Available online at http://journals.math.tku.edu.tw

ALMOST *p_s*-CONTINUOUS FUNCTIONS

ALIAS B. KHALAF AND BARAVAN A. ASAAD

Abstract. The purpose of this paper is to introduce a new class of functions called almost p_s -continuous function by using p_s -open sets in topological spaces. Some properties and characterizations of this function are given.

1. Introduction

Throughout this paper, a space X mean a topological space with out any separation axiom. We recall the following definitions, notations and terminology. The closure (resp. interior) of a subset A of X is denoted by ClA (resp. IntA). A subset A of X is said to be preopen [19] (resp. semi-open [17], α -open [22], β -open [1], regular open [31] and regular semi-open [5]) if $A \subseteq IntClA$ (resp. $A \subseteq ClIntA$, $A \subseteq IntClIntA$, $A \subseteq ClIntClA$, A = IntClAand A = sIntsClA). The complement of a preopen (resp. semi-open, α -open, β -open, regular open and regular semi-open) set is said to be preclosed (resp. semi-closed, α -closed, β -closed, regular closed and regular semi-open). The family of all preopen (resp. semi-open, α -open, regular open, regular semi-open and regular closed) subsets of a topological space X is denoted by PO(X) (resp. SO(X), $\alpha O(X)$, RO(X), RSO(X) and RC(X)). A function $f: X \to Y$ is said to be precontinuous [19] (resp. super continuous [20]) if the inverse image of each open subset of Y is preopen (resp. δ -open) in X. A function $f: X \to Y$ is said to be almost precontinuous [21] (resp. almost continuous in the sense of Singal and Singal [30], almost α -continuous [23], R-map[6], almost strongly θ -continuous [27], almost s-continuous [14], weakly θ -irresolute [10] and θ -irresolute [16]) if the inverse image of each regular open subset of Y is preopen (resp., open, α -open, regular open, θ -open, closed, semi-closed and intersection of regular open sets) in X. A function $f: X \to Y$ is said to be δ -continuous [24] (resp., almost strongly θ -continuous [27]) if for each $x \in X$ and each open set V of Y containing f(x), there exists an open set U of X containing x such that $f(IntClU) \subseteq IntClV$ (resp., $f(ClU) \subseteq sClV$. A function $f: X \to Y$ is said to be irresolute [7] if the inverse image of each semi-open subset of Y is semi-open in X. A function $f: X \to Y$ is said to be weakly quasicontinuous [25] (resp. S-continuous [33]) if for every $F \in RC(Y)$, $f^{-1}(F) \in SO(X)$ (resp. $f^{-1}(F)$

Corresponding author: Alias B. Khalaf.

2010 *Mathematics Subject Classification*. Primary: 54A05, 54A10; Secondary: 54C05. *Key words and phrases*. p_s -continuous, precontinuous, almost precontinuous functions.

is the union of regular closed sets of *X*). A function $f : X \to Y$ is said to be preopen [19] (resp., semi-open [26]) if the image of each open set of *X* is preopen (resp., semi-open) in *Y*.

Definition 1.1 ([15]). A preopen subset *A* of a space *X* is called p_s -open if for each $x \in A$, there exists a semi-closed set *F* such that $x \in F \subseteq A$.

The family of all p_s -open subsets of a topological space *X* is denoted by $P_sO(X)$.

Definition 1.2 ([32]). A subset *A* of a space *X* is called δ -open (resp., θ -open) if for each $x \in A$, there exists an open set *G* such that $x \in G \subseteq IntClG \subseteq A$ (resp., $x \in G \subseteq ClG \subseteq A$).

The intersection of all p_s -closed (resp. preclosed, semi-closed, α -closed and δ -closed) sets of *X* containing *A* is called the p_s -closure (resp. preclosure, semi-closure, α -closure and δ -closure) of *A* and is denoted by P_sClA (resp. pClA, sClA, αClA and $Cl_{\delta}A$). The union of all p_s -open (resp. preopen, semi-open, α -open and δ -open) sets of *X* contained in *A* is called the p_s -interior (resp. preinterior, semi-interior, α -interior and δ -interior) of *A* and is denoted by P_sIntA (resp. pIntA, sIntA, $\alpha IntA$ and $Int_{\delta}A$).

Proposition 1.3 ([15]). A subset A of a space X is p_s -open if and only if A is preopen and it is a union of semi-closed sets.

Definition 1.4 ([13]). A subset *A* of a space *X* is called θ -semi-open if for each $x \in A$, there exists a semi-open set G such that $x \in G \subseteq ClG \subseteq A$. The family of all θ -semi-open subsets of a topological space *X* is denoted by $\theta SO(X)$.

Definition 1.5. A space *X* is s-regular[3] (resp., semi-regular[28]) if for each $x \in X$ and each open set *G* containing *x*, there exists a semi-open (resp., regular open) set *H* such that $x \in H \subseteq sClH \subseteq G$ (resp., $x \in H \subseteq G$).

Definition 1.6. A space *X* is said to be:

- (1) extremally disconnected [8] if ClU is open for each open set U.
- (2) hyperconnected [9] if every nonempty open subset of *X* is dense in X.
- (3) locally indiscrete [9] if every open subset of *X* is closed.
- (4) semi- T_1 [18] if to each pair of distinct points x, y of X, there exists a pair of semi-open sets, one containing x but not y and the other containing y but not x.

Proposition 1.7. *The following statements are true:*

- (1) A space X is semi- T_1 if and only if for any point $x \in X$, the singleton set $\{x\}$ is semi-closed. [18].
- (2) A space X is extremally disconnected if and only if RO(X) = RC(X). [11].

- (3) If a space X is semi- T_1 , then $P_sO(X) = PO(X)$. [15].
- (4) If a topological space (X, τ) is locally indiscrete, then $P_sO(X) = \tau$. [15].
- (5) If a topological space (X, τ) is s-regular, then $\tau \subseteq P_s O(X)$. [15].

Proposition 1.8 ([15]). For any subset A of a space X. The following are equivalent:

- (1) A is clopen.
- (2) A is p_s -open and closed.
- (3) A is α -open and closed.
- (4) A is preopen and closed.

Proposition 1.9 ([15]). For any subset A of a space X. The following are equivalent:

- (1) A is regular open.
- (2) A is p_s -open and semi-closed.
- (3) A is open and semi-closed.
- (4) A is α -open and semi-closed.
- (5) A is preopen and semi-closed.

Lemma 1.10 ([15]). *The following properties are true:*

- (1) For any subset A of a space X. If $A \in \theta SO(X)$ and $A \in PO(X)$, then $A \in P_sO(X)$.
- (2) If (X, τ) is extremally disconnected space and if $A \in \theta SO(X)$, then $A \in P_sO(X)$.
- (3) If (Y, τ_Y) is a subspace of a space (X, τ) , if $A \in P_sO(Y, \tau_Y)$ and $Y \in RO(X, \tau)$, then $A \in P_sO(X)$.
- (4) If either $B \in RSO(X)$ or B is an open subspace of a space X and $A \in P_sO(X)$, then $A \cap B \in P_sO(B)$.

