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ALMOST p;-CONTINUOUS FUNCTIONS

ALIAS B. KHALAF AND BARAVAN A. ASAAD

Abstract. The purpose of this paper is to introduce a new class of functions called almost
ps-continuous function by using ps-open sets in topological spaces. Some properties
and characterizations of this function are given.

1. Introduction

Throughout this paper, a space X mean a topological space with out any separation ax-
iom. We recall the following definitions, notations and terminology. The closure (resp. in-
terior) of a subset A of X is denoted by C/A (resp. IntA). A subset A of X is said to be
preopen [19] (resp. semi-open [17], @-open [22], B-open [1], regular open [31] and regular
semi-open [5]) if A IntCIlA (resp. AcClintA, A< IntClintA,Ac ClintCIA, A=IntClA
and A = sIntsClA). The complement of a preopen (resp. semi-open, a-open, 3-open, reg-
ular open and regular semi-open) set is said to be preclosed (resp. semi-closed, a-closed,
B-closed, regular closed and regular semi-open). The family of all preopen (resp. semi-open,
a-open, regular open, regular semi-open and regular closed) subsets of a topological space X
is denoted by PO(X) (resp. SO(X), aO(X), RO(X),RSO(X) and RC(X)). Afunction f: X - Y
is said to be precontinuous [19] (resp. super continuous [20]) if the inverse image of each
open subset of Y is preopen (resp. d-open) in X. A function f : X — Y is said to be almost
precontinuous [21] (resp. almost continuous in the sense of Singal and Singal [30], almost
a-continuous[23], R-map|6], almost strongly 8-continuous [27], almost s-continuous [14],
weakly 6-irresolute [10] and 6-irresolute [16]) if the inverse image of each regular open sub-
set of Y is preopen (resp., open, a-open, regular open, 8-open, closed, semi-closed and in-
tersection of regular open sets) in X. A function f: X — Y is said to be §-continuous [24]
(resp., almost strongly 6-continuous [27]) if for each x € X and each open set V of Y contain-
ing f(x), there exists an open set U of X containing x such that f(IntCIU) < IntClV (resp.,
f(CLU) € sClV). Afunction f: X — Y is said to be irresolute [7] if the inverse image of each
semi-open subset of Y is semi-open in X. A function f : X — Y is said to be weakly quasi-
continuous [25] (resp. S-continuous [33]) if for every F € RC(Y), f~1(F) € SO(X) (resp. f~1(F)
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is the union of regular closed sets of X). A function f : X — Y is said to be preopen [19] (resp.,

semi-open [26]) if the image of each open set of X is preopen (resp., semi-open) in Y.

Definition 1.1 ([15]). A preopen subset A of a space X is called ps-open if for each x € A, there

exists a semi-closed set F such that xe F € A.

The family of all ps-open subsets of a topological space X is denoted by P;O(X).

Definition 1.2 ([32]). A subset A of a space X is called §-open (resp., 8-open) if for each x € A,
there exists an open set G such that xe G< IntCIG< A (resp., xe GS CIG S A).

The intersection of all ps-closed (resp. preclosed, semi-closed, a-closed and §-closed)
sets of X containing A is called the p;-closure (resp. preclosure, semi-closure, a-closure and
6-closure) of A and is denoted by P;CIA (resp. pCILA, sClA, aClA and ClsA). The union of
all ps-open (resp. preopen, semi-open, a-open and §-open) sets of X contained in A is called
the ps-interior (resp. preinterior, semi-interior, a-interior and §-interior) of A and is denoted
by PsIntA (resp. pIntA, sintA, alntAand IntsA).

Proposition 1.3 ([15]). A subset A of a space X is ps-open if and only if A is preopen and it is a
union of semi-closed sets.

Definition 1.4 ([13]). A subset A of a space X is called 8-semi-open if for each x € A, there
exists a semi-open set G such that x € G € CIG < A. The family of all 8-semi-open subsets of

a topological space X is denoted by 6SO(X).

Definition 1.5. A space X is s-regular[3] (resp., semi-regular[28]) if for each x € X and each
open set G containing x, there exists a semi-open (resp., regular open) set H such thatxe H <
sCIH < G (resp.,x € H< G).

Definition 1.6. A space X is said to be:

(1) extremally disconnected [8] if CIU is open for each open set U.
(2) hyperconnected [9] if every nonempty open subset of X is dense in X.
(3) locally indiscrete [9] if every open subset of X is closed.

(4) semi-T; [18] if to each pair of distinct points x, y of X, there exists a pair of semi-open
sets, one containing x but not y and the other containing y but not x.

Proposition 1.7. The following statements are true:

(1) Aspace X is semi-T) ifand onlyif for any point x € X, the singleton set {x} is semi-closed.[18].
(2) Aspace X is extremally disconnected if and only if RO(X) = RC(X). [11].
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(3) Ifaspace X is semi-T, then PsO(X) = PO(X). [15].
(4) Ifatopological space (X,7) is locally indiscrete, then P;O(X) =1 . [15].
(5) Ifatopological space (X, 1) is s-regular, thent < P;O(X). [15].

Proposition 1.8 ([15]). For any subset A of a space X. The following are equivalent:

(1) Aisclopen.
(2) Ais ps-open and closed.
(3) Aisa-open and closed.

