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ALMOST ps-CONTINUOUS FUNCTIONS

ALIAS B. KHALAF AND BARAVAN A. ASAAD

Abstract. The purpose of this paper is to introduce a new class of functions called almost

ps -continuous function by using ps-open sets in topological spaces. Some properties

and characterizations of this function are given.

1. Introduction

Throughout this paper, a space X mean a topological space with out any separation ax-

iom. We recall the following definitions, notations and terminology. The closure (resp. in-

terior) of a subset A of X is denoted by C l A (resp. Int A). A subset A of X is said to be

preopen [19] (resp. semi-open [17], α-open [22], β-open [1], regular open [31] and regular

semi-open [5]) if A ⊆ IntC l A (resp. A ⊆C l Int A, A ⊆ IntC l Int A, A⊆C l IntC l A, A = IntC l A

and A = sInt sC l A). The complement of a preopen (resp. semi-open, α-open, β-open, reg-

ular open and regular semi-open) set is said to be preclosed (resp. semi-closed, α-closed,

β-closed, regular closed and regular semi-open). The family of all preopen (resp. semi-open,

α-open, regular open, regular semi-open and regular closed) subsets of a topological space X

is denoted by PO(X ) (resp. SO(X ), αO(X), RO(X ),RSO(X ) and RC (X )). A function f : X → Y

is said to be precontinuous [19] (resp. super continuous [20]) if the inverse image of each

open subset of Y is preopen (resp. δ-open) in X. A function f : X → Y is said to be almost

precontinuous [21] (resp. almost continuous in the sense of Singal and Singal [30], almost

α-continuous[23], R-map[6], almost strongly θ-continuous [27], almost s-continuous [14],

weakly θ-irresolute [10] and θ-irresolute [16]) if the inverse image of each regular open sub-

set of Y is preopen (resp., open, α-open, regular open, θ-open, closed, semi-closed and in-

tersection of regular open sets) in X . A function f : X → Y is said to be δ-continuous [24]

(resp., almost strongly θ-continuous [27]) if for each x ∈ X and each open set V of Y contain-

ing f (x), there exists an open set U of X containing x such that f (IntC lU ) ⊆ IntC lV (resp.,

f (C lU ) ⊆ sC lV ). A function f : X → Y is said to be irresolute [7] if the inverse image of each

semi-open subset of Y is semi-open in X . A function f : X → Y is said to be weakly quasi-

continuous [25] (resp. S-continuous [33]) if for every F ∈ RC (Y ), f −1(F ) ∈ SO(X ) (resp. f −1(F )
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is the union of regular closed sets of X ). A function f : X → Y is said to be preopen [19] (resp.,

semi-open [26]) if the image of each open set of X is preopen (resp., semi-open) in Y.

Definition 1.1 ([15]). A preopen subset A of a space X is called ps -open if for each x ∈ A, there

exists a semi-closed set F such that x ∈ F ⊆ A.

The family of all ps-open subsets of a topological space X is denoted by PsO(X ).

Definition 1.2 ([32]). A subset A of a space X is called δ-open (resp., θ-open) if for each x ∈ A,

there exists an open set G such that x ∈G ⊆ IntC lG ⊆ A (resp., x ∈G ⊆C lG ⊆ A).

The intersection of all ps -closed (resp. preclosed, semi-closed, α-closed and δ-closed)

sets of X containing A is called the ps -closure (resp. preclosure, semi-closure, α-closure and

δ-closure) of A and is denoted by PsC l A (resp. pC l A, sC l A, αC l A and C lδA). The union of

all ps -open (resp. preopen, semi-open, α-open and δ-open) sets of X contained in A is called

the ps -interior (resp. preinterior, semi-interior, α-interior and δ-interior) of A and is denoted

by Ps Int A (resp. p Int A, sInt A, αInt A and IntδA).

Proposition 1.3 ([15]). A subset A of a space X is ps -open if and only if A is preopen and it is a

union of semi-closed sets.

Definition 1.4 ([13]). A subset A of a space X is called θ-semi-open if for each x ∈ A, there

exists a semi-open set G such that x ∈G ⊆C lG ⊆ A. The family of all θ-semi-open subsets of

a topological space X is denoted by θSO(X ).

Definition 1.5. A space X is s-regular[3] (resp., semi-regular[28]) if for each x ∈ X and each

open set G containing x, there exists a semi-open (resp., regular open) set H such that x ∈ H ⊆

sC l H ⊆G (resp.,x ∈ H ⊆G).

Definition 1.6. A space X is said to be:

(1) extremally disconnected [8] if C lU is open for each open set U .

(2) hyperconnected [9] if every nonempty open subset of X is dense in X.

(3) locally indiscrete [9] if every open subset of X is closed.

(4) semi-T1 [18] if to each pair of distinct points x, y of X , there exists a pair of semi-open

sets, one containing x but not y and the other containing y but not x.

Proposition 1.7. The following statements are true:

(1) A space X is semi-T1 if and only if for any point x ∈ X , the singleton set {x} is semi-closed.[18].

(2) A space X is extremally disconnected if and only if RO(X )= RC (X ). [11].
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(3) If a space X is semi-T1, then PsO(X ) = PO(X ). [15].

(4) If a topological space (X ,τ) is locally indiscrete, then PsO(X ) = τ . [15].

(5) If a topological space (X ,τ) is s-regular, then τ ⊆PsO(X ). [15].

Proposition 1.8 ([15]). For any subset A of a space X . The following are equivalent:

(1) A is clopen.

(2) A is ps -open and closed.

(3) A is α-open and closed.

(4) A is preopen and closed.

Proposition 1.9 ([15]). For any subset A of a space X . The following are equivalent:

(1) A is regular open.

(2) A is ps -open and semi-closed.

(3) A is open and semi-closed.

(4) A is α-open and semi-closed.

(5) A is preopen and semi-closed.

Lemma 1.10 ([15]). The following properties are true:

(1) For any subset A of a space X . If A ∈ θSO(X ) and A ∈ PO(X ), then A ∈ PsO(X ).

(2) If (X ,τ) is extremally disconnected space and if A ∈ θSO(X ), then A ∈ PsO(X ).

(3) If (Y ,τY ) is a subspace of a space (X ,τ), if A ∈ PsO(Y ,τY ) and Y ∈ RO(X ,τ), then A ∈

PsO(X ).

