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SOME SUBCLASSES OF ANALYTIC FUNCTIONS OF COMPLEX
ORDER DEFINED BY NEW DIFFERENTIAL OPERATOR

MASLINA DARUS AND IMRAN FAISAL

Abstract. Let «/(n) denote the class of analytic functions f in the open unit disk
U ={z:z| < 1} normalized by f(0) = f'(0)—1=0. In this paper, we introduce and
study the classes S, ,(y,a,B,4,0) and R, ,(y,a,pB,A1,0) of functions f € of(n) with
(1) z2(DP*2(@,w) f(2)) + (1 - w)z(DP*! (@, w) f (2)) # 0 and satisfy some conditions avail-
ablein literature, where f € o/ (n),a,w, A, u = 0,0 e NU{0}, z€ U, and D/’{’(a,a))f(z) o —
&/, is the linear fractional differential operator, newly defined as follows

DM a,w) f(2)=z+ Y ap(l+ (k- DAw®) ™.
k=2

Several properties such as coefficient estimates, growth and distortion theorems, extreme
points, integral means inequalities and inclusion for the functions included in the classes
Snuly, @, B,1,0,w) and Ry ;,(y, a, B, A, U, w) are given.

1. Introduction and preliminaries

Let /€ be the class of functions analytic in U = {z : |z| < 1} and let .#[a, n] be the subclass of
€ consisting of functions of the form f(z) = a+ a,z" + ap412"' + ap 22> +--- . Let of be
the subclass of .# consisting of functions of the form f(z) = z+ a2z + azz> +--- or
[e.°]
f@=z+Y apz". (1.1
k=2
Let o/ (n) denote the class of functions f(z) of the form
[e.]
f@=2=7Y axaz*"! (1.2)
k=n
aps1 =0, n€{1,2,3,...},

which are analytic in the open unit disk U = {z: |z| < 1}.
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Next we define (n,8)-neighborhood for the functions belonging to class </ (n) and also

for identity function.

Definition 1.1. (n,6)-neighborhood-

By following the earlier investigations by Goodman[2] and Ruscheweyh[30], for any f(z) €
</ (n) and 6 = 0, we define the (n,5)-neighborhood of f by

Nus(f)={geat(n):g@) =z- Y br1z" and Y (k+ Dl — bl <6}, (1.3)
k=n k=n

In particular for the identity function

e(z) =z,
we have
Npsle)={ged(n):gz)=z— ) brs 125 and Y (k+DIbgsl <63 (1.4)
k=n k=n

We say that a function f(z) € o/ (n) is said to be starlike functions of complex order y or f(z) €
S; (y) if it satisfies the inequality
1 !
Re(1+ 12
Y f(2)

Furthermore, a function f(z) € «/(n) is said to be convex functions of complex order y or
f(2) € C; (y) if it satisfies the inequality

-1)>0zeU, yeC\{0}. (1.5)

l(zfl/(z)
Y '@

The classes S;,(y) and C;, (y) are essentially from the classes of starlike and convex functions of

Re(1+

)>0z€eU, yeC\{0}. (1.6)

complex order, which were considered by Nasr and Aouf[12] and Wiatrowski[23] respectively
(Refer also [22]). Let S, (y, A, B) denote the subclass of «f (1) consisting of functions f(z) which
satisfy the following inequality

| 1 ()Lz3 "2+ A +20)22 f"(2) + zf'(2)
Y AZ2f(2) + zf"(2)

-DI<p

(zeU,yeC\{0},0=A<1,0<B<1).

Let R, (y, A, B) denote the subclass of </ (1) consisting of functions f(z) which satisfy the fol-
lowing inequality

1

I;()Lzzf”’(z) +(1+20zf" @)+ f'(@) -1 < p

(zeU,yeC\{0},0=sA1<1,0<B<1).
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The class S;(y, A, B) was studied by [15]. Since </ is class of functions f(z) of the form f(z) =
o0
z+ Y. az" which are analytic in the open unit disk U = {z : |z| < 1}. For a function f in </ we

=2
define the following differential operator

D°f(2) = f(a),
D (a,0)f(2) = (1-10%) f(2) + Q) zf (2),
Dj(a,w) f(2) = D(D} (@, ) f(2)), 1.7)

DY (a,w)f(2) = DD} (a, ) f ().