(4) A is preopen and closed.

Proposition 1.9 ([15]). For any subset A of a space X. The following are equivalent:

(1) A isregular open.

(2) Ais ps-open and semi-closed.
(3) Aisopen and semi-closed.

(4) Aisa-open and semi-closed.

(5) A is preopen and semi-closed.

Lemma 1.10 ([15]). The following properties are true:

(1) For any subset A of a space X. If A€ SO(X) and A€ PO(X), then A€ P;O(X).
(2) If(X,7) is extremally disconnected space and if A€ 0SO(X), then A€ P;O(X).

(3) If (Y,ty) is a subspace of a space (X,1), if A€ P;O(Y,7y) and Y € RO(X,1), then A €
P;0(X).

(4) If either B € RSO(X) or B is an open subspace of a space X and A € P;O(X), then ANB €
P;O(B).

Lemma 1.11. The following statements are true:

(1) IfRe RO(X) and P € PO(X), then RN P € RO(P). [9].

(2) Let A be a subset of a space (X,1). Then Ae PO(X, 1) ifand only if sCIA= IntCIA. [12].
(3) LetY be a dense subspace of X. If O is regular open inY, then O =Y n IntCIlO. [29].

(4) Asubset A of a space (X,71) is 3-open if and only if CL A is regular closed. [4].

Lemma 1.12. Let A be a subset of a topological space (X, 1), then the following statement are
true:

(1) IfAe SO(X), thenClsA=CIA=P;ClA=pClA=aCIlA. [15].

(2) If Ae BO(X), thenaClA=CIA. [2].
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Definition 1.13 ([15]). A function f : X — Y is called p,-continuous at a point x € X if for
each openset V of Y containing f(x), there exists a ps;-open set U of X containing x such that
f(U) € V. Equivalently,a function f: X — Y is p,-continuous if and only if f~1(V) is ps-open
setin X for each openset VinY.

Proposition 1.14 ([21]). A function f: X — Y is almost precontinuous if and only if f~1(V) is

preopen set in X, for everyd-open setV inY.

Lemma 1.15. The following results can be proved easily:

(1) Iff: X — Y isalmost precontinuous and Y is semi-regular, then f is precontinuous.

(2) Iff: X — Y isalmost continuous and Y is semi-regular, then f is continuous.

Theorem 1.16 ([15]). . If f : X — Y is a continuous and open function and V is a ps-open set
of Y, then f~1(V) is a ps-open set of X.

Theorem 1.17 ([12]). . A function f : X — Y is preopen ifand only if f~1(CIV) < CLf~Y(V), for
each semi-open setV of Y.

2. Almost p;-Continuous Functions

In this section, we introduce the concept of almost ps-continuous functions by using

ps-open sets. Some properties and characterizations are given.

Definition 2.1. A function f: X — Y is called almost ps-continuous at a point x € X if for
each open set V of Y containing f(x), there exists a ps-open set U of X containing x such
that f(U) < IntCIlV. If f is almost ps-continuous at every point of X, then it is called almost

ps-continuous.

Lemma 2.2. The following results follows directly from their definitions:

(1) Every ps-continuous function is almost p-continuous.

(2) Every almost pg-continuous function is almost precontinuous.

Proposition 2.3. Ifa function f: X — Y isd-continuous, then f is almost ps-continuous.

Proof. Let x€ X and V be any open set of Y containing f(x).Since f is d-continuous,
there exists an open set U of X containing x such that f(IntCIlU) < IntClV. Since IntCIU
is a regular open set, hence it is ps-open set of X containing x. Therefore, f is almost p;-

continuous. O

From Lemma 2.2, Proposition 2.3 and Diagram 3.1 in [15], we obtain the following dia-

gram:
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super continuous —— §-continuous

| |

ps-continuous —— almost ps-continuous

| |

precontinuous —— almost precontinuous

Diagram 2.1

In the sequel, we shall show that none of the implications that concerning almost p;-

continuity in Diagram 2.1 is reversible.

Example 2.4. Let X = {a,b,c,d} with the two topologies 7 = {¢, X, {a}, {b},{a, b}} and o =
{¢, X,{c},{a,d},{a, c, d}}; then the family of ps-open subsets of X with respect to 7 is: P;O(X)
=1{¢, X, {a},{b},{a,b},{a,b,c},{a,b,d}}. Let f: (X, 1) — (X, 0) be the identity function. Then f
is almost ps-continuous, but it is not ps-continuous, because {a, d} is an open set in (X, 1)
containing f(d) = d, there exist no ps-open set U in (X, 7) containing d such that d € f(U) <
{a,d}.

Example 2.5. Let X = {a, b, ¢, d} with the two topologies 7 = {¢, X, {c},{a,d},{a,c,d}} and 0 =
{¢, X, {a},{b, c},{a, b, c}}; then the family of p;-open subsets of X with respect to 7 is: P;O(X) =
{¢,X,{c},{a,d},{a, b,c},{a,c,d},{b,c,d}}. Let f:(X,7) — (X,0) be a function defined as fol-
lows: f(a) = f(b) = f(c) = aand f(d) = b. Then f is almost precontinuous (see Example 4.5
[21]) . However f is not almost p-continuous since {b, ¢} is an open set in (X, 7) containing
f(d) = b, there exist no ps-open set U in (X, 1) containing d such that f({d}) = b e f(U) <
IntCl{b,c}=1{b,c}.