(4) If either B ∈ RSO(X ) or B is an open subspace of a space X and A ∈ PsO(X ), then A ∩B ∈

PsO(B ).

Lemma 1.11. The following statements are true:

(1) If R ∈ RO(X ) and P ∈ PO(X ), then R ∩P ∈ RO(P). [9].

(2) Let A be a subset of a space (X ,τ). Then A ∈ PO(X ,τ) if and only if sC l A = IntC l A. [12].

(3) Let Y be a dense subspace of X . If O is regular open in Y , then O = Y ∩ IntC lO. [29].

(4) A subset A of a space (X ,τ) is β-open if and only if C l A is regular closed. [4].

Lemma 1.12. Let A be a subset of a topological space (X ,τ), then the following statement are

true:

(1) If A ∈ SO(X ), then C lδA =C l A =PsC l A = pC l A =αC l A. [15].

(2) If A ∈βO(X ), then αC l A =C l A. [2].
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Definition 1.13 ([15]). A function f : X → Y is called ps -continuous at a point x ∈ X if for

each open set V of Y containing f (x), there exists a ps -open set U of X containing x such that

f (U ) ⊆V . Equivalently,a function f : X → Y is ps -continuous if and only if f −1(V ) is ps -open

set in X for each open set V in Y .

Proposition 1.14 ([21]). A function f : X → Y is almost precontinuous if and only if f −1(V ) is

preopen set in X , for every δ-open set V in Y .

Lemma 1.15. The following results can be proved easily:

(1) If f : X → Y is almost precontinuous and Y is semi-regular, then f is precontinuous.

(2) If f : X → Y is almost continuous and Y is semi-regular, then f is continuous.

Theorem 1.16 ([15]). . If f : X → Y is a continuous and open function and V is a ps -open set

of Y , then f −1(V ) is a ps -open set of X .

Theorem 1.17 ([12]). . A function f : X → Y is preopen if and only if f −1(C lV )⊆C l f −1(V ), for

each semi-open set V of Y .

2. Almost ps -Continuous Functions

In this section, we introduce the concept of almost ps-continuous functions by using

ps -open sets. Some properties and characterizations are given.

Definition 2.1. A function f : X → Y is called almost ps -continuous at a point x ∈ X if for

each open set V of Y containing f (x), there exists a ps -open set U of X containing x such

that f (U ) ⊆ IntC lV . If f is almost ps -continuous at every point of X , then it is called almost

ps -continuous.

Lemma 2.2. The following results follows directly from their definitions:

(1) Every ps -continuous function is almost ps -continuous.

(2) Every almost ps -continuous function is almost precontinuous.

Proposition 2.3. If a function f : X → Y is δ-continuous, then f is almost ps -continuous.

Proof. Let x ∈ X and V be any open set of Y containing f (x). Since f is δ-continuous,

there exists an open set U of X containing x such that f (IntC lU )⊆ IntC lV . Since IntC lU

is a regular open set, hence it is ps -open set of X containing x. Therefore, f is almost ps-

continuous. ���

From Lemma 2.2, Proposition 2.3 and Diagram 3.1 in [15], we obtain the following dia-

gram:
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super continuous //

��

δ-continuous

��

ps -continuous

��

// almost ps -continuous

��

precontinuous // almost precontinuous

Diagram 2.1

In the sequel, we shall show that none of the implications that concerning almost ps -

continuity in Diagram 2.1 is reversible.

Example 2.4. Let X = {a,b,c ,d } with the two topologies τ = {φ, X , {a}, {b},{a,b}} and σ =

{φ, X , {c}, {a,d },{a,c ,d }}; then the family of ps -open subsets of X with respect to τ is: PsO(X )

= {φ, X , {a}, {b}, {a,b}, {a,b,c},{a,b,d }}. Let f : (X ,τ) → (X ,σ) be the identity function. Then f

is almost ps-continuous, but it is not ps -continuous, because {a,d } is an open set in (X ,τ)

containing f (d ) = d , there exist no ps -open set U in (X ,τ) containing d such that d ∈ f (U ) ⊆

{a,d }.

Example 2.5. Let X = {a,b,c ,d } with the two topologies τ= {φ, X , {c}, {a,d }, {a,c ,d }} and σ=

{φ, X , {a}, {b,c}, {a,b,c}}; then the family of ps -open subsets of X with respect to τ is: PsO(X )=

{φ, X , {c}, {a,d }, {a,b,c}, {a,c ,d }, {b,c ,d }}. Let f : (X ,τ) → (X ,σ) be a function defined as fol-

lows: f (a) = f (b) = f (c) = a and f (d ) = b. Then f is almost precontinuous (see Example 4.5

[21]) . However f is not almost ps -continuous since {b,c} is an open set in (X ,τ) containing

f (d ) = b, there exist no ps -open set U in (X ,τ) containing d such that f ({d }) = b ∈ f (U ) ⊆

IntC l {b,c}= {b,c}.

Example 2.6. Let X = {a,b,c ,d } with the two topologies τ= {φ, X , {c}, {d }, {a,c}, {c ,d },

{a,c ,d }} and let Y = {x, y, z} with the topology σ = {φ,Y , {x}, {y},{x, y}}; then the family of ps -

open subset of X with respect to τ is: PsO(X )= {φ, X , {c}, {d }, {a,c}, {c ,d }, {a,c ,d },

{b,c ,d }}. Let f : (X ,τ) → (X ,σ) be a function defined as follows: f (a) = z and f (b) = f (c) =

f (d ) = y . Then f is almost ps -continuous. But f is not almost continuous [21] Example 4.2

and hence it is not δ-continuous.

Theorem 2.7. For a function f : X → Y , the following statements are equivalent:

(1) f is almost ps -continuous.

(2) For each x ∈ X and each open set V of Y containing f (x), there exists a ps -open set U in X

containing x such that f (U ) ⊆ sC lV .
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(3) For each x ∈ X and each regular open set V of Y containing f (x), there exists a ps -open set

U in X containing x such that f (U ) ⊆V .

(4) For each x ∈ X and each δ-open set V of Y containing f (x), there exists a ps -open set U in

X containing x such that f (U ) ⊆V .