If f is given by (1.1) then from (1.7) we define the following new differential operator

o0
D'a,0)f(2) =2+ Y. a1+ (k- 1AM ™z, (1.8)
k=2
(fed,a,w,120)
which generalizes many differential operators. Indeed, if in the definition of D/’{((x, w) f(z) we

put

e =1, w=1, we obtain D;”f(z) =z+ Z?:z(l + Ak = 1))™a.z* Al-Oboudi differential

operator [6].

e a=1,w=1,1=1,weobtain D" f(z) =z + Zfzz(k)makzk Salagean’s differential oper-
ator [7].

e a=1l,w=1,1= %, we obtain [ f(z) = Z+Z%°:2(%)makzk Uralegaddi and Somanatha
differential operator [3].

Similarly by using the same process we can write the following equalities for the functions
f(2) belonging to the class </ (n).

D°f(2) = f(2),
D (a,0)f(2) = (1-10%) f(2) + Aw®)zf'(2),
D3 (a,)f(2) = D(D}(a,w) f(2)), (1.9)

DY (a,w)f(2) = DIDY ™ e, 0) f (2)).

If f is given by (1.2) then from (1.9) we define the following new differential operator

DY(a,wf(@=z2-Y A+klo") a1z, (Fed(m), a,0,420,0eNU{0}). (1.10)
k=n
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Finally, in the terms of the generalized Saldgean’s differential operator, let S, ;,(y, a, 8, A, 0)

denote the subclass of ¢ (n) consisting of functions f(z) which satisfy the inequality

1 (Wz(DY 3 (,0)f(2) + 1 - wzDi*(a,0) f(2))
Y (Wz(DY P (a,0) f(2) + (1 - wz(D (@, 0) f(2))

D < B, (1.11)

(fed(n), yeC\ {0}, a,w, A, 1=0,0eNU{0}, z€ U).
Also, let Ry, (v, @, B, A, U) denote the subclass of </ (n) consisting of functions f(z) which sat-
isfy the inequality

1
|;{u(DQ+3(a,w)f(z))’ +(1- D (@, w) f(2) -1} < B, (1.12)

(fed(n), yeC\{0}, a,w,A, 1 =0,0eNuU{0}, z€ U).

Our main work is to investigate the (n,0)-neighborhood of the above said classes i.e.
Snuly,a,B,A,0) and Ry, ,(y,a, §,A,0). Similar work has been seen for different subclasses
done by other authors (see for example [17, 18, 19].

2. Inclusion relations involving the N, 5(e)-neighborhood

Here we proved the class relations as well as inclusion relations involving N, s(e)-
neighborhood for the subclasses S, ;,(y, @, B, A, 0) and Ry, ;,(y, a, B, A, 5) which depends on the
following lemmas.

Lemma 2.1. Let the function f(z)€ o/ (n) be defined by (1.2), then f(z) is in the class
Snuy,a, B, A,U,w) ifand only if

1+ kAP (1 + ukAw®) (k+ 1) (Blyl + kAo ap < Blyl, 2.1)
k=n

(fed(n),a,w, A, u=00eNuU{0}, ze U).
Proof. Let f(z) € Sy u(y, @, B, A, U, w), then from (1.11), we have

1 (WzDY 3 (,0)f(2) + 1 - wzDi*(a,0) f(2))

Y (Wz(DY(a,0) f(2) + (1 - wz(D (@, 0) f(2)) i<h
(fed(n),a,w, A, up=00eNuU{0}, zeU).
o (W z(DY 3 (@, w) f(2)) + (1 - wz(DY 2 (a,w) f (2))
-1 >-plyl,

€ G+2 o+1
(Wz(D (a,0)f(2) + (1 - wz(Dy" (a,w) f(2))
(fedn),a,w, A, up=00eNuU{0}, zeU).
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This implies that