Example 2.6. Let X = {a, b, ¢, d} with the two topologies 7 = {¢, X, {c},{d},{a, c},{c,d},
{a,c,d}} and let Y = {x, y, z} with the topology o = {¢, Y, {x},{y},{x, ¥}}; then the family of p;-
open subset of X with respect to 7 is: P;O(X) = {¢p, X, {c},{d},{a,c},{c,d},{a,c,d},

{b,c,d}}. Let f:(X,7) — (X,0) be a function defined as follows: f(a) = z and f(b) = f(c) =
f(d) =y. Then f is almost ps-continuous. But f is not almost continuous [21] Example 4.2

and hence it is not §-continuous.

Theorem 2.7. For a function f : X — Y, the following statements are equivalent:

(1) f isalmost ps-continuous.

(2) Foreach x € X and each open set V of Y containing f(x), there exists a ps-open set U in X
containing x such that f(U) < sCLV.
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(3) Foreach x € X and each regular open set V of Y containing f(x), there exists a ps-open set
U in X containing x such that f(U) < V.

(4) Foreach x € X and each 6-open set V of Y containing f(x), there exists a ps-open set U in
X containing x such that f(U) < V.

Proof. (1) = (2). Let x € X and let V be any open set of Y containing f(x). By (1), there exists
a ps-open set U of X containing x such that f(U) < IntCIV. Since V is open, hence V is
preopen set. Therefore, by Lemma 1.11(2), f(U) < sClV.

(2) > (3). Let x € X and let V be any regular open set of Y containing f(x). Then V is an
open set of Y containing f(x). By (2), there exists a ps-open set U in X containing x such that
f(U) csClV. Since V is regular open and hence is preopen set. Therefore, by Lemma 1.11(2),
fU) < IntClV. Since V is regular open, then f(U) € V.

(3) = (4). Let x € X and let V be any §-open set of Y containing f(x). Then for each f(x) e V,
there exists an open set G containing f(x) such that G < IntCIG < V. Since IntCIG is a
regular open set of Y containing f(x), by (3), there exists a ps-open set U in X containing x
such that f(U) € IntCIG < V. This completes the proof.

(4) = (1). Let x € X and let V be any open set of Y containing f(x). Then IntCIlV is §-open
set of Y containing f(x). By (4), there exists a ps-open set U in X containing x such that
fU) < IntClV. Therefore, f is almost ps-continuous. O

Theorem 2.8. For a function f: X — Y, the following statements are equivalent:

(1) f is almost ps-continuous.

) f~'UntCIV) is ps-open set in X, for each open setV in'Y.

3) f‘1 (ClIntF) is ps-closed set in X, for each closed set F in'Y.
(4) f~Y(F) is ps-closed set in X, for each regular closed set F of Y .
(5) f~Y(V) is ps-open set in X, for each regular open set V of Y.

Proof. (1) = (2). Let V be any open setin Y. We have to show that f~! (IntCIV) is ps-open set
in X. Let x€ f~'(IntCIV). Then f(x) € IntCIV and IntCIV is a regular open set in Y. Since
f is almost ps-continuous, by Theorem 2.7, there exists a ps-open set U of X containing x
such that f(U) < IntCIV. Which implies that x € U € f~'(IntC1V). Therefore, f~'(IntCIV)
is ps-open set in X.

(2) = (3). Let F be any closed set of Y. Then Y — F is an open set of Y. By (2), f~'(IntCI(Y \
F)) is ps-open set in X and f~'(IntCI(Y\F)) = f'(Int(Y \ IntF)) = f~Y(Y \ClIntF) = X\
f~YClIntF)is ps-open setin X and hence f~'(ClIntF)is ps-closed set in X.

(3) = (4). Let F be any regular closed set of Y. Then F is a closed set of Y. By (3), f~'(ClIntF)
is ps-closed set in X. Since F is regular closed set, then f‘l(ClIntF) = f‘l(F). Therefore,
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f‘l(F) is ps-closed set in X.

(4) = (5). Let V be any regular open set of Y. Then Y \ V is regular closed set of Y and by (4),
we have f~1(Y\ V) = X\ f~1(V) is ps-closed set in X and hence f~!(V) is ps-open set in X.
(5) = (1). Let x € X and let V be any regular open set of Y containing f(x). Then x € f -1,
By (5), we have f~!(V) is ps-open set in X. Therefore, we obtain f(f~1(V)) < V. Hence by

Theorem 2.7, f is almost ps-continuous. O
The following result can be proved easily from the above theorem.

Proposition 2.9. Let f: X — Y be a function. Let B be any basis for ts in Y. Then f is almost
ps-continuous if and only if for each B € B, f~1(B) is a ps-open subset of X.

Theorem 2.10. For a function f: X — Y, the following statements are equivalent:

(1) f isalmost ps-continuous.

(2) f(PsClA) < Clsf(A), foreach A< X.

(3) PsCLf Y(B)<c f1Cls(B), foreachB<Y.

(4) f~Y(F) is ps-closed set in X, for each 5-closed set F of Y .
(5) f~Y(V) is ps-open setin X, for each &-open set V of Y.
6) f~l(IntsB) < PsIntf~'(B), foreachB< Y.