Proof. (1) ⇒ (2). Let x ∈ X and let V be any open set of Y containing f (x). By (1), there exists

a ps -open set U of X containing x such that f (U ) ⊆ IntC lV . Since V is open, hence V is

preopen set. Therefore, by Lemma 1.11(2), f (U ) ⊆ sC lV .

(2) ⇒ (3). Let x ∈ X and let V be any regular open set of Y containing f (x). Then V is an

open set of Y containing f (x). By (2), there exists a ps -open set U in X containing x such that

f (U ) ⊆ sC lV . Since V is regular open and hence is preopen set. Therefore, by Lemma 1.11(2),

f (U ) ⊆ IntC lV . Since V is regular open, then f (U ) ⊆V .

(3) ⇒ (4). Let x ∈ X and let V be any δ-open set of Y containing f (x). Then for each f (x) ∈V ,

there exists an open set G containing f (x) such that G ⊆ IntC lG ⊆ V . Since IntC lG is a

regular open set of Y containing f (x), by (3), there exists a ps -open set U in X containing x

such that f (U ) ⊆ IntC lG ⊆V . This completes the proof.

(4) ⇒ (1). Let x ∈ X and let V be any open set of Y containing f (x). Then IntC lV is δ-open

set of Y containing f (x). By (4), there exists a ps -open set U in X containing x such that

f (U ) ⊆ IntC lV . Therefore, f is almost ps-continuous. ���

Theorem 2.8. For a function f : X → Y , the following statements are equivalent:

(1) f is almost ps -continuous.

(2) f −1(IntC lV ) is ps -open set in X , for each open set V in Y .

(3) f −1(C l Int F ) is ps -closed set in X , for each closed set F in Y .

(4) f −1(F ) is ps -closed set in X , for each regular closed set F of Y .

(5) f −1(V ) is ps-open set in X , for each regular open set V of Y .

Proof. (1) ⇒ (2). Let V be any open set in Y . We have to show that f −1(IntC lV ) is ps -open set

in X . Let x ∈ f −1(IntC lV ). Then f (x) ∈ IntC lV and IntC lV is a regular open set in Y . Since

f is almost ps -continuous, by Theorem 2.7, there exists a ps -open set U of X containing x

such that f (U ) ⊆ IntC lV . Which implies that x ∈U ⊆ f −1(IntC lV ). Therefore, f −1(IntC lV )

is ps -open set in X .

(2) ⇒ (3). Let F be any closed set of Y . Then Y −F is an open set of Y . By (2), f −1(IntC l (Y \

F )) is ps -open set in X and f −1(IntC l (Y \ F )) = f −1(Int (Y \ Int F )) = f −1(Y \ C l Int F ) = X \

f −1(C l Int F ) is ps -open set in X and hence f −1(C l Int F ) is ps -closed set in X .

(3) ⇒ (4). Let F be any regular closed set of Y . Then F is a closed set of Y . By (3), f −1(C l Int F )

is ps -closed set in X . Since F is regular closed set, then f −1(C l Int F ) = f −1(F ). Therefore,
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f −1(F ) is ps -closed set in X .

(4) ⇒ (5). Let V be any regular open set of Y . Then Y \V is regular closed set of Y and by (4),

we have f −1(Y \V )= X \ f −1(V ) is ps -closed set in X and hence f −1(V ) is ps -open set in X .

(5) ⇒ (1). Let x ∈ X and let V be any regular open set of Y containing f (x). Then x ∈ f −1(V ).

By (5), we have f −1(V ) is ps -open set in X . Therefore, we obtain f ( f −1(V )) ⊆ V . Hence by

Theorem 2.7, f is almost ps -continuous. ���

The following result can be proved easily from the above theorem.

Proposition 2.9. Let f : X → Y be a function. Let B be any basis for τS in Y . Then f is almost

ps -continuous if and only if for each B ∈ B , f −1(B ) is a ps -open subset of X .

Theorem 2.10. For a function f : X → Y , the following statements are equivalent:

(1) f is almost ps -continuous.

(2) f (PsC l A) ⊆C lδ f (A), for each A ⊆ X .

(3) PsC l f −1(B )⊆ f −1C lδ(B ), for each B ⊆ Y .

(4) f −1(F ) is ps -closed set in X , for each δ-closed set F of Y .

(5) f −1(V ) is ps -open set in X , for each δ-open set V of Y .

(6) f −1(IntδB )⊆ Ps Int f −1(B ), for each B ⊆ Y .

Proof. (1) ⇒ (2). Let A be a subset of X . Since C lδ f (A) is δ-closed set in Y , so C lδ f (A) =∩{Fα :

Fα ∈ RC (Y ),α ∈ Λ}, where Λ is an index set. Then A ⊆ f −1(C lδ f (A)) = f −1(∩{Fα : α ∈ Λ})

=∩{ f −1(Fα) : α ∈ Λ}. By (1) and Theorem 2.8, f −1(C lδ f (A)) is ps-closed set of X . Hence

PsC l A ⊆ f −1(C lδ f (A)). Therefore, we obtain that f (PsC l A) ⊆C lδ f (A).

(2) ⇒ (3). Let B be any subset of Y . Then f −1(B ) is a subset of X . By (2), we have f (PsC l f −1(B ))⊆

C lδ f ( f −1(B )) =C lδB . Hence PsC l f −1(B ) ⊆ f −1(C lδB ).

(3) ⇒ (4). Let F be any δ-closed set of Y . By (3), we have PsC l f −1(F )) ⊆ f −1(C lδF )= f −1(F )

and hence f −1(F ) is ps -closed set in X .

(4) ⇒ (5). Let V be any δ-open set of Y . Then Y \ V is δ-closed set of Y and by (4), we have

f −1(Y \V ) = X \ f −1(V ) is ps-closed set in X. Hence f −1(V ) is ps-open set in X .

(5) ⇒ (6). For each subset B of Y . We have IntδB ⊆ B . Then f −1(IntδB ) ⊆ f −1(B ). By (5),

f −1(IntδB ) is ps -open set in X . Then f −1(IntδB ) ⊆Ps Int f −1(B ).

(6) ⇒ (1). Let x ∈ X and V be any regular open set of Y containing f (x). Since V is a regu-

lar open set, hence it is δ-open and by (6), f −1(IntδV ) ⊆ Ps Int f −1(V ). Therefore, f −1(V ) ⊆

Ps Int f −1(V ), so f −1(V ) is a ps -open set in X which contains x and clearly f ( f −1(V )) ⊆ V .