YR kAo (1+pkAw®) (k+ 1)1+ kAw®) O ag,, 25
z2=Y2 (L+pkdo®) (k+ 1)1+ kAw®) 0+ ag, 2k+1

Re( ) >=PBlyl,

(fedn),a,w,A,u=0,0eNuU{0}, ze€ U).

after taking limit when z — 1~ and simplifying we get
[e 0]
Y 1+ kAP A + pkAo®) (k+ D (Blyl + kAo ak < Bly,
k=n
(fedn),a,w,A,u=0,0eNU{0}, z€ U).

Conversely, by applying the hypothesis (2.1) and letting | z| = 1 we get

,uz(D?“(a,w)f(z))' +(1 —,u)z(D?Jrz(a,w)f(z))’

pz(DY2(a,0) f(2) + (1 - wzDY (@,0) f(2))

Y kAw®(1+ pkAo®) (k+ 1)1+ kAw®) O ag, 21
z=Y32  (1+pkAdw®) (k+1) 1+ kAw®) 0+ g 2541
(fedd(n),a,w,A,u=0,0eNU{0}, z€ U).

Blyl1 =X 1+ pkdw®) (k+ 1)1 +kAw®) O ag,q)
= X2, (L + pkAo®) (k+ 1)1+ kAw®)0* ag,

=< Blyl.

)]

This implies that f(z) € S;, (v, @, B, 1,0, w). O

Corollary 2.1. Let the function f which is defined by (1.2) be in the class S, ,,(y, a, B, 1,0, w).
Then we have

- plyl %
T 1+ kAw®)OH 1+ pkAw®) (k+ DIyl + kAw®)

n,

A1

(a,w,A,u=0,UeNuU{0}).

Lemma 2.2. Let the function f(z) € «/(n) be defined by (1.2) then f(z) is in the class
Ry u(y,a,B,A,0,w) ifand only if

Y 1+ kAo P22 + pkAw®) (k+ Dag < Blyl, 2.2)
k=n

(fedn),a,w, A, u=0,0eNuU{0}, ze€ U).

Proof. Same as Lemma 2.1. O
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Theorem 2.3. Let f € o/ (n) then
Sn,,u(Y» a; ﬁ; A/r 6) < Nn,b‘ (e)

5o Blyl
(1+ nAw®)S+ (nuAw® + 1) (nAw® + Bly)

(fedn),a,w, A, t=0,0eNU{0}, z€U).

Proof. Let f(z) € Sy, u(y, @, B, A,0) then from (2.1) we get
Y 1+ kAo® P 1 + pkAw®) (k+ 1) (Blyl + kAwY) ag.1 < Blyl,
k=n

(fedn),a,w, A, t=0,0eNU{0}, z€U).

Or
o0
1+ Ao 1+ undo®) (n+ 1) Blyl + ndw®) Y. ap < Blyl,
k=n
(fed(n),a,w, A, up=00eNuU{0}, ze U).
This implies that

- Blyl
<
k;,“’““ (1+ndw®)0+1(1 + undw®) (n+1)(Blyl + nAw®)

(fedn),a,w, A, 1t=0,0eNU{0}, z€U).
By using (2.1) we have
Z 1+ kAw®)O+ (1 + pkAw®) (k+1)(kAw® +1 =1+ Blyl)ars1 < Blyl,
k=n
(fed(n),a,w, A, up=00eNuU{0}, zeU).

Therefore

o0
1+ Ao 1+ unro®) (mAo® +1) Y. (k+ Dag.,
k=n

< Blyl+ = BlyNA + nAdw®) P A + pnw®(n+1) Y. ag,
k=n
< Blyl+
Blyl

(2.3)

(2.4)

A-BlyDA +nAw®)P 1+ pniw®) (n+1)

- Blyl(1 + nAlw%)

< , (fesdd(n),a,w, A, u=00eNuU{0}, zeU).
Bly| + nAw®) ! #

(1+ nAw®)0+1(1 + pnlw®) (n+1)(Bly| + nAw®)’
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Hence

- ply|
k+1 < =4.
kg’n( e (1+ nAw®)O+1(1 + uniw®) (Bly| + nAlw®)

Hence by using (1.4), we conclude that f(z) € N, 5(e), this implies that

Sn,,u(Y; arﬁr/l;U) CNn,ﬁ(e) D

Using the same technique of the proof of Theorem 2.3, we proved the following theorem.