Proof. (1) = (2). Let Abe asubset of X. Since Clsf(A) is 6-closed setin Y, so Cls f(A) = N{Fy:
F, € RC(Y),a € A}, where A is an index set. Then A< f~}(Clsf(A) = fHN{Fy : @ € A})
=n{f"1(Fy) : @ € A}. By (1) and Theorem 2.8, f~1(Clsf(A)) is ps-closed set of X. Hence
P,CIAC f_l(Cl()‘f(A)). Therefore, we obtain that f(P;ClA) < Cls f(A).

(2) = (3). Let Bbe any subset of Y. Then f~!(B) is a subset of X. By (2), we have f(P;CIf~'(B)) €
Cls f(f~Y(B)) = ClsB. Hence P;CLf~1(B) < f~1(ClsB).

(3) = (4). Let F be any §-closed set of Y. By (3), we have P;CLf~(F)) < f ' (ClsF)=f"'(F)
and hence f‘l(F) is ps-closed set in X.

(4) = (5). Let V be any 6-open set of Y. Then Y \ V is §-closed set of Y and by (4), we have
f‘l(Y\ V)= X\f‘l(V) is ps-closed set in X. Hence f‘l(V) is ps-open setin X.

(5) = (6). For each subset B of Y. We have IntsB < B. Then f~'(IntsB) < f~(B). By (5),
f~'(IntsB)is ps-opensetin X. Then f~!(IntsB) < PsIntf~'(B).

(6) = (1). Let x € X and V be any regular open set of Y containing f(x). Since V is a regu-
lar open set, hence it is §-open and by (6), f~'(IntsV) < PsIntf~' (V). Therefore, f~1(V)
PSIntf_l(V), SO f‘l(V) is a ps-open set in X which contains x and clearly f(f_l(V)) cV.
Hence, by Theorem 2.7, f is almost ps-continuous. O

Theorem 2.11. For a function f: X — Y, the following statements are equivalent:
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(1) f is almost ps-continuous.

2) Psle_l(V) c f‘l(ClV),for each B-open setV of Y.

3) f‘l(IntF) c Pslntf_l(F),for each B-closed set F of Y .

(@) f~'UntF) < PsIntf~'(F), for each semi-closed set F of Y .
(5) PsCIf~Y(V) < f~1(CIV), for each semi-open setV of Y.

Proof. (1) = (2). Let V be any -open set of Y. It follows from Lemma 1.11(4) that CIV is reg-
ular closed set in Y. Since f is almost p,-continuous, by Theorem 2.8, f~1(CIV) is ps-closed
setin X. Therefore, we obtain Psle_l(V) c f‘l(ClV).

(2) > (3). Let F be any B-closed set of Y. Then Y \ F is f-open set of Y and by (2), we
have P;CIf~ (Y \F) < f~Y(CI(Y \ F)) and P;CI(X\ f~'(F)) € f~'(Y \ IntF) and hence, X\
PsIntf~Y(F)< X\ f~1(IntF). Therefore, f~'(IntF) c PsIntf~'(F).

(3) = (4). Obvious since every semi-closed set is §-closed.

(4) = (5). Let V be any semi-open set of Y. Then Y \ V is semi-closed set in Y and by (4),
we have f~1(Int(Y\V)) S PsIntf~1(Y\V)and f~1(Y\CIV) € PgInt(X\ f~1(V)) and hence,
X\ f7YCIV) € X\ P;CLf~1 (V). Therefore, P;CILf~1 (V) € f~1(CIV).

(5) = (1). Let F be any regular closed set of Y. Then F is a semi-open set of Y. By (5), we have
Psle_l(F) c f‘l(ClF) = f‘l(F). This shows that f‘l(F) is a ps-closed set in X. Therefore, by
Theorem 2.8, f is almost p;-continuous. O

Corollary 2.12. For a function f : X — Y, the following statements are equivalent:

(1) f is almost ps-continuous.

) Psle_l(V) c f‘l(aClV),for each B-open setV of Y.

(3) PsCLf~Y(V) < f1(ClsV), for each B-open set V of Y

(@) PsCLf~Y(V) < f1(PsCIV), for each semi-open set V of Y .
(5) PsCLF~Y(V) < f~Y(pCLV), for each semi-open set V of Y.

Proof. (1) = (2). Follows from Theorem 2.11 and Lemma 1.12(2).

(2) = (3). Follows from the fact that aCIV < ClsV.

(3) = (4) and (4) = (5). Follows from Theorem 2.11 and Lemma 1.12(1).
(5) = (1). Follows from Theorem 2.11 and Lemma 1.12(1).

O

The following result also can be concluded directly.

Corollary 2.13. Fora function f : X — Y, the following statements are equivalent:

(1) f isalmost ps-continuous.
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2) f‘l((xlntF) c PSIntf_l(F),for each (-closed set F of Y.
(3) f~'UntsF) < PsIntf~\(F), for each B-closed set F of Y .
4) f‘l(PsIntF) QPSIntf_l(F),foreach semi-closed set F of Y.
(5) f~YpIntF) < PsIntf~'(F), for each semi-closed set F of Y .

Theorem 2.14. A function f: X — Y isalmost pg-continuous ifand only if f 1 (V) € PsInt f~ 1 (IntCIV)
for each preopen setV of Y.