Lemma 1.11. The following statements are true:

- (1) If $R \in RO(X)$ and $P \in PO(X)$, then $R \cap P \in RO(P)$. [9].
- (2) Let A be a subset of a space (X, τ) . Then $A \in PO(X, \tau)$ if and only if sClA = IntClA. [12].
- (3) Let Y be a dense subspace of X. If O is regular open in Y, then $O = Y \cap IntClO$. [29].
- (4) A subset A of a space (X, τ) is β -open if and only if ClA is regular closed. [4].

Lemma 1.12. Let A be a subset of a topological space (X, τ) , then the following statement are *true*:

- (1) If $A \in SO(X)$, then $Cl_{\delta}A = ClA = P_sClA = pClA = \alpha ClA$. [15].
- (2) If $A \in \beta O(X)$, then $\alpha ClA = ClA$. [2].

Definition 1.13 ([15]). A function $f : X \to Y$ is called p_s -continuous at a point $x \in X$ if for each open set V of Y containing f(x), there exists a p_s -open set U of X containing x such that $f(U) \subseteq V$. Equivalently, a function $f : X \to Y$ is p_s -continuous if and only if $f^{-1}(V)$ is p_s -open set I for each open set V in Y.

Proposition 1.14 ([21]). A function $f : X \to Y$ is almost precontinuous if and only if $f^{-1}(V)$ is preopen set in X, for every δ -open set V in Y.

Lemma 1.15. *The following results can be proved easily:*

(1) If $f: X \to Y$ is almost precontinuous and Y is semi-regular, then f is precontinuous.

(2) If $f: X \to Y$ is almost continuous and Y is semi-regular, then f is continuous.

Theorem 1.16 ([15]). If $f : X \to Y$ is a continuous and open function and V is a p_s -open set of Y, then $f^{-1}(V)$ is a p_s -open set of X.

Theorem 1.17 ([12]). A function $f : X \to Y$ is preopen if and only if $f^{-1}(ClV) \subseteq Clf^{-1}(V)$, for each semi-open set V of Y.

2. Almost *p_s*-Continuous Functions

In this section, we introduce the concept of almost p_s -continuous functions by using p_s -open sets. Some properties and characterizations are given.

Definition 2.1. A function $f : X \to Y$ is called almost p_s -continuous at a point $x \in X$ if for each open set V of Y containing f(x), there exists a p_s -open set U of X containing x such that $f(U) \subseteq IntClV$. If f is almost p_s -continuous at every point of X, then it is called almost p_s -continuous.

Lemma 2.2. The following results follows directly from their definitions:

- (1) Every p_s -continuous function is almost p_s -continuous.
- (2) Every almost p_s -continuous function is almost precontinuous.

Proposition 2.3. If a function $f: X \to Y$ is δ -continuous, then f is almost p_s -continuous.

Proof. Let $x \in X$ and V be any open set of Y containing f(x). Since f is δ -continuous, there exists an open set U of X containing x such that $f(IntClU) \subseteq IntClV$. Since IntClU is a regular open set, hence it is p_s -open set of X containing x. Therefore, f is almost p_s -continuous.

From Lemma 2.2, Proposition 2.3 and Diagram 3.1 in [15], we obtain the following diagram:

Diagram 2.1

In the sequel, we shall show that none of the implications that concerning almost p_s continuity in Diagram 2.1 is reversible.

Example 2.4. Let $X = \{a, b, c, d\}$ with the two topologies $\tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$ and $\sigma = \{\phi, X, \{c\}, \{a, d\}, \{a, c, d\}\}$; then the family of p_s -open subsets of X with respect to τ is: $P_sO(X) = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be the identity function. Then f is almost p_s -continuous, but it is not p_s -continuous, because $\{a, d\}$ is an open set in (X, τ) containing f(d) = d, there exist no p_s -open set U in (X, τ) containing d such that $d \in f(U) \subseteq \{a, d\}$.

Example 2.5. Let $X = \{a, b, c, d\}$ with the two topologies $\tau = \{\phi, X, \{c\}, \{a, d\}, \{a, c, d\}\}$ and $\sigma = \{\phi, X, \{a\}, \{b, c\}, \{a, b, c\}\}$; then the family of p_s -open subsets of X with respect to τ is: $P_sO(X) = \{\phi, X, \{c\}, \{a, d\}, \{a, b, c\}, \{a, c, d\}, \{b, c, d\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be a function defined as follows: f(a) = f(b) = f(c) = a and f(d) = b. Then f is almost precontinuous (see Example 4.5 [21]). However f is not almost p_s -continuous since $\{b, c\}$ is an open set in (X, τ) containing f(d) = b, there exist no p_s -open set U in (X, τ) containing d such that $f(\{d\}) = b \in f(U) \subseteq IntCl\{b, c\} = \{b, c\}$.

Example 2.6. Let $X = \{a, b, c, d\}$ with the two topologies $\tau = \{\phi, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}\}$ and let $Y = \{x, y, z\}$ with the topology $\sigma = \{\phi, Y, \{x\}, \{y\}, \{x, y\}\}$; then the family of p_s -open subset of X with respect to τ is: $P_sO(X) = \{\phi, X, \{c\}, \{d\}, \{a, c\}, \{c, d\}, \{a, c, d\}, \{b, c, d\}\}$. Let $f : (X, \tau) \rightarrow (X, \sigma)$ be a function defined as follows: f(a) = z and f(b) = f(c) = f(d) = y. Then f is almost p_s -continuous. But f is not almost continuous [21] Example 4.2 and hence it is not δ -continuous.

Theorem 2.7. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is almost p_s -continuous.
- (2) For each $x \in X$ and each open set V of Y containing f(x), there exists a p_s -open set U in X containing x such that $f(U) \subseteq sClV$.

- (3) For each $x \in X$ and each regular open set V of Y containing f(x), there exists a p_s -open set U in X containing x such that $f(U) \subseteq V$.
- (4) For each $x \in X$ and each δ -open set V of Y containing f(x), there exists a p_s -open set U in X containing x such that $f(U) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and let V be any open set of Y containing f(x). By (1), there exists a p_s -open set U of X containing x such that $f(U) \subseteq IntClV$. Since V is open, hence V is preopen set. Therefore, by Lemma 1.11(2), $f(U) \subseteq sClV$.