Theorem 2.4. Let f € o/ (n), then

Rn,/,t(,y» a, ﬂ) A» 6) c Nn,6(e)

if
- hli (fed), @, A, u=0,0eNU{0}, zeU). (2.5
(1+nAw®)O+22 + nuiw®)
Proof. Same as Theorem 2.3. O

3. Neighborhood properties for S;’ L, B,1,0) and R;y oS B,A,0).
In this section, we determine the neighborhood for each of the classes
Snuly, @, B,1,0), and Ry, ,(y, @, B, A, O).

A function f(z) € &/(n) is said to be in the class S;, ,(y,a, §,A,0), if there exists a function
g(2) € Spu(y, @, B, A, U) such that

e

-1l<1-1,2z€U,1=0- 3.1)
g(2)

Similarly A function f(z) € </ (n) is said to be in the class wa(y, a, B, A,0), if there exists a
function g(z) € Ry, ,(y, @, B, A, U) satistying the same inequality

1@

-1l<1l-1,2z€eU, 1=0.
g(2)

Theorem 3.5. Let g€ S, ,(y,a,B,A,0), and

o1 51+ nAw®) O (1 + npAw®) (Blyl + nAw®) 32)
(L4 nA09)0H (1 + npdw®) (Bly] + nAw®) - Bly| .

(fed(n),a,w, A, u=0,0eNU{0}, z€ U).

Then
Nn,()‘(g) < S‘;{L’u(,y; a, ﬁr /1; U)
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Proof. Let f € N, 5(g), then from (1.3) we can write that
oo
(k+Dlags1 —bral <6,
k=n

this implies that

o0
ais1—b < .
kg:ﬂ| k+1 k+1| n+1)

Since it is given that g€ S, ,(y, @, B, A, 0), so from (2.1) we can write that

- ply|
bis1 = .
kg’n f (1+ nAw®)O+ (1 + uniw®) (n+1)(Bly| + nAw®)
Now
|@—1|< Zin|ak+1_bk+1|
g2 1-%92 ber
o (1 + nAw® 011 + unio®) (n+ 1) (Bly| + nAw®)

S+ (1+ nAw®)0+1(1 + undo®)(n+1)(Blyl + nAw®) - Bly|’

~ 51+ nAw®0* (1 + undo®) (Blyl + nAw®)

T (14 nA09)0+ (1 + undw®) (n+ 1D (Bly| + nAw®) — Bly|

—1-1, (3.3)

this implies that f € Sf,y H(y, a, B, 1, 0), therefore

Nn,é(g) = S;,’u(y, ay ﬁ» /1) U)-

Similarly by using the same technique of Theorem 3.5 we proved the following theorem.
Theorem 3.6. Let g€ Ry, ,(y,a, B, A,0) and

51+ nAw®0* 22+ uniw®)
T=1- (3.4)
(1+nAw®)O+22 + uniw®) (n+1) - Blyl

(fedn),a,w,A,t=0,0eNU{0}, z€U).