Hence, by Theorem 2.7, f is almost ps -continuous. ���

Theorem 2.11. For a function f : X → Y , the following statements are equivalent:
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(1) f is almost ps -continuous.

(2) Ps Clf −1(V ) ⊆ f −1(C lV ), for each β-open set V of Y .

(3) f −1(Int F )⊆ Ps Int f −1(F ), for each β-closed set F of Y .

(4) f −1(Int F )⊆ Ps Int f −1(F ), for each semi-closed set F of Y .

(5) Ps Clf −1(V ) ⊆ f −1(C lV ), for each semi-open set V of Y .

Proof. (1) ⇒ (2). Let V be any β-open set of Y . It follows from Lemma 1.11(4) that C lV is reg-

ular closed set in Y . Since f is almost ps -continuous, by Theorem 2.8, f −1(C lV ) is ps -closed

set in X . Therefore, we obtain PsC l f −1(V )⊆ f −1(C lV ).

(2) ⇒ (3). Let F be any β-closed set of Y . Then Y \ F is β-open set of Y and by (2), we

have PsC l f −1(Y \ F ) ⊆ f −1(C l (Y \ F )) and PsC l (X \ f −1(F )) ⊆ f −1(Y \ Int F ) and hence, X \

Ps Int f −1(F ) ⊆ X \ f −1(Int F ). Therefore, f −1(Int F )⊆ Ps Int f −1(F ).

(3) ⇒ (4). Obvious since every semi-closed set is β-closed.

(4) ⇒ (5). Let V be any semi-open set of Y . Then Y \ V is semi-closed set in Y and by (4),

we have f −1(Int (Y \V )) ⊆ Ps Int f −1(Y \V ) and f −1(Y \C lV ) ⊆ Ps Int (X \ f −1(V )) and hence,

X \ f −1(C lV ) ⊆ X \ PsC l f −1(V ). Therefore, PsC l f −1(V ) ⊆ f −1(C lV ).

(5) ⇒ (1). Let F be any regular closed set of Y . Then F is a semi-open set of Y . By (5), we have

PsC l f −1(F ) ⊆ f −1(C l F )= f −1(F ). This shows that f −1(F ) is a ps -closed set in X. Therefore, by

Theorem 2.8, f is almost ps -continuous. ���

Corollary 2.12. For a function f : X → Y , the following statements are equivalent:

(1) f is almost ps -continuous.

(2) Ps Clf −1(V ) ⊆ f −1(αC lV ), for each β-open set V of Y .

(3) PsC l f −1(V ) ⊆ f −1(C lδV ), for each β-open set V of Y

(4) PsC l f −1(V ) ⊆ f −1(PsC lV ), for each semi-open set V of Y .

(5) PsC l f −1(V ) ⊆ f −1(pC lV ), for each semi-open set V of Y .

Proof. (1) ⇒ (2). Follows from Theorem 2.11 and Lemma 1.12(2).

(2) ⇒ (3). Follows from the fact that αC lV ⊆C lδV .

(3) ⇒ (4) and (4) ⇒ (5). Follows from Theorem 2.11 and Lemma 1.12(1).

(5) ⇒ (1). Follows from Theorem 2.11 and Lemma 1.12(1).

���

The following result also can be concluded directly.

Corollary 2.13. For a function f : X → Y , the following statements are equivalent:

(1) f is almost ps -continuous.
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(2) f −1(αInt F )⊆ Ps Int f −1(F ), for each β-closed set F of Y .

(3) f −1(IntδF ) ⊆ Ps Int f −1(F ), for each β-closed set F of Y .

(4) f −1(Ps Int F )⊆Ps Int f −1(F ), for each semi-closed set F of Y .

(5) f −1(p Int F )⊆ Ps Int f −1(F ), for each semi-closed set F of Y .

Theorem 2.14. A function f : X → Y is almost ps-continuous if and only if f −1(V ) ⊆ Ps Int f −1(IntC lV )

for each preopen set V of Y .

Proof. Necessity. Let V be any preopen set of Y . Then V ⊆ IntC lV and IntC lV is a regular

open set in Y . Since f is almost ps -continuous, by Theorem 2.8, f −1(IntC lV ) is ps -open set

in X and hence we obtain that f −1(V ) ⊆ f −1(IntC lV )=ps Int f −1(IntC lV ).

Sufficiency. Let V be any regular open set of Y . Then V is a preopen set of Y . By hypothesis,

we have f −1(V ) ⊆ Ps Int f −1(IntC lV ) = Ps Int f −1(V ). Therefore, f −1(V ) is ps -open set in X

and hence by Theorem 2.8, f is almost ps -continuous. ���

We obtain the following corollary.

Corollary 2.15. The following statements are equivalent for a function f : X → Y :

(1) f is almost ps -continuous.

(2) f −1(V ) ⊆ Ps Int f −1(sC lV ) for each preopen set V of Y .

(3) PsC l f −1(C l Int F )⊆ f −1(F ) for each preclosed set F of Y .

(4) PsC l f −1(sInt F )⊆ f −1(F ) for each preclosed set F of Y .

Corollary 2.16. For a function f : X → Y , the following statements are equivalent:

(1) f is almost ps -continuous.

(2) For each neighborhood V of f (x), x ∈ Ps Int f −1(sC lV ).

(3) For each neighborhood V of f (x), x ∈ Ps Int f −1(IntC lV ).

Proof. Follows from Theorem 2.14 and Corollary 2.15. ���

Theorem 2.17. Let f : X → Y be an almost ps -continuous function and let V be any open

subset of Y . If x ∈ PsC l f −1(V ) \ f −1(V ), then f (x) ∈ PsC lV .

Proof. Let x ∈ X be such that x ∈ PsC l f −1(V ) \ f −1(V ) and suppose f (x) ∉ PsC lV . Then

there exists a ps -open set H containing f (x) such that H ∩V =φ . Then C l H ∩V =φ implies

IntC l H∩V =φ and IntC l H is a regular open set. Since f is almost ps -continuous, by Theo-

rem 2.7, there exists a ps -open set U in X containing x such that f (U ) ⊆ IntC l H . Therefore,

f (U )∩V = φ. However, since x ∈ PsC l f −1(V ), U ∩ f −1(V ) 6= φ for every ps -open set U in X

containing x, so that f (U )∩V 6=φ. We have a contradiction. It follows that f (x) ∈ PsC lV . ���
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Theorem 2.18. If a function f : X → Y is almost precontinuous. Then the following statements

are equivalent:

(1) f is almost ps -continuous.