Proof. Necessity. Let V be any preopen set of Y. Then V < IntCIlV and IntCIV is a regular
open set in Y. Since f is almost ps-continuous, by Theorem 2.8, f~1(IntCIV) is ps-open set
in X and hence we obtain that f_1 (V) c f‘1 (In tClV):pSIntf_l (IntClV).

Sufficiency. Let V be any regular open set of Y. Then V is a preopen set of Y. By hypothesis,
we have f~1(V) € PsIntf~'(IntCIV) = PsIntf~1(V). Therefore, f~1(V) is ps-open set in X
and hence by Theorem 2.8, f is almost ps-continuous. O

We obtain the following corollary.

Corollary 2.15. The following statements are equivalent for a function f : X — Y :

(1) f isalmost ps-continuous.

) f~YV) < PgIntf~1(sCIV) for each preopen set Vof Y.
3) Psle_l(ClIntF) gf_l(F) for each preclosed set F of Y .
4) Psle_l(sIntF) c f‘l(F) for each preclosed set F of Y .

Corollary 2.16. For a function f: X — Y, the following statements are equivalent:

(1) f isalmost ps-continuous.
(2) For each neighborhoodV of f(x), x € PsIntf~(sCIV).
(3) For each neighborhoodV of f(x), x € PsIn tf_l (IntClV).

Proof. Follows from Theorem 2.14 and Corollary 2.15. O

Theorem 2.17. Let f : X — Y be an almost ps-continuous function and let V be any open
subset of Y. Ifx € P;CLf~Y(V)\ f~1(V), then f(x) € P;CIV.

Proof. Let x € X be such that x € Psle_l(V) \f‘l(V) and suppose f(x) ¢ P;CIV. Then
there exists a ps-open set H containing f(x) suchthat HNV =¢ . Then CIHNV = ¢ implies
IntCIHNV =¢ and IntClH is aregular open set. Since f is almost ps-continuous, by Theo-
rem 2.7, there exists a ps-open set U in X containing x such that f(U) < IntCIH. Therefore,
fU) NV = ¢. However, since x € Psle_l(V), Uﬂf_l(V) # ¢ for every ps-open set U in X
containing x, so that f(U) NV # ¢. We have a contradiction. It follows that f(x) € P;,CIV. O
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Theorem 2.18. Ifa function f: X — Y is almost precontinuous. Then the following statements

are equivalent:

(1) f is almost ps-continuous.

(2) Foreach x € X and each open set V of Y containing f(x), there exists a semi-closed set F in
X containing x such that f(F) < IntCIV.

(3) Foreach x € X and each open setV of Y containing f (x), there exists a semi-closed set F in
X containing x such that f(F) < sCLV.

(4) Foreach x € X and each regular open setV of Y containing f (x), there exists a semi-closed
set F in X containing x such that f(F) < V.

(5) Foreach x € X and each 6-open set V of Y containing f (x), there exists a semi-closed set F
in X containing x such that f(F) < V.

Proof. (1) = (2). Let x € X and let V be any open set of Y containing f(x). By (1), there
exists a ps-open set U of X containing x such that f(U) < IntCIV. Since U is ps-open set, so
for each x € U there exists a semi-closed set F in X such that x € F € U. Therefore, we have
f(F) < IntClV.

(2) = (3). Obvious.

(3) = (4). Let x € X and let V be any regular open set of Y containing f(x). Then V is an open
set of Y containing f(x). By (3), there exists a semi-closed set F in X containing x such that
f(F) < sClV. Since V is regular open and hence is preopen. Therefore, by Lemma 1.11(2),
f(F)< IntClV. Since V is regular open, then f(F) < V.

(4) = (5). Let x € X and let V be any §-open set of Y containing f(x). Then for each f(x) e V,
there exists an open set G containing f(x) such that G < IntCIG < V. Since IntCIG is a
regular open set of Y containing f(x), by (4), there exists a semi-closed set F in X containing
x such that f(F) € IntCIG < V. This completes the proof.

(5) = (1). Let V be any 6-open set of Y. We have to show that f_1 (V)is ps-opensetin X. Since
f is almost precontinuous, by Proposition 1.14, f 1) is preopen setin X. Let x € f -1,
then f(x) € V. By hypothesis, there exists a semi-closed set F of X containing x such that
f(F) € V. Which implies that x € F € f~!(V). Therefore, f~!(V) is ps-open set in X. Hence by
Theorem 2.10, f is almost ps-continuous. O

Theorem 2.19. A function f: (X, 1) — (Y,0) is almost ps-continuous ifand only if f : (X, 1) —

(Y,03) is ps-continuous.

Proof. Necessity. Let H € o, then H is a regular open set in (Y,0). Since f: (X,7) — (Y,0)
is almost pg-continuous, by Theorem 2.8, f‘l(H) is ps-open set in X. Therefore, f: (X,7) —

(Y,0) is ps-continuous.
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Sufficiency. Let G be any regular open set in (Y,0). Then G € gg. Since f: (X,7) — (Y,05)
is ps-continuous, by Definition 1.13, f 16 is ps-open set in X. Therefore, by Theorem 2.8,
f:(X,1) — (Y,0) is almost ps-continuous. O

Theorem 2.20. Let X be a locally indiscrete space. Then the function f : (X,1) — (Y,0) is
almost ps-continuous ifand only if f : (X,1) — (Y,0) is continuous.

