.4. Let \(\{U_\gamma : \gamma \in \Delta\} \) be a regular open cover of a topological space \(X \). A function \(f : X \to Y \) is almost \(p_s \)-continuous if and only if \(f|_{U_\gamma} : U_\gamma \to Y \) is almost \(p_s \)-continuous for each \(\gamma \in \Delta \).

Proof. This is an immediate consequence of Corollary 3.2 and Theorem 3.3. \(\square \)

Theorem 3.5. If \(X = R \cup S \), where \(R \) and \(S \) are regular open sets and \(f : X \to Y \) is a function such that both \(f|R \) and \(f|S \) are almost \(p_s \)-continuous, then \(f \) is almost \(p_s \)-continuous.

Proof. Let \(V \) be any regular open set of \(Y \). Then \(f^{-1}(V) = (f|R)^{-1}(V) \cup (f|S)^{-1}(V) \). Since \(f|R \) and \(f|S \) are almost \(p_s \)-continuous, by Theorem 2.8, \((f|R)^{-1}(V) \) and \((f|S)^{-1}(V) \) are \(p_s \)-open sets in \(R \) and \(S \), respectively. Since \(R \) and \(S \) are regular open sets in \(X \), then by Lemma 1.10(3), \((f|R)^{-1}(V) \) and \((f|S)^{-1}(V) \) are \(p_s \)-open sets in \(X \). Since a union of two \(p_s \)-open sets is \(p_s \)-open, hence \(f^{-1}(V) \) is \(p_s \)-open set in \(X \). Therefore, by Theorem 2.8, \(f \) is almost \(p_s \)-continuous. \(\square \)

In general, if \(X = \bigcup \{K_\gamma : \gamma \in \Delta\} \), where each \(K_\gamma \) is a regular open set and \(f : X \to Y \) is a function such that \(f|K_\gamma \) is almost \(p_s \)-continuous for each \(\gamma \), then \(f \) is almost \(p_s \)-continuous.

Theorem 3.6. Let \(f : X \to Y \) be almost \(p_s \)-continuous and let \(A \) be either open or regular semi-open subset of \(X \) such that \(f(A) \) is dense in \(Y \). Then \(f|A : A \to f(A) \) is almost \(p_s \)-continuous.

Proof. Let \(O \) be a regular open set of \(f(A) \). Then by Lemma 1.11(3), \(O = f(A) \cap \text{Int} \text{Cl} O \). Thus, \((f|A)^{-1}(O) = (f|A)^{-1}(f(A) \cap \text{Int} \text{Cl} O) = (f|A)^{-1}(f(A)) \cap (f|A)^{-1}(\text{Int} \text{Cl} O) = A \cap f^{-1}(\text{Int} \text{Cl} O) = A \cap f^{-1}(O) \). Since \(f \) is almost \(p_s \)-continuous, by Theorem 2.8, \(f^{-1}(O) = f^{-1}(\text{Int} \text{Cl} O) \) is \(p_s \)-open in \(X \). Since \(A \) is either open or regular semi-open subset of \(X \). Then by Lemma 1.10(4), \((f|A)^{-1}(O) \) is \(p_s \)-open set in the subspace \(A \). Therefore, by Theorem 2.8, \(f|A : A \to f(A) \) is almost \(p_s \)-continuous. \(\square \)

Theorem 3.7. Let \(X = R_1 \cup R_2 \), where \(R_1 \) and \(R_2 \) are regular open sets in \(X \). Let \(f : R_1 \to Y \) and \(g : R_2 \to Y \) be almost \(p_s \)-continuous. If \(f(x) = g(x) \) for each \(x \in R_1 \cap R_2 \). Then \(h : R_1 \cup R_2 \to Y \) such that \(h(x) = f(x) \) for \(x \in R_1 \) and \(h(x) = g(x) \) for \(x \in R_2 \) is almost \(p_s \)-continuous.