Then
Nn,6 (g) < R:,,y(% ay ﬂ) A» 6)~

Our next work is to investigate several new results like growth and distortion theorems,
Hadamard Product, Extreme Points, Integral Means Inequalities and inclusion properties for

the functions included in the classes S, , (v, @, , A, U, w) and R, ;,(y, a, B, A, G, )- Similar work
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has been seen for different subclasses done by other authors (see for example [31, 21, 16, 29,
54,1,9,8]).
4. Growth and distortion theorems

A growth and distortion property for functions f in the respective classes Sy ;,(y, a, 5,1, 0, w)

and Ry, ;,(y, a, B, 1,0, w) are given as follows:

Theorem 4.7. If the function f defined by (1.2) belongs to the class S, (y, a, B, A, G, w) then for
|z| <1, we have

n+1
If(2)| < |z| + Blyllzl
(1+7l/1(1)0¢)15+1(1 +'un/1wa)(n+1)(’3|yl+n1wa)
- Blylz"*!
|f(Z)| => |Z| (1 + nAwW)U+1(1 +,un7la)“)(n+ 1)(,3|Y| + n/lw“)’

(fedn),a,w,A,u=0,0eNuU{0}, ze U).

The extremal functions are

Blyl k+1
—z— , k=n.
)=z (14 nAw®)0+1(1 + unlw®)(n+ 1) (Blyl+ nilw%) “ ="

Proof. Let f(2) € S;, (v, @, , A, U, w) then from (2.1) we get

Y 1+ kAo™) O 1+ pkAw®) (k + D(Blyl + kAo |ag| < Blyl,
k=n

(fedn),a,w,A,u=0,0eNuU{0}, z€ U).

Or
[ee]
(1+nlo®o+a +puniw®) (n+1)(Blyl + ndw®) Z lagi1l < Blyl,
k=n
(fedn),a,w,A,u=0,0eNU{0}, z€ U).
This implies that

Blyl

(4.1)
(1+nAw®)O+1 (1 + undw®) (n+1)(Bly| + nAw®)

o0
Z lak+1l =
k=n

(fed(n),a,w,A,u=0,0eNU{0}, z€ U).

From (1.2) we have

o0
k+1
If@I=lz=)_ ag1z",
k=n
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or

o0
+1
If@) =zl - ) lagal12",

k=n
this implies that
f@Iz - P ),
1+ nAw®)+1(1 + uniw®) (n+1)(Bly| + nAw®)

Similarly

o k+1 o k+1

If@l=lz= ) agnz "Islz+ ) agaz |

k=n k=n

or

o0
+1
If@)<lzl+ ) lagallz",
k=n

ﬂ"yl Zn+1|.

= e e pnio®)(n+1)(Blyl+niw®)

a

Theorem 4.8. If the function [ defined by (1.2) belongs to the class Ry, ,(y, a, B, A, G, w) then for
|z| < 1, we have

Blyllz|"*!

|f(2)] <zl + (1 + nAw®)0+22 + undw®)(n+1)
Blyllz|"!

|f(2)] =zl 1+ nAw®) 022 + pndw® (n+1)’

(fedn),a,w, A, 1t=0,0eNU{0}, z€U).
The extremal functions are

Bly S+l

J@=a- (1+nAo®)0*22 + pndw®)(n+1)

Proof. Same as Theorem 4.7. O

Theorem 4.9. If the function f defined by (1.2) belongs to the class Sy, ,(y, a, B, A, G, w) then for
lz] <1,
,6|Y| k+1|

§)
Dy @ o) [N <12+ @t + DB+ nAa®)

ﬁ"}/l Zk'+1|

o _
|D} (@, 0) f (2)| = |zl (1 + pnAo® (n+1D)(Bly| + niw®)

’

(fedn),a,w, A, p=00eNuU{0}, zeU).
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Proof. Let f(2) € S;, u(y, @, p, A, U, w) then from (1.11) we get

Y A+ kAo® O 1+ pkdw®) (k+ D(Blyl+ kAo®) | ag | < Bly,
k=n

(fed(n),a,w,A,u=0,0eNU{0}, z€ U).