Proof. Necessity. Let H € s, then H is a regular open set in (Y, o). Since f: (X,7) — (Y,0) is
almost ps-continuous, by Theorem 2.8, f~1(H) is ps-open set in X. Since X is locally indis-
crete space, by Proposition 1.7(4), f~!(H) is open set in X. Therefore, f : (X,7) — (Y,05) is
continuous.

Sufficiency. Let G be any regular open set in (Y,0). Then G € og. Since f: (X,7) — (Y,05)
is continuous, so f~1(G) is open set in X. Since X is locally indiscrete space, by Proposition
1.7(4), f~1(G) is ps-open set in X. Therefore, by Theorem 2.8, f : (X,7) — (Y,0) is almost

ps-continuous. O

3. Properties and Comparisons

In this section, we give some properties of almost ps-continuous functions and compare
it with other types of continuous functions.

Proposition 3.1. Let f: X — Y be an almost ps-continuous function. If A is either open or
regular semi-open subset of X, then f|A: A— Y is almost ps-continuous in the subspace A.

Proof. Let V be any regular open set of Y. Since f is almost ps-continuous, by Theorem
2.8, f~1(V) is ps-open set in X. Since A is either open or regular semi-open subset of X. By
Lemma 1.10(4), (f|A)~1(V) = f~1(V)nAis a ps-open subset of A. This shows that f|[A: A— Y

is almost ps-continuous. O

Corollary 3.2. Let f: X — Y be almost ps-continuous function. If A is regular open subset of
X, then f|A: A— Y is almost ps-continuous in the subspace A.

Proof. Follows from Proposition 3.1 O

Theorem 3.3. A function f : X — Y is almost ps-continuous. If for each x € X, there exists a
regular open set A of X containing x such that f|A: A— Y is almost ps-continuous.

Proof. Let x € X, then by hypothesis, there exists a regular open set A containing x such that
flA: A— Y is almost ps-continuous. Let V be any open set of Y containing f (x), there exists
a ps-open set U in A containing x such that (f|A)(U) < IntCIlV. Since A is regular open, by
Lemma 1.10(3), U is ps-open set in X and hence f(U) < IntCIlV. This shows that f is almost
ps-continuous. O
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Corollary 3.4. Let {Uy : y € A} be a regular open cover of a topological space X. A function
[+ X — Y is almost ps-continuous if and only if f|Uy : Uy — Y is almost ps-continuous for

eachy e A.

Proof. This is an immediate consequence of Corollary 3.2 and Theorem 3.3. g

Theorem 3.5. If X = RU S, where R and S are regular open sets and f : X — Y is a function

such that both f|R and f|S are almost pg-continuous, then f is almost ps-continuous.

Proof. Let V be any regular open set of Y. Then f‘l(V) = (fIR)_l(V) U (fIS)_l(V). Since f|R
and f|S are almost ps-continuous, by Theorem 2.8, (fIR)_l(V) and (fIS)_l(V) are ps-open
setsin R and S, respectively. Since R and S are regular open sets in X, then by Lemma 1.10(3),
(fIR) "1 (V) and (f1S)~}(V) are ps-open setsin X. Since a union of two ps-open setsis ps-open,
hence f~!(V) is ps-open set in X. Therefore, by Theorem 2.8, f is almost ps-continuous. [J

In general, if X = U{Ky : y € A}, where each K, is a regular open set and f:X—Yisa

function such that f|K, is almost ps-continuous for each y, then f is almost ps-continuous.

Theorem 3.6. Let f: X — Y be almost ps-continuous and let A be either open or regular semi-
open subset of X such that f(A) isdenseinY. Then f|A: A— f(A) is almost ps-continuous.

Proof. Let O be a regular open set of f(A). Then by Lemma 1.11(3), O = f(A)n IntClO. Thus,
(f1A™HO0) = (fFIA L fF(ANINLCLO) = (FIA) L (FA)N(fIA) L (IntClO) = An(fIA) " (IntCLO)
= Amf_l(ln tClO) = Amf_l(O). Since f is almost ps-continuous, by Theorem 2.8, f‘l(O)zf_l(In tClO)
is ps-open in X. Since A is either open or regular semi-open subset of X. Then by Lemma
1.10(4), (f1A)~1(0) is ps-open set in the subspace A. Therefore, by Theorem 2.8, f|A: A —
f(A) is almost ps-continuous. a

Theorem 3.7. Let X = Ry U Ry, where Ry and R, are regular open setsin X. Let f: Ry — Y and
g: Ry — Y be almost ps-continuous. If f(x) = g(x) foreachx € RiNRy. Then h: R{UR, = Y
such that h(x) = f(x) for x € Ry and h(x) = g(x) for x € R, is almost ps-continuous.