(2) For each x ∈ X and each open set V of Y containing f (x), there exists a semi-closed set F in

X containing x such that f (F ) ⊆ IntC lV .

(3) For each x ∈ X and each open set V of Y containing f (x), there exists a semi-closed set F in

X containing x such that f (F ) ⊆ sC lV .

(4) For each x ∈ X and each regular open set V of Y containing f (x), there exists a semi-closed

set F in X containing x such that f (F )⊆V .

(5) For each x ∈ X and each δ-open set V of Y containing f (x), there exists a semi-closed set F

in X containing x such that f (F ) ⊆V .

Proof. (1) ⇒ (2). Let x ∈ X and let V be any open set of Y containing f (x). By (1), there

exists a ps -open set U of X containing x such that f (U ) ⊆ IntC lV . Since U is ps -open set, so

for each x ∈U there exists a semi-closed set F in X such that x ∈ F ⊆U . Therefore, we have

f (F ) ⊆ IntC lV .

(2) ⇒ (3). Obvious.

(3) ⇒ (4). Let x ∈ X and let V be any regular open set of Y containing f (x). Then V is an open

set of Y containing f (x). By (3), there exists a semi-closed set F in X containing x such that

f (F ) ⊆ sC lV . Since V is regular open and hence is preopen. Therefore, by Lemma 1.11(2),

f (F ) ⊆ IntC lV . Since V is regular open, then f (F ) ⊆V .

(4) ⇒ (5). Let x ∈ X and let V be any δ-open set of Y containing f (x). Then for each f (x) ∈V ,

there exists an open set G containing f (x) such that G ⊆ IntC lG ⊆ V . Since IntC lG is a

regular open set of Y containing f (x), by (4), there exists a semi-closed set F in X containing

x such that f (F ) ⊆ IntC lG ⊆V . This completes the proof.

(5) ⇒ (1). Let V be anyδ-open set of Y . We have to show that f −1(V ) is ps -open set in X . Since

f is almost precontinuous, by Proposition 1.14, f −1(V ) is preopen set in X . Let x ∈ f −1(V ),

then f (x) ∈ V . By hypothesis, there exists a semi-closed set F of X containing x such that

f (F ) ⊆V . Which implies that x ∈ F ⊆ f −1(V ). Therefore, f −1(V ) is ps -open set in X . Hence by

Theorem 2.10, f is almost ps -continuous. ���

Theorem 2.19. A function f : (X ,τ) → (Y ,σ) is almost ps -continuous if and only if f : (X ,τ) →

(Y ,σS ) is ps-continuous.

Proof. Necessity. Let H ∈ σS , then H is a regular open set in (Y ,σ). Since f : (X ,τ) → (Y ,σ)

is almost ps -continuous, by Theorem 2.8, f −1(H ) is ps -open set in X . Therefore, f : (X ,τ) →

(Y ,σS ) is ps -continuous.
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Sufficiency. Let G be any regular open set in (Y ,σ). Then G ∈ σS . Since f : (X ,τ) → (Y ,σS)

is ps-continuous, by Definition 1.13, f −1(G) is ps-open set in X . Therefore, by Theorem 2.8,

f : (X ,τ) → (Y ,σ) is almost ps -continuous. ���

Theorem 2.20. Let X be a locally indiscrete space. Then the function f : (X ,τ) → (Y ,σ) is

almost ps -continuous if and only if f : (X ,τ) → (Y ,σS) is continuous.

Proof. Necessity. Let H ∈σS , then H is a regular open set in (Y ,σ). Since f : (X ,τ) → (Y ,σ) is

almost ps -continuous, by Theorem 2.8, f −1(H ) is ps -open set in X . Since X is locally indis-

crete space, by Proposition 1.7(4), f −1(H ) is open set in X . Therefore, f : (X ,τ) → (Y ,σS) is

continuous.

Sufficiency. Let G be any regular open set in (Y ,σ). Then G ∈ σS . Since f : (X ,τ) → (Y ,σS)

is continuous, so f −1(G) is open set in X . Since X is locally indiscrete space, by Proposition

1.7(4), f −1(G) is ps -open set in X . Therefore, by Theorem 2.8, f : (X ,τ) → (Y ,σ) is almost

ps -continuous. ���

3. Properties and Comparisons

In this section, we give some properties of almost ps -continuous functions and compare

it with other types of continuous functions.

Proposition 3.1. Let f : X → Y be an almost ps -continuous function. If A is either open or

regular semi-open subset of X , then f |A : A → Y is almost ps -continuous in the subspace A.

Proof. Let V be any regular open set of Y . Since f is almost ps -continuous, by Theorem

2.8, f −1(V ) is ps -open set in X . Since A is either open or regular semi-open subset of X . By

Lemma 1.10(4), ( f |A)−1(V ) = f −1(V )∩A is a ps -open subset of A. This shows that f |A : A → Y

is almost ps -continuous. ���

Corollary 3.2. Let f : X → Y be almost ps -continuous function. If A is regular open subset of

X , then f |A : A → Y is almost ps-continuous in the subspace A.

Proof. Follows from Proposition 3.1 ���

Theorem 3.3. A function f : X → Y is almost ps -continuous. If for each x ∈ X , there exists a

regular open set A of X containing x such that f |A : A → Y is almost ps -continuous.

Proof. Let x ∈ X , then by hypothesis, there exists a regular open set A containing x such that

f |A : A → Y is almost ps -continuous. Let V be any open set of Y containing f (x), there exists

a ps -open set U in A containing x such that ( f |A)(U ) ⊆ IntC lV . Since A is regular open, by

Lemma 1.10(3), U is ps-open set in X and hence f (U ) ⊆ IntC lV . This shows that f is almost

ps -continuous. ���
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Corollary 3.4. Let {Uγ : γ ∈ ∆} be a regular open cover of a topological space X . A function

f : X → Y is almost ps -continuous if and only if f |Uγ : Uγ → Y is almost ps -continuous for

each γ ∈∆.