Proof. Let \(O \) be a regular open set of \(Y \). Now \(h^{-1}(O) = f^{-1}(O) \cup g^{-1}(O) \). Since \(f \) and \(g \) are almost \(p_s \)-continuous, by Theorem 2.8, \(f^{-1}(O) \) and \(g^{-1}(O) \) are \(p_s \)-open set in \(R_1 \) and \(R_2 \) respectively. But \(R_1 \) and \(R_2 \) are both regular open sets in \(X \). Then by Lemma 1.10(3), \(f^{-1}(O) \) and \(g^{-1}(O) \) are \(p_s \)-open sets in \(X \). Since union of two \(p_s \)-open sets is \(p_s \)-open, so \(h^{-1}(O) \) is a \(p_s \)-open set in \(X \). Hence by Theorem 2.8, \(h \) is almost \(p_s \)-continuous. \(\square \)

Theorem 3.8. Let \(f : X \to Y \) be almost \(p_s \)-continuous surjection and \(A \) be an open subset of \(X \). If \(f \) is an open function, then the function \(g : A \to f(A) \), defined by \(g(x) = f(x) \) for each \(x \in A \), is almost \(p_s \)-continuous.
Proof. Suppose that $H = f(A)$. Let $x \in A$ and V be any open set in H containing $g(x)$. Since H is open in Y and V is open in H, so V is open in Y. Since f is almost p_s-continuous, hence there exists a p_s-open set U in X containing x such that $f(U) \subseteq Int Cl V$. Taking $W = U \cap A$, since A is either open or regular semi-open subset of X, by Lemma 1.11(3), W is a p_s-open set in A containing x and $g(W) \subseteq Int Cl Y \cap H = Int Cl H V$. Then $g(W) \subseteq Int Cl H V$. This shows that g is almost p_s-continuous. □

Theorem 3.9. Let $f : X \to Y$ be almost p_s-continuous. If Y is a preopen subset of Z, then $f : X \to Z$ is almost p_s-continuous.

Proof. Let V be any regular open set of Z. Since Y is preopen, by Lemma 1.11(1), $V \cap Y$ is a regular open set in Y. Since $f : X \to Y$ is almost p_s-continuous, by Theorem 2.8, $f^{-1}(V \cap Y)$ is a p_s-open set in X. But $f(x) \in Y$ for each $x \in X$. Thus $f^{-1}(V) = f^{-1}(V \cap Y)$ is a p_s-open set of X. Therefore, by Theorem 2.8, $f : X \to Z$ is almost p_s-continuous. □

Theorem 3.10. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then the composition function $gof : X \to Z$ is almost p_s-continuous if f and g satisfy one of the following conditions:

1. f is p_s-continuous and g is almost continuous.
2. f is almost p_s-continuous and g is δ-continuous.
3. f is continuous and open and g is almost p_s-continuous.
4. f is almost p_s-continuous and g is continuous and open.

Proof. (1). Let W be any regular open subset of Z. Since g is almost continuous, so $g^{-1}(W)$ is open subset of Y. Since f is p_s-continuous, by Definition 1.13, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is p_s-open subset in X. Therefore, by Theorem 2.8, gof is almost p_s-continuous.

(2). Let W be any δ-open subset of Z. Since g is δ-continuous, so $g^{-1}(W)$ is δ-open subset of Y. Since f is almost p_s-continuous, by Theorem 2.10, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is p_s-open subset in X. Therefore, by Theorem 2.10, gof is almost p_s-continuous.

(3). Let W be any regular open subset of Z. Since g is almost p_s-continuous, by Theorem 2.8, $g^{-1}(W)$ is p_s-open subset of Y. Since f is continuous and open, by Theorem 1.16, $f^{-1}(g^{-1}(W)) = (gof)^{-1}(W)$ is a p_s-open set in X. Hence by Theorem 2.8, gof is almost p_s-continuous.

(4). Let $x \in X$ and W be an open set of Z containing $g(f(x))$. Since g is continuous, then $g^{-1}(W)$ is an open set of Y containing $f(x)$. Since f is almost p_s-continuous, there exists a p_s-open set U of X containing x such that $f(U) \subseteq Int Cl g^{-1}(W)$. Also, since g is continuous, then we obtain $(gof)(U) \subseteq g(Int g^{-1}(Cl W))$. Since g is open, we obtain $(gof)(U) \subseteq Int Cl W$. Therefore, gof is almost p_s-continuous. □
Theorem 3.11. If \(f : X \to Y \) is almost \(p_s \)-continuous and \(g : Y \to Z \) is super continuous functions. Then the composition function \(g \circ f : X \to Z \) is \(p_s \)-continuous.

Proof. Let \(W \) be any open subset of \(Z \). Since \(g \) is super continuous, then \(g^{-1}(W) \) is \(\delta \)-open subset of \(Y \). Since \(f \) is almost \(p_s \)-continuous, by Theorem 2.10, \((g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)) \) is \(p_s \)-open subset in \(X \). Therefore, by Definition 1.13, \(g \circ f \) is \(p_s \)-continuous. \(\square \)

Theorem 3.12. If \(f : X \to Y \) is an almost \(p_s \)-continuous function and \(Y \) is semi-regular. Then \(f \) is \(p_s \)-continuous.