Proof. Let O be a regular open set of Y. Now h~1(0) = f~1(0)u g~1(0). Since f and g are
almost ps-continuous, by Theorem 2.8, f~!(0) and g~ (0) are ps-open set in R; and R, re-
spectively. But Ry and R, are both regular open sets in X. Then by Lemma 1.10(3), £~ (0)
and g_l(O) are ps-open sets in X. Since union of two ps-open sets is ps-open, so 1O isa

ps-open setin X. Hence by Theorem 2.8, h is almost p;-continuous. g

Theorem 3.8. Let f: X — Y be almost ps-continuous surjection and A be an open subset of X.
If f is an open function, then the function g: A — f(A), defined by g(x) = f(x) for each x € A,

is almost ps-continuous.
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Proof. Suppose that H = f(A). Let x € A and V be any open set in H containing g(x). Since
Hisopenin Y and V isopenin H, so V is openin Y. Since f is almost ps-continuous, hence
there exists a ps-open set U in X containing x such that f(U) € IntCIV. Taking W = U N A,
since A is either open or regular semi-open subset of X, by Lemma 1.10(3), W is a ps-open
setin A containing x and g(W) < IntyClyVnH = IntyClgV. Then g(W) € IntygClyV. This

shows that g is almost ps-continuous. O

Theorem 3.9. Let f : X — Y be almost ps-continuous. If Y is a preopen subset of Z, then

f: X — Z isalmost ps-continuous.

Proof. Let V be any regular open set of Z. Since Y is preopen, by Lemma 1.11(1), VnY is a
regular open set in Y. Since f: X — Y is almost p,-continuous, by Theorem 2.8, f~1(V nY)
isa ps-open setin X. But f(x) € Y for each x € X. Thus f‘l(V) = f_l(Vﬁ Y) is a ps-open set
of X. Therefore, by Theorem 2.8, f: X — Z is almost ps-continuous. O

Theorem 3.10. Let f: X — Y and g: Y — Z be functions. Then the composition function

gof: X — Z isalmost ps-continuous if f and g satisfy one of the following conditions:

(1) f is ps-continuous and g is almost continuous.
(2) f isalmost ps-continuous and g is 6 -continuous.
(3) f is continuous and open and g is almost ps-continuous.

(4) f is almost ps-continuous and g is continuous and open.

Proof. (1). Let W be any regular open subset of Z. Since g is almost continuous, so g~ (W) is
open subset of Y. Since f is ps-continuous, by Definition 1.13, (gof)_l(W) = f‘l(g_l(W)) is
ps-open subset in X. Therefore, by Theorem 2.8, gof is almost ps-continuous.

(2). Let W be any §-open subset of Z. Since g is §-continuous, so g~ (W) is 5-open subset of
Y. Since f is almost p-continuous, by Theorem 2.10, (gof)_l(W) = f‘l(g_l(W)) is ps-open
subset in X. Therefore, by Theorem 2.10, gof is almost ps-continuous.

(3). Let W be any regular open subset of Z. Since g is almost p,-continuous, by Theo-
rem 2.8, g~ (W) is ps-open subset of Y. Since f is continuous and open, by Theorem 1.16,
f‘l(g_l(W)) = (gof)_l(W) is a ps-open set in X. Hence by Theorem 2.8, gof is almost p;-
continuous.

(4). Let x € X and W be an open set of Z containing g(f(x)). Since g is continuous, then
g~ 1(W) is an open set of Y containing f(x). Since f is almost p,-continuous, there exists a
ps-open set U of X containing x such that f(U) < IntClg~'(W). Also, since g is continuous,
then we obtain (gof)(U) < g(In tg_l(ClW)). Since g is open, we obtain (go f)(U) < IntCIW.
Therefore, gof is almost ps-continuous. O
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Theorem 3.11. If f: X — Y is almost ps-continuous and g : Y — Z is super continuous func-

tions. Then the composition function gof : X — Z is ps-continuous.

Proof. Let W be any open subset of Z. Since g is super continuous, then g_l(W) is 6-open
subset of Y. Since f is almost ps-continuous, by Theorem 2.10, (gof)_l(W) = f‘l(g_l(W)) is
ps-open subset in X. Therefore, by Definition 1.13, gof is ps-continuous. g

Theorem 3.12. If f: X — Y is an almost ps-continuous function and Y is semi-regular. Then
f is ps-continuous.

Proof. Let x € X and let V be any open set of Y containing f(x). By the semi-regularity
of Y, there exists a regular open set G of Y such that f(x) € G < V. Since f is almost p;-
continuous, by Theorem 2.7, there exists a ps-open set U of X containing x such that f(U) <
G < V. Therefore, f is ps-continuous. g

Corollary 3.13. Let f: X — Y bea function and X is locally indiscrete space. Then f is almost
ps-continuous if and only if f is almost continuous.

Proof. Follows from the definition and Proposition 1.7(4). a

Corollary 3.14. If X isa locally indiscrete space and Y is semi-regular space, then the following
statements are equivalent for a function f : X — Y:

(1) f is ps-continuous.
(2) f isalmost ps-continuous.
(3) f isalmost continuous.

(4) f iscontinuous.

Proof. Follows from Theorem 3.12, Corollary 3.13 and Proposition 1.7(4). a

Corollary 3.15. Let f: X — Y bea function and X is s-regular space. If f is almost continuous,
then f is almost ps-continuous.

Proof. Proof. Follows from Proposition 1.7(5). a

Corollary 3.16. Let f : X — Y be a function and X is semi-T, space. Then f is almost p;-
continuous if and only if f is almost precontinuous.

Proof. Proof. Follows from Proposition 1.7(1). O

Corollary 3.17. If X is a semi-T, space and Y is semi-regular space, then the following state-
ments are equivalent for a function f : X — Y:
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(1) f is ps-continuous.
(2) f isalmost ps-continuous.
(3) f is almost precontinuous.