Or

1+ nAo9 P A + pnAw®) (n+ 1) (Bly| + nAw®) f a1l < Bly,

k=n
(a,0,A,u=0,0eNU{0}).
this implies that
1+ nAw®) O A + pndo®) (n+1)(Blyl + nAw®) OZO" lags1] <
k=n

i 1+ kAP (1 + pkdw®) (k+ 1) (Bly| + kAw®)| ar1| < Bly|-

k=n
Or

1+ pndo®) (n+1)(Blyl+nlw®) Y 1+ kAw®)Oak.1] < Blyl,
k=n

(a,w,A,u=00eNuU{0}),

implies that

O |yl
1+ kAw®)® < h :
kg‘n( ATl < 1+ pniw®)(n+1)(Blyl+nilw?)
From (1.10), we have
DY@, o) f(2)=lz= Y A+ (k+1- DA™ a2,
k=n

IDQ (@, ) f(2)] =12l - Y. 1+ (k+1- DA™ O aga 2",
k=n

ﬁ|Y| |Zk+1|.

5 _
|D} (@, ) f (2)| = |zl (1 + pnde® (n+1)(Bly|+ ndw®)

Similarly we can show that

ﬁ|Y| Zk+1|.

o
|D} (a,w) f (2)| < |z| + (1 + pnde® (n+1)(Bly|+ nAw®)
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Theorem 4.10. If the function f defined by (1.2) belongs to the class Ry, ,(y, @, B, A, U, w) then
forlzl <1,

. Blyllzl"*!

ID} (@, ) f(2)] < |z] + Q2+ pundo®(n+1)
5 __ Bl

|D]L (a,0) f(2)| =zl 2+ pundo®(n+1) !

(fedn),a,w, A, 1t=0,0eNU{0}, z€U).

Proof. Use same technique of proof of Theorem 4.9 for solution. O

Theorem 4.11. Let the hypotheses of Theorem 4.7 be satisfied, then

, Blyllz|"

<1
|f @N=1+ 1+ nAwa)U+l(1 +'un/1wa)(ﬁ|y| + nlw%)
If'(2)| =1~ Pyl

(1+ nAw®)0+1(1 + pniw®) (Blyl + nAw)’
(fedn),a,w, A, 1t=0,0eNU{0}, z€U).

Proof. The proof is similar to that of the proof of Theorem 4.7. O

Theorem 4.12. Let the hypotheses of Theorem 4.7 be satisfied, then

Blyllzl"
(o)l <1
If'(2)] =1- BlyllzI"

(1+nAw®)V0+22 + uniw®)’

(fed(n),a,w,A,pnp=00eNuU{0}, zeU).

Proof. The proof is similar to that of the proof of Theorem 4.8. a

Theorem 4.13. Let the hypotheses of Theorem 4.7 be satisfied, then

[yl
Bly 12|

18 /

Blyl 12|
1+ pundlo®)(Blyl + ndlw%)

(fedn),a,w, A, t=0,0eNU{0}, z€U).

(DY (@, @) f(2)) 121~

)

Proof. The proof is similar to that of the proof of Theorem 4.9. O
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Theorem 4.14. Let the hypotheses of Theorem 4.7, be satisfied, then

U / M
(D} (@, w) f(2) =1+ 2+ uniw®)
Dy (@) fe)1=21- G e

(fedn),a,w,A,u=0,0eNuU{0}, z€ U).

Proof. Use same technique of the proof of Theorem 4.9 for solution. O

5. Extreme points

In this section we have discussed extreme points for functions belonging to the classes
Snuy,a, B,1,06,w) and Ry, (v, a, B, A, U, w).

Theorem 5.15. (a). If
fi(z) =z and
_ plyl
(1+ kAw®) 011+ pkAw®) (k+ 1) (Bly| + kAw®)
Then f € Spu(y, a, B, A, 0, w) ifand only if it can be expressed in the form f(z) = .72, A; fi(z) where A; =
Oand Y72, A; = 1.
). If

2 k=n.

file)=z

fi(z) =z and
Blyl Zit1
(1+kAw®)0+2(2 + ukAw®) (k +1)
Then f € Ry, u(y, @, B, A, 0, w) ifand only ifit can be expressed in the form f (z) = Y32, A; fi(z) where A; =
0and} 32, A; = 1.