(2) \Rightarrow (3). Let $x \in X$ and let V be any regular open set of Y containing f(x). Then V is an open set of Y containing f(x). By (2), there exists a p_s -open set U in X containing x such that $f(U) \subseteq sClV$. Since V is regular open and hence is preopen set. Therefore, by Lemma 1.11(2), $f(U) \subseteq IntClV$. Since V is regular open, then $f(U) \subseteq V$.

 $(3) \Rightarrow (4)$. Let $x \in X$ and let V be any δ -open set of Y containing f(x). Then for each $f(x) \in V$, there exists an open set G containing f(x) such that $G \subseteq IntClG \subseteq V$. Since IntClG is a regular open set of Y containing f(x), by (3), there exists a p_s -open set U in X containing x such that $f(U) \subseteq IntClG \subseteq V$. This completes the proof.

(4) ⇒ (1). Let $x \in X$ and let *V* be any open set of *Y* containing f(x). Then *IntClV* is δ-open set of *Y* containing f(x). By (4), there exists a p_s -open set *U* in *X* containing *x* such that $f(U) \subseteq IntClV$. Therefore, *f* is almost p_s -continuous. □

Theorem 2.8. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is almost p_s -continuous.
- (2) $f^{-1}(IntClV)$ is p_s -open set in X, for each open set V in Y.
- (3) $f^{-1}(ClIntF)$ is p_s -closed set in X, for each closed set F in Y.
- (4) $f^{-1}(F)$ is p_s -closed set in X, for each regular closed set F of Y.
- (5) $f^{-1}(V)$ is p_s -open set in X, for each regular open set V of Y.

Proof. (1) \Rightarrow (2). Let *V* be any open set in *Y*. We have to show that $f^{-1}(IntClV)$ is p_s -open set in *X*. Let $x \in f^{-1}(IntClV)$. Then $f(x) \in IntClV$ and IntClV is a regular open set in *Y*. Since *f* is almost p_s -continuous, by Theorem 2.7, there exists a p_s -open set *U* of *X* containing *x* such that $f(U) \subseteq IntClV$. Which implies that $x \in U \subseteq f^{-1}(IntClV)$. Therefore, $f^{-1}(IntClV)$ is p_s -open set in *X*.

(2) \Rightarrow (3). Let *F* be any closed set of *Y*. Then *Y* – *F* is an open set of *Y*. By (2), $f^{-1}(IntCl(Y \setminus F))$ is p_s -open set in *X* and $f^{-1}(IntCl(Y \setminus F)) = f^{-1}(Int(Y \setminus IntF)) = f^{-1}(Y \setminus ClIntF) = X \setminus f^{-1}(ClIntF)$ is p_s -open set in *X* and hence $f^{-1}(ClIntF)$ is p_s -closed set in *X*.

(3) \Rightarrow (4). Let *F* be any regular closed set of *Y*. Then *F* is a closed set of *Y*. By (3), $f^{-1}(ClIntF)$ is p_s -closed set in *X*. Since *F* is regular closed set, then $f^{-1}(ClIntF) = f^{-1}(F)$. Therefore,

 $f^{-1}(F)$ is p_s -closed set in X.

(4) \Rightarrow (5). Let *V* be any regular open set of *Y*. Then $Y \setminus V$ is regular closed set of *Y* and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is p_s -closed set in *X* and hence $f^{-1}(V)$ is p_s -open set in *X*. (5) \Rightarrow (1). Let $x \in X$ and let *V* be any regular open set of *Y* containing f(x). Then $x \in f^{-1}(V)$. By (5), we have $f^{-1}(V)$ is p_s -open set in *X*. Therefore, we obtain $f(f^{-1}(V)) \subseteq V$. Hence by Theorem 2.7, *f* is almost p_s -continuous.

The following result can be proved easily from the above theorem.

Proposition 2.9. Let $f : X \to Y$ be a function. Let B be any basis for τ_S in Y. Then f is almost p_s -continuous if and only if for each $B \in B$, $f^{-1}(B)$ is a p_s -open subset of X.

Theorem 2.10. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is almost p_s -continuous.
- (2) $f(P_sClA) \subseteq Cl_{\delta}f(A)$, for each $A \subseteq X$.
- (3) $P_sClf^{-1}(B) \subseteq f^{-1}Cl_{\delta}(B)$, for each $B \subseteq Y$.
- (4) $f^{-1}(F)$ is p_s -closed set in X, for each δ -closed set F of Y.
- (5) $f^{-1}(V)$ is p_s -open set in X, for each δ -open set V of Y.
- (6) $f^{-1}(Int_{\delta}B) \subseteq P_sIntf^{-1}(B)$, for each $B \subseteq Y$.

Proof. (1) \Rightarrow (2). Let *A* be a subset of *X*. Since $Cl_{\delta}f(A)$ is δ -closed set in *Y*, so $Cl_{\delta}f(A) = \cap\{F_{\alpha} : F_{\alpha} \in RC(Y), \alpha \in \Lambda\}$, where Λ is an index set. Then $A \subseteq f^{-1}(Cl_{\delta}f(A)) = f^{-1}(\cap\{F_{\alpha} : \alpha \in \Lambda\})$ = $\cap\{f^{-1}(F_{\alpha}) : \alpha \in \Lambda\}$. By (1) and Theorem 2.8, $f^{-1}(Cl_{\delta}f(A))$ is p_s -closed set of *X*. Hence $P_sClA \subseteq f^{-1}(Cl_{\delta}f(A))$. Therefore, we obtain that $f(P_sClA) \subseteq Cl_{\delta}f(A)$.

 $(2) \Rightarrow (3)$. Let *B* be any subset of *Y*. Then $f^{-1}(B)$ is a subset of *X*. By (2), we have $f(P_sClf^{-1}(B)) \subseteq Cl_{\delta}f(f^{-1}(B)) = Cl_{\delta}B$. Hence $P_sClf^{-1}(B) \subseteq f^{-1}(Cl_{\delta}B)$.

(3) \Rightarrow (4). Let *F* be any δ -closed set of *Y*. By (3), we have $P_sClf^{-1}(F) \subseteq f^{-1}(Cl_{\delta}F) = f^{-1}(F)$ and hence $f^{-1}(F)$ is p_s -closed set in *X*.

(4) \Rightarrow (5). Let *V* be any δ -open set of *Y*. Then $Y \setminus V$ is δ -closed set of *Y* and by (4), we have $f^{-1}(Y \setminus V) = X \setminus f^{-1}(V)$ is p_{δ} -closed set in *X*. Hence $f^{-1}(V)$ is p_{δ} -open set in *X*.

(5) \Rightarrow (6). For each subset *B* of *Y*. We have $Int_{\delta}B \subseteq B$. Then $f^{-1}(Int_{\delta}B) \subseteq f^{-1}(B)$. By (5), $f^{-1}(Int_{\delta}B)$ is p_s -open set in *X*. Then $f^{-1}(Int_{\delta}B) \subseteq P_sIntf^{-1}(B)$.