Proof. This is an immediate consequence of Corollary 3.2 and Theorem 3.3. ���

Theorem 3.5. If X = R ∪S, where R and S are regular open sets and f : X → Y is a function

such that both f |R and f |S are almost ps -continuous, then f is almost ps -continuous.

Proof. Let V be any regular open set of Y . Then f −1(V ) = ( f |R)−1(V )∪ ( f |S)−1(V ). Since f |R

and f |S are almost ps -continuous, by Theorem 2.8, ( f |R)−1(V ) and ( f |S)−1(V ) are ps -open

sets in R and S, respectively. Since R and S are regular open sets in X , then by Lemma 1.10(3),

( f |R)−1(V ) and ( f |S)−1(V ) are ps -open sets in X . Since a union of two ps -open sets is ps -open,

hence f −1(V ) is ps -open set in X . Therefore, by Theorem 2.8, f is almost ps -continuous. ���

In general, if X = ∪{Kγ : γ ∈ ∆}, where each Kγ is a regular open set and f : X → Y is a

function such that f |Kγ is almost ps-continuous for each γ, then f is almost ps -continuous.

Theorem 3.6. Let f : X → Y be almost ps -continuous and let A be either open or regular semi-

open subset of X such that f (A) is dense in Y . Then f |A : A → f (A) is almost ps -continuous.

Proof. Let O be a regular open set of f (A). Then by Lemma 1.11(3), O = f (A)∩ IntC lO. Thus,

( f |A)−1(O) = ( f |A)−1( f (A)∩IntC lO) = ( f |A)−1( f (A))∩( f |A)−1(IntC lO) = A∩( f |A)−1(IntC lO)

= A∩ f −1(IntC lO) = A∩ f −1(O). Since f is almost ps -continuous, by Theorem 2.8, f −1(O)= f −1(IntC lO)

is ps -open in X . Since A is either open or regular semi-open subset of X . Then by Lemma

1.10(4), ( f |A)−1(O) is ps-open set in the subspace A. Therefore, by Theorem 2.8, f |A : A →

f (A) is almost ps -continuous. ���

Theorem 3.7. Let X = R1 ∪R2, where R1 and R2 are regular open sets in X . Let f : R1 → Y and

g : R2 → Y be almost ps -continuous. If f (x) = g (x) for each x ∈ R1 ∩R2. Then h : R1 ∪R2 → Y

such that h(x)= f (x) for x ∈ R1 and h(x)= g (x) for x ∈ R2 is almost ps -continuous.

Proof. Let O be a regular open set of Y . Now h−1(O) = f −1(O)∪ g−1(O). Since f and g are

almost ps -continuous, by Theorem 2.8, f −1(O) and g−1(O) are ps -open set in R1 and R2 re-

spectively. But R1 and R2 are both regular open sets in X . Then by Lemma 1.10(3), f −1(O)

and g−1(O) are ps -open sets in X . Since union of two ps -open sets is ps -open, so h−1(O) is a

ps -open set in X . Hence by Theorem 2.8, h is almost ps -continuous. ���

Theorem 3.8. Let f : X → Y be almost ps -continuous surjection and A be an open subset of X .

If f is an open function, then the function g : A → f (A), defined by g (x) = f (x) for each x ∈ A,

is almost ps -continuous.
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Proof. Suppose that H = f (A). Let x ∈ A and V be any open set in H containing g (x). Since

H is open in Y and V is open in H , so V is open in Y . Since f is almost ps -continuous, hence

there exists a ps -open set U in X containing x such that f (U ) ⊆ IntC lV . Taking W =U ∩ A,

since A is either open or regular semi-open subset of X , by Lemma 1.10(3), W is a ps -open

set in A containing x and g (W ) ⊆ IntY C lY V ∩H = IntY C lH V . Then g (W ) ⊆ IntHC lH V . This

shows that g is almost ps -continuous. ���

Theorem 3.9. Let f : X → Y be almost ps -continuous. If Y is a preopen subset of Z , then

f : X → Z is almost ps-continuous.

Proof. Let V be any regular open set of Z . Since Y is preopen, by Lemma 1.11(1), V ∩Y is a

regular open set in Y . Since f : X → Y is almost ps -continuous, by Theorem 2.8, f −1(V ∩Y )

is a ps -open set in X . But f (x) ∈ Y for each x ∈ X . Thus f −1(V ) = f −1(V ∩Y ) is a ps -open set

of X . Therefore, by Theorem 2.8, f : X → Z is almost ps -continuous. ���

Theorem 3.10. Let f : X → Y and g : Y → Z be functions. Then the composition function

g o f : X → Z is almost ps -continuous if f and g satisfy one of the following conditions:

(1) f is ps -continuous and g is almost continuous.

(2) f is almost ps -continuous and g is δ-continuous.

(3) f is continuous and open and g is almost ps -continuous.

(4) f is almost ps -continuous and g is continuous and open.

Proof. (1). Let W be any regular open subset of Z . Since g is almost continuous, so g−1(W ) is

open subset of Y . Since f is ps -continuous, by Definition 1.13, (g o f )−1(W ) = f −1(g−1(W )) is

ps -open subset in X. Therefore, by Theorem 2.8, g o f is almost ps -continuous.

(2). Let W be any δ-open subset of Z . Since g is δ-continuous, so g−1(W ) is δ-open subset of

Y . Since f is almost ps -continuous, by Theorem 2.10, (g o f )−1(W ) = f −1(g−1(W )) is ps -open

subset in X . Therefore, by Theorem 2.10, g o f is almost ps -continuous.

(3). Let W be any regular open subset of Z . Since g is almost ps -continuous, by Theo-

rem 2.8, g−1(W ) is ps -open subset of Y . Since f is continuous and open, by Theorem 1.16,

f −1(g−1(W )) = (g o f )−1(W ) is a ps -open set in X . Hence by Theorem 2.8, g o f is almost ps -

continuous.

(4). Let x ∈ X and W be an open set of Z containing g ( f (x)). Since g is continuous, then

g−1(W ) is an open set of Y containing f (x). Since f is almost ps -continuous, there exists a

ps -open set U of X containing x such that f (U ) ⊆ IntC l g−1(W ). Also, since g is continuous,

then we obtain (g o f )(U ) ⊆ g (Int g−1(C lW )). Since g is open, we obtain (g o f )(U ) ⊆ IntC lW .