Proof. Let \(x \in X \) and let \(V \) be any open set of \(Y \) containing \(f(x) \). By the semi-regularity of \(Y \), there exists a regular open set \(G \) of \(Y \) such that \(f(x) \in G \subseteq V \). Since \(f \) is almost \(p_s \)-continuous, by Theorem 2.7, there exists a \(p_s \)-open set \(U \) of \(X \) containing \(x \) such that \(f(U) \subseteq G \subseteq V \). Therefore, \(f \) is \(p_s \)-continuous. \(\square \)

Corollary 3.13. Let \(f : X \to Y \) be a function and \(X \) is locally indiscrete space. Then \(f \) is almost \(p_s \)-continuous if and only if \(f \) is almost continuous.

Proof. Follows from the definition and Proposition 1.7(4). \(\square \)

Corollary 3.14. If \(X \) is a locally indiscrete space and \(Y \) is semi-regular space, then the following statements are equivalent for a function \(f : X \to Y \):

1. \(f \) is \(p_s \)-continuous.
2. \(f \) is almost \(p_s \)-continuous.
3. \(f \) is almost continuous.
4. \(f \) is continuous.

Proof. Follows from Theorem 3.12, Corollary 3.13 and Proposition 1.7(4). \(\square \)

Corollary 3.15. Let \(f : X \to Y \) be a function and \(X \) is s-regular space. If \(f \) is almost continuous, then \(f \) is almost \(p_s \)-continuous.

Proof. Proof. Follows from Proposition 1.7(5). \(\square \)

Corollary 3.16. Let \(f : X \to Y \) be a function and \(X \) is semi-T\(_1\) space. Then \(f \) is almost \(p_s \)-continuous if and only if \(f \) is almost precontinuous.

Proof. Proof. Follows from Proposition 1.7(1). \(\square \)

Corollary 3.17. If \(X \) is a semi-T\(_1\) space and \(Y \) is semi-regular space, then the following statements are equivalent for a function \(f : X \to Y \):
(1) \(f \) is \(p_s \)-continuous.

(2) \(f \) is almost \(p_s \)-continuous.

(3) \(f \) is almost precontinuous.

(4) \(f \) is precontinuous.

Proof. Follows from Theorem 3.12, Corollary 3.16 and Proposition 1.7(1).

Theorem 3.18. If a function \(f : X \rightarrow Y \) is almost strongly \(\theta \)-continuous, then \(f \) is almost \(p_s \)-continuous.

Proof. Let \(V \) be any regular open set of \(Y \). Since \(f \) is almost strongly \(\theta \)-continuous, so \(f^{-1}(V) \) is \(\theta \)-open set and hence it is \(p_s \)-open set. Therefore, by Theorem 2.8, \(f \) is almost \(p_s \)-continuous.

Theorem 3.19. The following statements are equivalent for a function \(f : X \rightarrow Y \):

(1) \(f \) is R-map.

(2) \(f \) is almost \(p_s \)-continuous and either weakly \(\theta \)-irresolute or weakly quasi-continuous.

(3) \(f \) is almost continuous and either weakly \(\theta \)-irresolute or weakly quasi-continuous.

(4) \(f \) is almost \(\alpha \)-continuous and either weakly \(\theta \)-irresolute or weakly quasi-continuous.

(5) \(f \) is almost precontinuous and either weakly \(\theta \)-irresolute or weakly quasi-continuous.

Proof. Follows from their definitions and Proposition 1.9.

Theorem 3.20. If \(f : X \rightarrow Y \) is almost \(\theta s \)-continuous and almost precontinuous, then \(f \) is almost \(p_s \)-continuous.

Proof. Let \(V \) be a regular open set in \(Y \). Since \(f \) is almost \(\theta s \)-continuous and almost precontinuous function, then \(f^{-1}(V) \) is both \(\theta \)-semi-open and pre-open set in \(X \). Therefore, \(f^{-1}(V) \) is \(p_s \)-open set in \(X \). Hence by Theorem 2.8, \(f \) is almost \(p_s \)-continuous.

Theorem 3.21. Let \(f : X \rightarrow Y \) be a function and \(X \) be extremally disconnected space. If \(f \) is almost \(\theta s \)-continuous, then \(f \) is almost \(p_s \)-continuous.