(6) \Rightarrow (1). Let $x \in X$ and V be any regular open set of Y containing f(x). Since V is a regular open set, hence it is δ -open and by (6), $f^{-1}(Int_{\delta}V) \subseteq P_sIntf^{-1}(V)$. Therefore, $f^{-1}(V) \subseteq P_sIntf^{-1}(V)$, so $f^{-1}(V)$ is a p_s -open set in X which contains x and clearly $f(f^{-1}(V)) \subseteq V$. Hence, by Theorem 2.7, f is almost p_s -continuous.

Theorem 2.11. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is almost p_s -continuous.
- (2) $P_s Clf^{-1}(V) \subseteq f^{-1}(ClV)$, for each β -open set V of Y.
- (3) $f^{-1}(IntF) \subseteq P_s Intf^{-1}(F)$, for each β -closed set F of Y.
- (4) $f^{-1}(IntF) \subseteq P_s Intf^{-1}(F)$, for each semi-closed set F of Y.
- (5) $P_s Clf^{-1}(V) \subseteq f^{-1}(ClV)$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Let V be any β -open set of Y. It follows from Lemma 1.11(4) that *ClV* is regular closed set in Y. Since f is almost p_s -continuous, by Theorem 2.8, $f^{-1}(ClV)$ is p_s -closed set in X. Therefore, we obtain $P_sClf^{-1}(V) \subseteq f^{-1}(ClV)$.

(2) \Rightarrow (3). Let *F* be any β -closed set of *Y*. Then $Y \setminus F$ is β -open set of *Y* and by (2), we have $P_sClf^{-1}(Y \setminus F) \subseteq f^{-1}(Cl(Y \setminus F))$ and $P_sCl(X \setminus f^{-1}(F)) \subseteq f^{-1}(Y \setminus IntF)$ and hence, $X \setminus P_sIntf^{-1}(F) \subseteq X \setminus f^{-1}(IntF)$. Therefore, $f^{-1}(IntF) \subseteq P_sIntf^{-1}(F)$.

(3) \Rightarrow (4). Obvious since every semi-closed set is β -closed.

(4) \Rightarrow (5). Let *V* be any semi-open set of *Y*. Then $Y \setminus V$ is semi-closed set in *Y* and by (4), we have $f^{-1}(Int(Y \setminus V)) \subseteq P_sIntf^{-1}(Y \setminus V)$ and $f^{-1}(Y \setminus ClV) \subseteq P_sInt(X \setminus f^{-1}(V))$ and hence, $X \setminus f^{-1}(ClV) \subseteq X \setminus P_sClf^{-1}(V)$. Therefore, $P_sClf^{-1}(V) \subseteq f^{-1}(ClV)$.

 $(5) \Rightarrow (1)$. Let *F* be any regular closed set of *Y*. Then *F* is a semi-open set of *Y*. By (5), we have $P_sClf^{-1}(F) \subseteq f^{-1}(ClF) = f^{-1}(F)$. This shows that $f^{-1}(F)$ is a p_s -closed set in X. Therefore, by Theorem 2.8, *f* is almost p_s -continuous.

Corollary 2.12. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is almost p_s -continuous.
- (2) $P_s Clf^{-1}(V) \subseteq f^{-1}(\alpha ClV)$, for each β -open set V of Y.
- (3) $P_s Clf^{-1}(V) \subseteq f^{-1}(Cl_{\delta}V)$, for each β -open set V of Y
- (4) $P_sClf^{-1}(V) \subseteq f^{-1}(P_sClV)$, for each semi-open set V of Y.
- (5) $P_sClf^{-1}(V) \subseteq f^{-1}(pClV)$, for each semi-open set V of Y.

Proof. (1) \Rightarrow (2). Follows from Theorem 2.11 and Lemma 1.12(2).

(2) \Rightarrow (3). Follows from the fact that $\alpha ClV \subseteq Cl_{\delta}V$.

- $(3) \Rightarrow (4)$ and $(4) \Rightarrow (5)$. Follows from Theorem 2.11 and Lemma 1.12(1).
- $(5) \Rightarrow (1)$. Follows from Theorem 2.11 and Lemma 1.12(1).

```
\Box
```

The following result also can be concluded directly.

Corollary 2.13. For a function $f : X \to Y$, the following statements are equivalent:

(1) f is almost p_s -continuous.

- (2) $f^{-1}(\alpha IntF) \subseteq P_s Intf^{-1}(F)$, for each β -closed set F of Y.
- (3) $f^{-1}(Int_{\delta}F) \subseteq P_sIntf^{-1}(F)$, for each β -closed set F of Y.
- (4) $f^{-1}(P_sIntF) \subseteq P_sIntf^{-1}(F)$, for each semi-closed set F of Y.
- (5) $f^{-1}(pIntF) \subseteq P_sIntf^{-1}(F)$, for each semi-closed set F of Y.

Theorem 2.14. A function $f : X \to Y$ is almost p_s -continuous if and only if $f^{-1}(V) \subseteq P_s Int f^{-1}(Int ClV)$ for each preopen set V of Y.

Proof. Necessity. Let *V* be any preopen set of *Y*. Then $V \subseteq IntClV$ and IntClV is a regular open set in *Y*. Since *f* is almost p_s -continuous, by Theorem 2.8, $f^{-1}(IntClV)$ is p_s -open set in *X* and hence we obtain that $f^{-1}(V) \subseteq f^{-1}(IntClV) = p_s Intf^{-1}(IntClV)$.

Sufficiency. Let *V* be any regular open set of *Y*. Then *V* is a preopen set of *Y*. By hypothesis, we have $f^{-1}(V) \subseteq P_s Int f^{-1}(Int ClV) = P_s Int f^{-1}(V)$. Therefore, $f^{-1}(V)$ is p_s -open set in *X* and hence by Theorem 2.8, *f* is almost p_s -continuous.

We obtain the following corollary.

Corollary 2.15. The following statements are equivalent for a function $f: X \to Y$:

- (1) f is almost p_s -continuous.
- (2) $f^{-1}(V) \subseteq P_s Int f^{-1}(sClV)$ for each preopen set V of Y.
- (3) $P_sClf^{-1}(ClIntF) \subseteq f^{-1}(F)$ for each preclosed set F of Y.
- (4) $P_sClf^{-1}(sIntF) \subseteq f^{-1}(F)$ for each preclosed set F of Y.

Corollary 2.16. For a function $f : X \to Y$, the following statements are equivalent:

- (1) f is almost p_s -continuous.
- (2) For each neighborhood V of f(x), $x \in P_s Int f^{-1}(sClV)$.
- (3) For each neighborhood V of f(x), $x \in P_sIntf^{-1}(IntClV)$.

Proof. Follows from Theorem 2.14 and Corollary 2.15.