Therefore, g o f is almost ps -continuous. ���
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Theorem 3.11. If f : X → Y is almost ps -continuous and g : Y → Z is super continuous func-

tions. Then the composition function g o f : X → Z is ps -continuous.

Proof. Let W be any open subset of Z . Since g is super continuous, then g−1(W ) is δ-open

subset of Y . Since f is almost ps -continuous, by Theorem 2.10, (g o f )−1(W ) = f −1(g−1(W )) is

ps -open subset in X . Therefore, by Definition 1.13, g o f is ps-continuous. ���

Theorem 3.12. If f : X → Y is an almost ps -continuous function and Y is semi-regular. Then

f is ps -continuous.

Proof. Let x ∈ X and let V be any open set of Y containing f (x). By the semi-regularity

of Y , there exists a regular open set G of Y such that f (x) ∈ G ⊆ V . Since f is almost ps-

continuous, by Theorem 2.7, there exists a ps -open set U of X containing x such that f (U ) ⊆

G ⊆V . Therefore, f is ps -continuous. ���

Corollary 3.13. Let f : X → Y be a function and X is locally indiscrete space. Then f is almost

ps -continuous if and only if f is almost continuous.

Proof. Follows from the definition and Proposition 1.7(4). ���

Corollary 3.14. If X is a locally indiscrete space and Y is semi-regular space, then the following

statements are equivalent for a function f : X → Y :

(1) f is ps -continuous.

(2) f is almost ps -continuous.

(3) f is almost continuous.

(4) f is continuous.

Proof. Follows from Theorem 3.12, Corollary 3.13 and Proposition 1.7(4). ���

Corollary 3.15. Let f : X → Y be a function and X is s-regular space. If f is almost continuous,

then f is almost ps -continuous.

Proof. Proof. Follows from Proposition 1.7(5). ���

Corollary 3.16. Let f : X → Y be a function and X is semi-T1 space. Then f is almost ps-

continuous if and only if f is almost precontinuous.

Proof. Proof. Follows from Proposition 1.7(1). ���

Corollary 3.17. If X is a semi-T1 space and Y is semi-regular space, then the following state-

ments are equivalent for a function f : X → Y :
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(1) f is ps -continuous.

(2) f is almost ps -continuous.

(3) f is almost precontinuous.

(4) f is precontinuous.

Proof. Follows from Theorem 3.12, Corollary 3.16 and Proposition 1.7(1). ���

Theorem 3.18. If a function f : X → Y is almost strongly θ-continuous, then f is almost ps -

continuous.

Proof. Let V be any regular open set of Y . Since f is almost strongly θ-continuous, so

f −1(V ) is θ-open set and hence it is ps -open set. Therefore, by Theorem 2.8, f is almost

ps -continuous. ���

Theorem 3.19. The following statements are equivalent for a function f : X → Y :

(1) f is R-map.

(2) f is almost ps -continuous and either weakly θ-irresolute or weakly quasi-continuous.

(3) f is almost continuous and either weakly θ-irresolute or weakly quasi-continuous.

(4) f is almost α-continuous and either weakly θ-irresolute or weakly quasi-continuous.

(5) f is almost precontinuous and either weakly θ-irresolute or weakly quasi-continuous.

Proof. Follows from their definitions and Proposition 1.9. ���

Theorem 3.20. If f : X → Y is almost θs-continuous and almost precontinuous, then f is

almost ps -continuous.

Proof. Let V be a regular open set in Y . Since f is almost θs-continuous and almost precon-

tinuous function, then f −1(V ) is both θ-semi-open and preopen set in X . Therefore, f −1(V )

is ps -open set in X . Hence by Theorem 2.8, f is almost ps-continuous. ���

Theorem 3.21. Let f : X → Y be a function and X be extremally disconnected space. If f is

almost θs-continuous, then f is almost ps -continuous.

Proof. Let V be a regular open set in Y . Since f is almost θs-continuous, then f −1(V ) is θ-

semi-open set in X . Therefore, by Lemma 1.10, f −1(V ) is ps -open set in X . Hence by Theorem

2.8, f is almost ps -continuous. ���

Theorem 3.22. Let Y be an extremally disconnected space. If f : X → Y is an almost precon-

tinuous and either S-continuous or θ-irresolute function, then f is almost ps -continuous.
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Proof. Let V be a regular open set in Y . Since f is almost precontinuous, then f −1(V ) is

preopen set of X . Since Y is extremally disconnected space, by Proposition 1.7(2), V is regular

closed set of Y . Since f is either S-continuous or θ-irresolute, then f −1(V ) is the union of

regular closed sets of X and hence is the union of semi-closed sets of X . By Proposition 1.3,

f −1(V ) is ps -open set of X . Therefore, by Theorem 2.8, f is almost ps-continuous. ���

Corollary 3.23. Let f : X → Y be either S-continuous or θ-irresolute function and Y be an

extremally disconnected space. Then f is almost ps -continuous if and only if f is almost pre-

continuous.

Theorem 3.24. If Y is a hyperconnected space, then every function f : X → Y is almost ps-

continuous.

Proof. Let x ∈ X and V be any open set of Y containing f (x). Since Y is a hyperconnected

space, then C lV = Y and hence IntC lV = Y . Therefore, we have f (U ) ⊆ IntC lV , for any

ps -open set U in X. This shows that f is almost ps -continuous. ���

Theorem 3.25. If a function f : X → Y is almost ps-continuous and semi-open, then f (PsC lV )⊆

PsC l f (V ) for each open set V of X .

Proof. Let V be any open set of X . Since f is semi-open, then f (V ) is semi-open set in Y .

Since f is almost ps -continuous, then by Corollary 2.12, we obtain that PsC l f −1( f (V )) ⊆

f −1(PsC l f (V )) which implies that f (PsC lV ) ⊆ PsC l f (V ). ���

Corollary 3.26. If a function f : X → Y is almost ps-continuous and semi-open, then Ps Int f (F )

⊆ f (Ps Int F ) for each closed set F of X .

Theorem 3.27. If a function f : X → Y is irresolute and preopen. Then f is almost ps-continuous

if and only if PsC l f −1(V ) = f −1(PsC lV ) for each semi-open set V of Y .