Proof. Let \(V \) be a regular open set in \(Y \). Since \(f \) is almost \(\theta s \)-continuous, then \(f^{-1}(V) \) is \(\theta \)-semi-open set in \(X \). Therefore, by Lemma 1.10, \(f^{-1}(V) \) is \(p_s \)-open set in \(X \). Hence by Theorem 2.8, \(f \) is almost \(p_s \)-continuous.

Theorem 3.22. Let \(Y \) be an extremally disconnected space. If \(f : X \rightarrow Y \) is an almost precontinuous and either \(S \)-continuous or \(\theta \)-irresolute function, then \(f \) is almost \(p_s \)-continuous.
Proof. Let V be a regular open set in Y. Since f is almost precontinuous, then $f^{-1}(V)$ is preopen set of X. Since Y is extremally disconnected space, by Proposition 1.7(2), V is regular closed set of Y. Since f is either S-continuous or θ- irresolute, then $f^{-1}(V)$ is the union of regular closed sets of X and hence is the union of semi-closed sets of X. By Proposition 1.3, $f^{-1}(V)$ is p_s-open set of X. Therefore, by Theorem 2.8, f is almost p_s-continuous. □

Corollary 3.23. Let $f : X \to Y$ be either S-continuous or θ- irresolute function and Y be an extremally disconnected space. Then f is almost p_s-continuous if and only if f is almost pre-continuous.

Theorem 3.24. If Y is a hyperconnected space, then every function $f : X \to Y$ is almost p_s-continuous.

Proof. Let $x \in X$ and V be any open set of Y containing $f(x)$. Since Y is a hyperconnected space, then $ClV = Y$ and hence $IntClV = Y$. Therefore, we have $f(U) \subseteq IntClV$, for any p_s-open set U in X. This shows that f is almost p_s-continuous. □

Theorem 3.25. If a function $f : X \to Y$ is almost p_s-continuous and semi-open, then $f(P_sCl(V)) \subseteq P_sClf(V)$ for each open set V of X.

Proof. Let V be any open set of X. Since f is semi-open, then $f(V)$ is semi-open set in Y. Since f is almost p_s-continuous, then by Corollary 2.12, we obtain that $P_sClf^{-1}(f(V)) \subseteq f^{-1}(P_sClf(V))$ which implies that $f(P_sClV) \subseteq P_sClf(V)$. □

Corollary 3.26. If a function $f : X \to Y$ is almost p_s-continuous and semi-open, then $P_sIntf(F) \subseteq f(P_sIntF)$ for each closed set F of X.

Theorem 3.27. If a function $f : X \to Y$ is irresolute and preopen. Then f is almost p_s-continuous if and only if $P_sClf^{-1}(V) = f^{-1}(P_sClV)$ for each semi-open set V of Y.

Proof. Necessity. Let V be any semi-open set of Y. Since f is almost p_s-continuous, by Corollary 2.12, $P_sClf^{-1}(V) \subseteq f^{-1}(P_sClV)$. Since V is semi-open set of Y, by Lemma 1.12, $P_sClV = ClV$ which implies that $f^{-1}(P_sClV) \subseteq f^{-1}(ClV)$. Therefore, by Theorem 1.17, we have $f^{-1}(P_sClV) \subseteq f^{-1}(ClV) \subseteq Clf^{-1}(V)$ and hence $P_sClf^{-1}(V) \subseteq Clf^{-1}(V)$. Since V is semi-open set of X and f is irresolute, so $f^{-1}(V)$ is semi-open in X. Then by Lemma 1.12, we obtain that $f^{-1}(P_sClV) \subseteq P_sClf^{-1}(V)$. Therefore, we have $P_sClf^{-1}(V) = f^{-1}(P_sClV)$. Sufficiency. Follows from Theorem 2.12. □

From the above theorem and Lemma 1.12 we obtain the following results:

Corollary 3.28. If a function $f : X \to Y$ is almost p_s-continuous, irresolute and preopen, then $P_sIntf^{-1}(F) = f^{-1}(P_sIntF)$ for each semi-closed set F of Y.

Corollary 3.29. If a function $f : X \to Y$ is almost p_s-continuous, irresolute and preopen, then $Clf^{-1}(V) = f^{-1}(ClV)$ for each semi-open set V of Y.
References

Department of Mathematics, College of Basic Education, University of Duhok, Kurdistan-Region, Iraq.
E-mail: aliasbkhalaf@gmail.com
Department of Mathematics, College of Education, University of Duhok, Kurdistan-Region, Iraq.
E-mail: baravatroshi@gmail.com