Jk=n.

file)=z-

Proof. Let f(2) =392, Aifi(2), i=1,2,3,... 1; =0 with }7°, 1; =1

This implies that
f@=) Aifi(2),
i=1
or
X Blyl i+1
:A Ai - ’
1@ I(Z)+izzé = 1+ KA0® O (1+ pkAw®) (k+ D (Bl + kAw®) - )
00 00 BlylAi i+1
:A Ai - /11'
J&) =M@+ LG = L M e T peAw® (e DIy 7 kAwom) -

0 o Blyl i+1
= Al' - Ai ’
/& ; (Z) ;z ((1+uwa)0+1(1+uklw“)(k+1)(ﬁlyl+kﬂw“)z )
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- Blyl i+1
= —_ A/l * 5.].
J@) =@ ,:ZZ ((1+kﬂtw“)U+1(1 +,uk/1w“)(k+1)([3|y|+kﬂta)“)z ) G-

Since

© A BlyI(A + kAw®) O 1 + ukAdw®) (k + 1) (Bly| + kAw®)

>

= 1+ kAU (1 + pkAw®) (k+ 1) (Bly| + kAw®)

=Y Aiflyl
i=2

= Blyl > Ai
i=2
= Blyl(1-21) < Blyl.

The condition (2.1) for f(z) = Y32, A; fi(z) is satisfied - Thus f € Sy, ,(y, @, B, 1,0, ).

Conversely, we suppose that f € S, ,(y, @, B, 4,0, w) since

Blyl

< , k=n,
sl 1+ kAw®) O+ (1 + pkAw®) (k+ 1) (Bly] + kAw®)
(a,w,A,1=0,5eNU{0}):
We put
a\O+1 a a
A= 1+ kAo A+ pkAdw®) (kK + 1) (Blyl + kAw )ai’ k>n
plyl
(a,w, A, 1 =0,0eNU{0})
and
[e.]
A=1-) A,
i=2
then
[e.]
f@ =3 Aifi(2).
i=1
The proof of the second part of the Theorem 5.15 is similar to 1st part- a

6. Integral means inequalities

For any two functions f and g analytic in U, f is said to be subordinate to g in U denoted by
f < g if there exists an analytic function w defined U satisfying w(0) = 0 and |w(z)| < 1 such
that f(z) = g(w(z)) z€ U.

In particular, if the function g is univalent in U, the above subordination is equivalent to
f(0) =g(0) and f(U) c g(U)- In 1925, Littlewood[10] proved the following Subordination The-

orem.
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Theorem 6.16. [10] If f and g are any two functions, analytic in U with f < g then for u >0
and z = re'? O<r<l,

2n 2n
fo 1f@)IHd6 < fo 18(2)11do.
Theorem 6.17. (a)- Let [ € S, (v, @, B, A, U, w) and [y be defined by

Bly Zk+1

_ k= n.
1+ kAw®) 0+ (1 + pkAw®) (k+1) (Bly] + kAw®) "

fi(2)=2z

If there exists an analytic function w(z) given by

. 1+ kAw®) O (1 + pkdo®) (k+ 1) (Bly| + kAw®) f a2k
= +1 »
k=n

Blyl

then forz=re'? and (0 <r<1),
2n . 2 .
f If(re') ka6 < f | fe(re’®) 1 de.
0 0

(b)- Let f € Ry u(y, @, B, A, 0, w) and f. be defined by

fi(@)=z— hlyl 2"k = n.
(1+ kAw®)0+2(2 + ukAw®) (k+1)

If there exists an analytic function w(z) given by

1+ kAw9522 + pkAw® (k+1) &

(w(z)]* = ap12",
B kZ 11

then for z = rel® and 0<r<1),
27 ) 2 .
f If(re’B)I“dH < f Ifk(rele)l“dé?.
0 0
Proof. (a) We have to show that

2m X 2m i
f |f(re'®)|*ae < f | fi(re’®)|#do,
0 0

or

2m [eS) 2m
f lz— Z élk+1Zk+1|’ud95f lz— —— ﬁIYL — Zk+1|’ud9,
0 =n 0 1+ kAP 1+ pkAw®) (k+ D (Blyl + kAw®)

or

2 00 2m
f -y apz""do s/ = Pyl ZF1kde.
0 =n 0 (1+ kAw®)O*+ (1 + pkdw®) (k+ 1) (Bly| + kAw®)
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By using Theorem 6.16 it is enough to show that