Proof. Necessity. Let V be any semi-open set of Y . Since f is almost ps -continuous, by

Corollary 2.12, PsC l f −1(V ) ⊆ f −1(PsC lV ). Since V is semi-open set of Y , by Lemma 1.12,

PsC lV = C lV which implies that f −1(PsC lV ) ⊆ f −1(C lV ). Since V is semi-open set of Y

and f is preopen, by Theorem 1.17, we have f −1(PsC lV ) ⊆ f −1(C lV ) ⊆C l f −1(V ) and hence

f −1(PsC lV ) ⊆C l f −1(V ). Since V is semi-open set of Y and f is irresolute, so f −1(V ) is semi-

open set in X . Then by Lemma 1.12, we obtain that f −1(PsC lV ) ⊆ PsC l f −1(V ). Therefore, we

have PsC l f −1(V )= f −1(PsC lV ). Sufficiency. Follows from Theorem 2.12. ���

From the above theorem and Lemma 1.12 we obtain the following results:

Corollary 3.28. If a function f : X → Y is almost ps -continuous, irresolute and preopen, then

Ps Int f −1(F ) = f −1(Ps Int F ) for each semi-closed set F of Y .

Corollary 3.29. If a function f : X → Y is almost ps -continuous, irresolute and preopen, then

C l f −1(V ) = f −1(C lV ) for each semi-open set V of Y .



ALMOST ps -CONTINUOUS FUNCTIONS 49

References

[1] Abd El-Monsef M. E., El-Deeb S. N. and Mahmoud R. A., β-open sets and β-continuous mappings, Bull. Fac.

Sci. Assuit. Univ., 12(1983), 1–18.

[2] A. S. Abdulla, On some applications of special subsets in topology, Ph.D. Thesis, Tanta Univ., 1986.

[3] N. K. Ahmed, On some types of separation axioms, M.Sc. Thesis, College of Science, Salahaddin Univ., 1990.

[4] D. Andrijevic, Semi-preopen sets, Math. Vesnik, 38 (1986), 24–36.

[5] D. E. Cameron, Properties of S-closed spaces, Proc. Amer. Math. Soc., 72 (1978), 581–586.

[6] D. A. Carnahan, Some properties related to compactness in topological spaces, Ph.D. Thesis, Univ. Arkansas,

1973.

[7] S. G. Crossley and S. K. Hildebrand, Semi-topological properties, Fundamenta Mathematica, 74 (1972), 233–

254.

[8] G. Di Maio and T. Noiri, On s-closed spaces, Indian J. Pure Appl. Math., 18 (1987), 226–233.

[9] J. Dontchev, Survey on preopen sets, The Proceedings of the Yatsushiro Topological Conference, (1998), 1–18.

[10] M. Ganster, T. Noiri and I. L. Reilly, Weak and strong forms of θ-irresolute functions, J. Inst. Math. Comput.

Sci., 1(1988), 19–29.

[11] T. Y. Guo, A characterization of extremally disconnected spaces, J. Central China Normal Univ. Natur. Sci., 21

(1981), 169–170.

[12] D. S. Jankovic, A note on mappings of extremally disconnected spaces, Acta Math. Hungar., 46 (1985), 83–92.

[13] J. E. Joseph and M. H. Kwack, On S-closed spaces, Proc. Amer. Math. Soc., 80 (1980), 341–348.

[14] A. B. Khalaf and A. M. Abdul-Jabbar, Almost θs-continuity and weak θs-continuity in topological spaces, J.

Duhok Univ., 4 (2001), 171–177.

[15] A. B. Khalaf and B. A. Asaad, ps -open sets and ps -continuity in topological spaces, J. Duhok univ., 12 (2009),

183–192.

[16] F. H. Khedr and T. Noiri, On θ-irresolute functions, Indian J. Math., 28 (1986), 211–217.

[17] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.

[18] S. N. Maheshwari and R. Prasad, Some new separation axioms, Ann. Soc. Sci. Bruxelles, Ser. I., 89 (1975),

395–402.

[19] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and week precontinuous map-

pings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.

[20] B. M. Munshi and D. S. Bassan, Super continuous functions, Indian J. Pure Appl. Math., 13 (1982), 229–236.

[21] A. A. Nasef and T. Noiri, Some weak forms of almost continuity, Acta Math. Hungar., 74 (1997), 211–219.

[22] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15(1965), 961–970.

[23] T. Noiri, Almost α-continuous functions, Kyungpook Math. J., 28 (1988), 71–77.

[24] T. Noiri, On δ-continuous functions, J. Korean Math. Soc., 16(1980), 161–166.

[25] T. Noiri, Properties of some weak forms of continuity, Internat. J. Math. and Math. Sci., 10 (1987), 97–111.

[26] T. Noiri, Remarks on semi-open mappings, Bull. Calcutta. Math. Soc., 65 (1973), 197–201.

[27] T. Noiri and S. M. Kang, On almost strongly θ-continuous functions, Indian J. Pure Appl. Math., 15(1984), 1–8.

[28] T. Noiri and V. Popa, On Almost β-continuous functions, Acta Math. Hungar., 79 (1998), 329–339.

[29] A. Prakash and P. Srivstava, Some results on weak continuity, almost continuity and c-continuity, Indian J.

Math., 19 (1977).

[30] M. K. Singal and A. R. Singal, Almost continuous mappings, Yokohama Math. J., 16 (1968), 63–73.

[31] L. A. Steen and J. A. Seebach, Counterexamples in Topology, Springer Verlag New York Heidelberg Berlin,

1978.

[32] N. V. Velicko, H-closed topological spaces, Amer. Math. Soc. Transl., 78 (1968), 103-118.

[33] G. H. Wang, On S-closed spaces, Acta Math. Sinica, 24 (1981), 55–63.

Department of Mathematics, College of Basic Education, University of Duhok, Kurdistan-Region, Iraq.

E-mail: aliasbkhalaf@gmail.com

mailto:aliasbkhalaf@gmail.com


50 ALIAS B. KHALAF AND BARAVAN A. ASAAD

Department of Mathematics, College of Education, University of Duhok, Kurdistan-Region, Iraq.

E-mail: baravatroshi@gmail.com

mailto:baravatroshi@gmail.com

	1. Introduction
	2. Almost ps-Continuous Functions
	3. Properties and Comparisons
	References