Theorem 2.17. Let $f : X \to Y$ be an almost p_s -continuous function and let V be any open subset of Y. If $x \in P_sClf^{-1}(V) \setminus f^{-1}(V)$, then $f(x) \in P_sClV$.

Proof. Let $x \in X$ be such that $x \in P_sClf^{-1}(V) \setminus f^{-1}(V)$ and suppose $f(x) \notin P_sClV$. Then there exists a p_s -open set H containing f(x) such that $H \cap V = \phi$. Then $ClH \cap V = \phi$ implies $IntClH \cap V = \phi$ and IntClH is a regular open set. Since f is almost p_s -continuous, by Theorem 2.7, there exists a p_s -open set U in X containing x such that $f(U) \subseteq IntClH$. Therefore, $f(U) \cap V = \phi$. However, since $x \in P_sClf^{-1}(V)$, $U \cap f^{-1}(V) \neq \phi$ for every p_s -open set U in Xcontaining x, so that $f(U) \cap V \neq \phi$. We have a contradiction. It follows that $f(x) \in P_sClV$. \Box

Theorem 2.18. If a function $f : X \to Y$ is almost precontinuous. Then the following statements are equivalent:

- (1) f is almost p_s -continuous.
- (2) For each $x \in X$ and each open set V of Y containing f(x), there exists a semi-closed set F in X containing x such that $f(F) \subseteq IntClV$.
- (3) For each $x \in X$ and each open set V of Y containing f(x), there exists a semi-closed set F in X containing x such that $f(F) \subseteq sClV$.
- (4) For each $x \in X$ and each regular open set V of Y containing f(x), there exists a semi-closed set F in X containing x such that $f(F) \subseteq V$.
- (5) For each $x \in X$ and each δ -open set V of Y containing f(x), there exists a semi-closed set F in X containing x such that $f(F) \subseteq V$.

Proof. (1) \Rightarrow (2). Let $x \in X$ and let V be any open set of Y containing f(x). By (1), there exists a p_s -open set U of X containing x such that $f(U) \subseteq IntClV$. Since U is p_s -open set, so for each $x \in U$ there exists a semi-closed set F in X such that $x \in F \subseteq U$. Therefore, we have $f(F) \subseteq IntClV$.

 $(2) \Rightarrow (3)$. Obvious.

 $(3) \Rightarrow (4)$. Let $x \in X$ and let V be any regular open set of Y containing f(x). Then V is an open set of Y containing f(x). By (3), there exists a semi-closed set F in X containing x such that $f(F) \subseteq sClV$. Since V is regular open and hence is preopen. Therefore, by Lemma 1.11(2), $f(F) \subseteq IntClV$. Since V is regular open, then $f(F) \subseteq V$.

 $(4) \Rightarrow (5)$. Let $x \in X$ and let V be any δ -open set of Y containing f(x). Then for each $f(x) \in V$, there exists an open set G containing f(x) such that $G \subseteq IntClG \subseteq V$. Since IntClG is a regular open set of Y containing f(x), by (4), there exists a semi-closed set F in X containing x such that $f(F) \subseteq IntClG \subseteq V$. This completes the proof.

 $(5) \Rightarrow (1)$. Let *V* be any δ -open set of *Y*. We have to show that $f^{-1}(V)$ is p_s -open set in *X*. Since *f* is almost precontinuous, by Proposition 1.14, $f^{-1}(V)$ is preopen set in *X*. Let $x \in f^{-1}(V)$, then $f(x) \in V$. By hypothesis, there exists a semi-closed set *F* of *X* containing *x* such that $f(F) \subseteq V$. Which implies that $x \in F \subseteq f^{-1}(V)$. Therefore, $f^{-1}(V)$ is p_s -open set in *X*. Hence by Theorem 2.10, *f* is almost p_s -continuous.

Theorem 2.19. A function $f : (X, \tau) \to (Y, \sigma)$ is almost p_s -continuous if and only if $f : (X, \tau) \to (Y, \sigma_s)$ is p_s -continuous.

Proof. Necessity. Let $H \in \sigma_S$, then H is a regular open set in (Y, σ) . Since $f : (X, \tau) \to (Y, \sigma)$ is almost p_s -continuous, by Theorem 2.8, $f^{-1}(H)$ is p_s -open set in X. Therefore, $f : (X, \tau) \to (Y, \sigma_S)$ is p_s -continuous.

Sufficiency. Let *G* be any regular open set in (Y, σ) . Then $G \in \sigma_S$. Since $f : (X, \tau) \to (Y, \sigma_S)$ is p_s -continuous, by Definition 1.13, $f^{-1}(G)$ is p_s -open set in *X*. Therefore, by Theorem 2.8, $f : (X, \tau) \to (Y, \sigma)$ is almost p_s -continuous.

Theorem 2.20. Let X be a locally indiscrete space. Then the function $f : (X, \tau) \to (Y, \sigma)$ is almost p_s -continuous if and only if $f : (X, \tau) \to (Y, \sigma_s)$ is continuous.

Proof. Necessity. Let $H \in \sigma_S$, then H is a regular open set in (Y, σ) . Since $f : (X, \tau) \to (Y, \sigma)$ is almost p_s -continuous, by Theorem 2.8, $f^{-1}(H)$ is p_s -open set in X. Since X is locally indiscrete space, by Proposition 1.7(4), $f^{-1}(H)$ is open set in X. Therefore, $f : (X, \tau) \to (Y, \sigma_S)$ is continuous.

Sufficiency. Let *G* be any regular open set in (Y, σ) . Then $G \in \sigma_S$. Since $f : (X, \tau) \to (Y, \sigma_S)$ is continuous, so $f^{-1}(G)$ is open set in *X*. Since *X* is locally indiscrete space, by Proposition 1.7(4), $f^{-1}(G)$ is p_s -open set in *X*. Therefore, by Theorem 2.8, $f : (X, \tau) \to (Y, \sigma)$ is almost p_s -continuous.

3. Properties and Comparisons

In this section, we give some properties of almost p_s -continuous functions and compare it with other types of continuous functions.

Proposition 3.1. Let $f : X \to Y$ be an almost p_s -continuous function. If A is either open or regular semi-open subset of X, then $f|A : A \to Y$ is almost p_s -continuous in the subspace A.

Proof. Let *V* be any regular open set of *Y*. Since *f* is almost p_s -continuous, by Theorem 2.8, $f^{-1}(V)$ is p_s -open set in *X*. Since *A* is either open or regular semi-open subset of *X*. By Lemma 1.10(4), $(f|A)^{-1}(V) = f^{-1}(V) \cap A$ is a p_s -open subset of *A*. This shows that $f|A: A \to Y$ is almost p_s -continuous.