(4) f is precontinuous.

Proof. Follows from Theorem 3.12, Corollary 3.16 and Proposition 1.7(1). O

Theorem 3.18. If a function f : X — Y is almost strongly 0-continuous, then f is almost p;-
continuous.

Proof. Let V be any regular open set of Y. Since f is almost strongly 8-continuous, so
f~1(V) is B-open set and hence it is ps-open set. Therefore, by Theorem 2.8, f is almost

ps-continuous. O

Theorem 3.19. The following statements are equivalent for a function f : X — Y:

(1) f is R-map.

(2) f isalmost ps-continuous and either weakly 0 -irresolute or weakly quasi-continuous.
(3) f is almost continuous and either weakly 6 -irresolute or weakly quasi-continuous.

(4) f is almost a-continuous and either weakly 0 -irresolute or weakly quasi-continuous.

(5) f is almost precontinuous and either weakly 0 -irresolute or weakly quasi-continuous.

Proof. Follows from their definitions and Proposition 1.9. O

Theorem 3.20. If f : X — Y is almost Os-continuous and almost precontinuous, then f is

almost ps-continuous.

Proof. Let V be a regular open set in Y. Since f is almost 0s-continuous and almost precon-
tinuous function, then f ~1(V) is both 0-semi-open and preopen set in X. Therefore, f -1

is ps-open set in X. Hence by Theorem 2.8, f is almost p,-continuous. O

Theorem 3.21. Let f : X — Y be a function and X be extremally disconnected space. If f is
almost 0s-continuous, then f is almost pg-continuous.

Proof. Let V be a regular open set in Y. Since f is almost 8s-continuous, then f L) is 6-
semi-open set in X. Therefore, by Lemma 1.10, f~!(V) is ps-open set in X. Hence by Theorem

2.8, f is almost ps-continuous. O

Theorem 3.22. Let Y be an extremally disconnected space. If f : X — Y is an almost precon-

tinuous and either S-continuous or 0 -irresolute function, then f is almost ps-continuous.
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Proof. Let V be a regular open set in Y. Since f is almost precontinuous, then f L) is
preopen set of X. Since Y is extremally disconnected space, by Proposition 1.7(2), V is regular
closed set of Y. Since f is either S-continuous or -irresolute, then f~!(V) is the union of
regular closed sets of X and hence is the union of semi-closed sets of X. By Proposition 1.3,
f~Y(V) is ps-open set of X. Therefore, by Theorem 2.8, f is almost p,-continuous. g

Corollary 3.23. Let f : X — Y be either S-continuous or 6-irresolute function and Y be an
extremally disconnected space. Then f is almost pg-continuous if and only if f is almost pre-
continuous.

Theorem 3.24. IfY is a hyperconnected space, then every function f : X — Y is almost ps-
continuous.

Proof. Let x € X and V be any open set of Y containing f(x). Since Y is a hyperconnected
space, then CIV =Y and hence IntCIlV =Y. Therefore, we have f(U) < IntClV, for any
ps-open set U in X. This shows that f is almost p;-continuous. a

Theorem 3.25. Ifafunction f : X — Y isalmost ps-continuous and semi-open, then f(P;ClV) <
P;CIlf(V) foreach open setV of X.

Proof. Let V be any open set of X. Since f is semi-open, then f(V) is semi-open set in Y.
Since f is almost ps-continuous, then by Corollary 2.12, we obtain that P;CIf -1 f) <
f~Y(PsCIf(V)) which implies that f(PsCIV) < P;CIf(V). O

Corollary 3.26. Ifafunction f: X — Y isalmost ps-continuous and semi-open, then PsInt f (F)
C f(PsIntF) for each closed set F of X.

Theorem 3.27. Ifafunction f : X — Y isirresolute and preopen. Then f is almost ps-continuous
ifand only if PsCLF~Y (V) = f~1(P;CIV) for each semi-open set V of Y .

Proof. Necessity. Let V be any semi-open set of Y. Since f is almost ps-continuous, by
Corollary 2.12, Psle_l(V) c f‘l(PsClV). Since V is semi-open set of Y, by Lemma 1.12,
PsCIV = CIV which implies that f~!(P;CIV) < f~}(CIV). Since V is semi-open set of Y
and f is preopen, by Theorem 1.17, we have f~}(P;CIV) < f~}(CIV) < CLf~'(V) and hence
f‘l(PsClV) c le_l(V). Since V is semi-open set of Y and f is irresolute, so f‘l(V) is semi-
open setin X. Then by Lemma 1.12, we obtain that f‘1 (P;CLV) < Psle_1 (V). Therefore, we
have P;CIf~1 (V)= f~1(P;ClV). Sufficiency. Follows from Theorem 2.12. a

From the above theorem and Lemma 1.12 we obtain the following results:

Corollary 3.28. Ifa function f : X — Y is almost ps-continuous, irresolute and preopen, then
PsIn tf_l (F) = f_1 (PsIntF) for each semi-closed set F of Y.

Corollary 3.29. Ifa function f : X — Y is almost ps-continuous, irresolute and preopen, then
CLf~1 (V) = f~1(CIV) for each semi-open set V of Y.
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