Corollary 3.2. Let $f : X \to Y$ be almost p_s -continuous function. If A is regular open subset of X, then $f|A: A \to Y$ is almost p_s -continuous in the subspace A.

Proof. Follows from Proposition 3.1

Theorem 3.3. A function $f : X \to Y$ is almost p_s -continuous. If for each $x \in X$, there exists a regular open set A of X containing x such that $f|A: A \to Y$ is almost p_s -continuous.

Proof. Let $x \in X$, then by hypothesis, there exists a regular open set A containing x such that $f|A: A \to Y$ is almost p_s -continuous. Let V be any open set of Y containing f (x), there exists a p_s -open set U in A containing x such that $(f|A)(U) \subseteq IntClV$. Since A is regular open, by Lemma 1.10(3), U is p_s -open set in X and hence $f(U) \subseteq IntClV$. This shows that f is almost p_s -continuous.

Corollary 3.4. Let $\{U_{\gamma} : \gamma \in \Delta\}$ be a regular open cover of a topological space X. A function $f : X \to Y$ is almost p_s -continuous if and only if $f|U_{\gamma} : U_{\gamma} \to Y$ is almost p_s -continuous for each $\gamma \in \Delta$.

Proof. This is an immediate consequence of Corollary 3.2 and Theorem 3.3.

Theorem 3.5. If $X = R \cup S$, where R and S are regular open sets and $f : X \to Y$ is a function such that both f | R and f | S are almost p_s -continuous, then f is almost p_s -continuous.

Proof. Let *V* be any regular open set of *Y*. Then $f^{-1}(V) = (f|R)^{-1}(V) \cup (f|S)^{-1}(V)$. Since f|R and f|S are almost p_s -continuous, by Theorem 2.8, $(f|R)^{-1}(V)$ and $(f|S)^{-1}(V)$ are p_s -open sets in *R* and *S*, respectively. Since *R* and *S* are regular open sets in *X*, then by Lemma 1.10(3), $(f|R)^{-1}(V)$ and $(f|S)^{-1}(V)$ are p_s -open sets in *X*. Since a union of two p_s -open sets is p_s -open, hence $f^{-1}(V)$ is p_s -open set in *X*. Therefore, by Theorem 2.8, *f* is almost p_s -continuous.

In general, if $X = \bigcup \{K_{\gamma} : \gamma \in \Delta\}$, where each K_{γ} is a regular open set and $f : X \to Y$ is a function such that $f | K_{\gamma}$ is almost p_s -continuous for each γ , then f is almost p_s -continuous.

Theorem 3.6. Let $f: X \to Y$ be almost p_s -continuous and let A be either open or regular semiopen subset of X such that f(A) is dense in Y. Then $f|A: A \to f(A)$ is almost p_s -continuous.

Proof. Let *O* be a regular open set of f(A). Then by Lemma 1.11(3), $O = f(A) \cap IntClO$. Thus, $(f|A)^{-1}(O) = (f|A)^{-1}(f(A) \cap IntClO) = (f|A)^{-1}(f(A)) \cap (f|A)^{-1}(IntClO) = A \cap (f|A)^{-1}(IntClO)$ $= A \cap f^{-1}(IntClO) = A \cap f^{-1}(O)$. Since *f* is almost p_s -continuous, by Theorem 2.8, $f^{-1}(O) = f^{-1}(IntClO)$ is p_s -open in *X*. Since *A* is either open or regular semi-open subset of *X*. Then by Lemma 1.10(4), $(f|A)^{-1}(O)$ is p_s -open set in the subspace *A*. Therefore, by Theorem 2.8, $f|A: A \to f(A)$ is almost p_s -continuous.

Theorem 3.7. Let $X = R_1 \cup R_2$, where R_1 and R_2 are regular open sets in X. Let $f : R_1 \to Y$ and $g : R_2 \to Y$ be almost p_s -continuous. If f(x) = g(x) for each $x \in R_1 \cap R_2$. Then $h : R_1 \cup R_2 \to Y$ such that h(x) = f(x) for $x \in R_1$ and h(x) = g(x) for $x \in R_2$ is almost p_s -continuous.

Proof. Let *O* be a regular open set of *Y*. Now $h^{-1}(O) = f^{-1}(O) \cup g^{-1}(O)$. Since *f* and *g* are almost p_s -continuous, by Theorem 2.8, $f^{-1}(O)$ and $g^{-1}(O)$ are p_s -open set in R_1 and R_2 respectively. But R_1 and R_2 are both regular open sets in *X*. Then by Lemma 1.10(3), $f^{-1}(O)$ and $g^{-1}(O)$ are p_s -open sets in *X*. Since union of two p_s -open sets is p_s -open, so $h^{-1}(O)$ is a p_s -open set in *X*. Hence by Theorem 2.8, *h* is almost p_s -continuous.

Theorem 3.8. Let $f : X \to Y$ be almost p_s -continuous surjection and A be an open subset of X. If f is an open function, then the function $g : A \to f(A)$, defined by g(x) = f(x) for each $x \in A$, is almost p_s -continuous. **Proof.** Suppose that H = f(A). Let $x \in A$ and V be any open set in H containing g(x). Since H is open in Y and V is open in H, so V is open in Y. Since f is almost p_s -continuous, hence there exists a p_s -open set U in X containing x such that $f(U) \subseteq IntClV$. Taking $W = U \cap A$, since A is either open or regular semi-open subset of X, by Lemma 1.10(3), W is a p_s -open set in A containing x and $g(W) \subseteq Int_YCl_YV \cap H = Int_YCl_HV$. Then $g(W) \subseteq Int_HCl_HV$. This shows that g is almost p_s -continuous.

Theorem 3.9. Let $f : X \to Y$ be almost p_s -continuous. If Y is a preopen subset of Z, then $f : X \to Z$ is almost p_s -continuous.

Proof. Let *V* be any regular open set of *Z*. Since *Y* is preopen, by Lemma 1.11(1), $V \cap Y$ is a regular open set in *Y*. Since $f : X \to Y$ is almost p_s -continuous, by Theorem 2.8, $f^{-1}(V \cap Y)$ is a p_s -open set in *X*. But $f(x) \in Y$ for each $x \in X$. Thus $f^{-1}(V) = f^{-1}(V \cap Y)$ is a p_s -open set of *X*. Therefore, by Theorem 2.8, $f : X \to Z$ is almost p_s -continuous.

Theorem 3.10. Let $f : X \to Y$ and $g : Y \to Z$ be functions. Then the composition function $gof : X \to Z$ is almost p_s -continuous if f and g satisfy one of the following conditions:

- (1) f is p_s -continuous and g is almost continuous.
- (2) f is almost p_s -continuous and g is δ -continuous.
- (3) f is continuous and open and g is almost p_s -continuous.
- (4) f is almost p_s -continuous and g is continuous and open.

Proof. (1). Let *W* be any regular open subset of *Z*. Since *g* is almost continuous, so $g^{-1}(W)$ is open subset of *Y*. Since *f* is p_s -continuous, by Definition 1.13, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is p_s -open subset in X. Therefore, by Theorem 2.8, gof is almost p_s -continuous.

(2). Let *W* be any δ -open subset of *Z*. Since *g* is δ -continuous, so $g^{-1}(W)$ is δ -open subset of *Y*. Since *f* is almost p_s -continuous, by Theorem 2.10, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is p_s -open subset in *X*. Therefore, by Theorem 2.10, gof is almost p_s -continuous.

(3). Let *W* be any regular open subset of *Z*. Since *g* is almost p_s -continuous, by Theorem 2.8, $g^{-1}(W)$ is p_s -open subset of *Y*. Since *f* is continuous and open, by Theorem 1.16, $f^{-1}(g^{-1}(W)) = (gof)^{-1}(W)$ is a p_s -open set in *X*. Hence by Theorem 2.8, gof is almost p_s -continuous.

(4). Let $x \in X$ and W be an open set of Z containing g(f(x)). Since g is continuous, then $g^{-1}(W)$ is an open set of Y containing f(x). Since f is almost p_s -continuous, there exists a p_s -open set U of X containing x such that $f(U) \subseteq IntClg^{-1}(W)$. Also, since g is continuous, then we obtain $(gof)(U) \subseteq g(Intg^{-1}(ClW))$. Since g is open, we obtain $(gof)(U) \subseteq IntClW$. Therefore, gof is almost p_s -continuous.

Theorem 3.11. If $f : X \to Y$ is almost p_s -continuous and $g : Y \to Z$ is super continuous functions. Then the composition function $g \circ f : X \to Z$ is p_s -continuous.

Proof. Let *W* be any open subset of *Z*. Since *g* is super continuous, then $g^{-1}(W)$ is δ -open subset of *Y*. Since *f* is almost p_s -continuous, by Theorem 2.10, $(gof)^{-1}(W) = f^{-1}(g^{-1}(W))$ is p_s -open subset in *X*. Therefore, by Definition 1.13, *gof* is p_s -continuous.

Theorem 3.12. If $f : X \to Y$ is an almost p_s -continuous function and Y is semi-regular. Then f is p_s -continuous.

Proof. Let $x \in X$ and let V be any open set of Y containing f(x). By the semi-regularity of Y, there exists a regular open set G of Y such that $f(x) \in G \subseteq V$. Since f is almost p_s -continuous, by Theorem 2.7, there exists a p_s -open set U of X containing x such that $f(U) \subseteq G \subseteq V$. Therefore, f is p_s -continuous.

Corollary 3.13. Let $f : X \to Y$ be a function and X is locally indiscrete space. Then f is almost p_s -continuous if and only if f is almost continuous.

Proof. Follows from the definition and Proposition 1.7(4).

Corollary 3.14. If X is a locally indiscrete space and Y is semi-regular space, then the following statements are equivalent for a function $f : X \to Y$:

- (1) f is p_s -continuous.
- (2) f is almost p_s -continuous.
- (3) *f* is almost continuous.
- (4) f is continuous.

Proof. Follows from Theorem 3.12, Corollary 3.13 and Proposition 1.7(4).

Corollary 3.15. Let $f: X \to Y$ be a function and X is s-regular space. If f is almost continuous, then f is almost p_s -continuous.

Proof. Proof. Follows from Proposition 1.7(5).

Corollary 3.16. Let $f : X \to Y$ be a function and X is semi- T_1 space. Then f is almost p_s -continuous if and only if f is almost precontinuous.

Proof. Proof. Follows from Proposition 1.7(1).

Corollary 3.17. If X is a semi- T_1 space and Y is semi-regular space, then the following statements are equivalent for a function $f : X \to Y$:

- (1) f is p_s -continuous.
- (2) f is almost p_s -continuous.
- (3) *f* is almost precontinuous.
- (4) *f* is precontinuous.

Proof. Follows from Theorem 3.12, Corollary 3.16 and Proposition 1.7(1).

Theorem 3.18. If a function $f : X \to Y$ is almost strongly θ -continuous, then f is almost p_s -continuous.

Proof. Let *V* be any regular open set of *Y*. Since *f* is almost strongly θ -continuous, so $f^{-1}(V)$ is θ -open set and hence it is p_s -open set. Therefore, by Theorem 2.8, *f* is almost p_s -continuous.

Theorem 3.19. The following statements are equivalent for a function $f: X \to Y$:

- (1) f is R-map.
- (2) f is almost p_s -continuous and either weakly θ -irresolute or weakly quasi-continuous.
- (3) f is almost continuous and either weakly θ -irresolute or weakly quasi-continuous.
- (4) f is almost α -continuous and either weakly θ -irresolute or weakly quasi-continuous.
- (5) f is almost precontinuous and either weakly θ -irresolute or weakly quasi-continuous.

Proof. Follows from their definitions and Proposition 1.9.

Theorem 3.20. If $f : X \to Y$ is almost θ s-continuous and almost precontinuous, then f is almost p_s -continuous.

Proof. Let *V* be a regular open set in *Y*. Since *f* is almost θ *s*-continuous and almost precontinuous function, then $f^{-1}(V)$ is both θ -semi-open and preopen set in *X*. Therefore, $f^{-1}(V)$ is p_s -open set in *X*. Hence by Theorem 2.8, *f* is almost p_s -continuous.

Theorem 3.21. Let $f : X \to Y$ be a function and X be extremally disconnected space. If f is almost θ s-continuous, then f is almost p_s -continuous.

Proof. Let *V* be a regular open set in *Y*. Since *f* is almost θ *s*-continuous, then $f^{-1}(V)$ is θ semi-open set in *X*. Therefore, by Lemma 1.10, $f^{-1}(V)$ is p_s -open set in *X*. Hence by Theorem
2.8, *f* is almost p_s -continuous.

Theorem 3.22. Let Y be an extremally disconnected space. If $f : X \to Y$ is an almost precontinuous and either S-continuous or θ -irresolute function, then f is almost p_s -continuous.

Proof. Let *V* be a regular open set in *Y*. Since *f* is almost precontinuous, then $f^{-1}(V)$ is preopen set of *X*. Since *Y* is extremally disconnected space, by Proposition 1.7(2), *V* is regular closed set of *Y*. Since *f* is either *S*-continuous or θ -irresolute, then $f^{-1}(V)$ is the union of regular closed sets of *X* and hence is the union of semi-closed sets of *X*. By Proposition 1.3, $f^{-1}(V)$ is p_s -open set of *X*. Therefore, by Theorem 2.8, *f* is almost p_s -continuous.

Corollary 3.23. Let $f : X \to Y$ be either S-continuous or θ -irresolute function and Y be an extremally disconnected space. Then f is almost p_s -continuous if and only if f is almost precontinuous.

Theorem 3.24. If Y is a hyperconnected space, then every function $f : X \to Y$ is almost p_s -continuous.

Proof. Let $x \in X$ and V be any open set of Y containing f(x). Since Y is a hyperconnected space, then ClV = Y and hence IntClV = Y. Therefore, we have $f(U) \subseteq IntClV$, for any p_s -open set U in X. This shows that f is almost p_s -continuous.

Theorem 3.25. If a function $f : X \to Y$ is almost p_s -continuous and semi-open, then $f(P_sClV) \subseteq P_sClf(V)$ for each open set V of X.

Proof. Let *V* be any open set of *X*. Since *f* is semi-open, then f(V) is semi-open set in *Y*. Since *f* is almost p_s -continuous, then by Corollary 2.12, we obtain that $P_sClf^{-1}(f(V)) \subseteq f^{-1}(P_sClf(V))$ which implies that $f(P_sClV) \subseteq P_sClf(V)$.

Corollary 3.26. If a function $f : X \to Y$ is almost p_s -continuous and semi-open, then $P_s Intf(F) \subseteq f(P_s IntF)$ for each closed set F of X.

Theorem 3.27. If a function $f: X \to Y$ is irresolute and preopen. Then f is almost p_s -continuous if and only if $P_sClf^{-1}(V) = f^{-1}(P_sClV)$ for each semi-open set V of Y.

Proof. Necessity. Let *V* be any semi-open set of *Y*. Since *f* is almost p_s -continuous, by Corollary 2.12, $P_sClf^{-1}(V) \subseteq f^{-1}(P_sClV)$. Since *V* is semi-open set of *Y*, by Lemma 1.12, $P_sClV = ClV$ which implies that $f^{-1}(P_sClV) \subseteq f^{-1}(ClV)$. Since *V* is semi-open set of *Y* and *f* is preopen, by Theorem 1.17, we have $f^{-1}(P_sClV) \subseteq f^{-1}(ClV) \subseteq Clf^{-1}(V)$ and hence $f^{-1}(P_sClV) \subseteq Clf^{-1}(V)$. Since *V* is semi-open set of *Y* and *f* is irresolute, so $f^{-1}(V)$ is semi-open set in *X*. Then by Lemma 1.12, we obtain that $f^{-1}(P_sClV) \subseteq P_sClf^{-1}(V)$. Therefore, we have $P_sClf^{-1}(V) = f^{-1}(P_sClV)$. Sufficiency. Follows from Theorem 2.12.

From the above theorem and Lemma 1.12 we obtain the following results:

Corollary 3.28. If a function $f : X \to Y$ is almost p_s -continuous, irresolute and preopen, then $P_sIntf^{-1}(F) = f^{-1}(P_sIntF)$ for each semi-closed set F of Y.

Corollary 3.29. If a function $f : X \to Y$ is almost p_s -continuous, irresolute and preopen, then $Clf^{-1}(V) = f^{-1}(ClV)$ for each semi-open set V of Y.

ALMOST p_s -CONTINUOUS FUNCTIONS

References

- Abd El-Monsef M. E., El-Deeb S. N. and Mahmoud R. A., β-open sets and β-continuous mappings, Bull. Fac. Sci. Assuit. Univ., 12(1983), 1–18.
- [2] A. S. Abdulla, On some applications of special subsets in topology, Ph.D. Thesis, Tanta Univ., 1986.
- [3] N. K. Ahmed, On some types of separation axioms, M.Sc. Thesis, College of Science, Salahaddin Univ., 1990.
- [4] D. Andrijevic, Semi-preopen sets, Math. Vesnik, 38 (1986), 24–36.
- [5] D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72 (1978), 581–586.
- [6] D. A. Carnahan, Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ. Arkansas, 1973.
- [7] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fundamenta Mathematica, 74 (1972), 233– 254.
- [8] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18 (1987), 226–233.
- [9] J. Dontchev, Survey on preopen sets, The Proceedings of the Yatsushiro Topological Conference, (1998), 1–18.
- [10] M. Ganster, T. Noiri and I. L. Reilly, *Weak and strong forms of* θ *-irresolute functions*, J. Inst. Math. Comput. Sci., **1**(1988), 19–29.
- [11] T. Y. Guo, A characterization of extremally disconnected spaces, J. Central China Normal Univ. Natur. Sci., 21 (1981), 169–170.
- [12] D. S. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1985), 83–92.
- [13] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341–348.
- [14] A. B. Khalaf and A. M. Abdul-Jabbar, Almost θs-continuity and weak θs-continuity in topological spaces, J. Duhok Univ., 4 (2001), 171–177.
- [15] A. B. Khalaf and B. A. Asaad, p_s-open sets and p_s-continuity in topological spaces, J. Duhok univ., 12 (2009), 183–192.
- [16] F. H. Khedr and T. Noiri, $On \theta$ -irresolute functions, Indian J. Math., **28** (1986), 211–217.
- [17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [18] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, Ser. I., 89 (1975), 395–402.
- [19] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and week precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [20] B. M. Munshi and D. S. Bassan, Super continuous functions, Indian J. Pure Appl. Math., 13 (1982), 229–236.
- [21] A. A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungar., 74 (1997), 211–219.
- [22] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961–970.
- [23] T. Noiri, Almost α-continuous functions, Kyungpook Math. J., 28 (1988), 71–77.
- [24] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161–166.
- [25] T. Noiri, Properties of some weak forms of continuity, Internat. J. Math. and Math. Sci., 10 (1987), 97-111.
- [26] T. Noiri, Remarks on semi-open mappings, Bull. Calcutta. Math. Soc., 65 (1973), 197-201.
- [27] T. Noiri and S. M. Kang, On almost strongly θ-continuous functions, Indian J. Pure Appl. Math., 15(1984), 1–8.
- [28] T. Noiri and V. Popa, On Almost β -continuous functions, Acta Math. Hungar., **79** (1998), 329–339.
- [29] A. Prakash and P. Srivstava, Some results on weak continuity, almost continuity and c-continuity, Indian J. Math., 19 (1977).
- [30] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16 (1968), 63–73.
- [31] L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer Verlag New York Heidelberg Berlin, 1978.
- [32] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.
- [33] G. H. Wang, On S-closed spaces, Acta Math. Sinica, 24 (1981), 55–63.

Department of Mathematics, College of Basic Education, University of Duhok, Kurdistan-Region, Iraq.

E-mail: aliasbkhalaf@gmail.com

ALIAS B. KHALAF AND BARAVAN A. ASAAD

Department of Mathematics, College of Education, University of Duhok, Kurdistan-Region, Iraq. E-mail: baravatroshi@gmail.com