1- ) apnz<1- Blyl o
k=n (1+M‘”“)6+1(1+H/€ﬂw“)(k+1)(,6|y|+k/1wa)
Now by taking
y Blyl .
1- k_q_ .
kgn ag+1< 1+ kawa)lj+1(1 +ﬂk1(1)a)(k+ 1)(ﬁ|Y| Fidw®) (w(2))

After simplification we get

1+ kA5 (1 + ukdw®) (k+1 +kAw®) &
[w(z)]k=( o) U+p ﬁla;,|)( Pl ) Z ag12",
k=n

this implies that w(0) =0 and

(1 + kAw®) Ot (1 + pkAw®) (k+ 1) (Blyl + kAw®) &

w2 = ap+125,
Blyl kg "

or
(1+ kAo®) 01 (1 + ukAw®) (k + D (Bly| + kAw®) X
14 = R > lagallhl
k=n

[[w(z)

By using (2.1) we get
(w27 ¥ <zl <1.

The proof of the second part of the Theorem 6.17 is similar to 1st part.

7. Inclusion properties

Here we have discussed the Inclusion Properties of the subclasses of analytic function of com-
plex order denoted by Sy, ;,(y, @, ,1,5,w) and R, ,(y, a, B, A, G, ).

Theorem 7.18. (@) [f0<a;<ay<1,0<fB1<f,<,0=sA1 <Al <land0<w; <wy<1. Let
a function [ be in the class Sy, ,(y, a, B, A, 0, w) satis]ﬁ/ingzzozn(l + kAdw®)01 + wkAw®) (k+
D(Blyl+ kAw®)ays1 < Bly| then show that

Sn,p()’; a]rﬁr /1; Urw) g Sn,p(Y» 052; ﬁ; A/r 6; w)-

Sn,p()’; ar ﬁr /1276; w) g Sn,p(Y» a; ﬁ; A/]rO; w)-

Sn,p()’; ar ﬁr /1; Uer) g Sn,p(Y» a; ﬁ; A/r 6; wl)-

Sn,[Jz (Y! a; ﬁ; A/r 6; w) g Sn,,ul (Y; ar ﬁr /1; Urw)
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D) Ifosa;<ar<1,0=sp1<P2<,0=sA1sAy<1and0<w; <w, <1. Leta function f bein
the class Ry, ,(y, a, B,1, 0, w) satisf_’yingzzozn(l + kAdw®)0*22 + pkAw®) (k+1agq < Blyl then
show that

Rn,/,t(Y) a]»ﬁ» /1) 6,(1)) = Rn,/,t(Y) ay, ﬁ» /1) U,(D).

Rn,ﬂ(Y; ar ﬁr /12; Urw) g Rn,ﬂ(Y; ar ﬁr /11; Urw)

Rn,ﬂ(Y; ar ﬁr /1; U»(UZ) g Rn,ﬂ(Y; ar ﬁr /1; Ur w])

Rn,/.lz (Y; ar ﬁr /1; Ur (U) g Rnrul (Y! a; ﬁ; A/r 6; w)-

Proof. (a) To prove
® Sn,p(% aq, ﬂ) A» 6) (1)) - Sn,y(Yy as, ﬁ» /1) U» (1)).

Since it is given that 0 < a; < a, < 1 this implies that

oo
Y (1 + kAP (1 + pkdw®) (k+ 1D (Bly] + kAw®) a4
k=n

< f 1+ kAw™) P (1 + pkAw®™) (k+ 1 (Bly] + kAw®™) ags1,
therefore if f € Snyﬂk(;flal,ﬁ,/l, O, w) implies f € Sy 4(y, a2, B, A, U, w). This show that
Snuy, a1, B,1,06,0) €S, 4y, az, 6, 4,0, w).
Similarly, to prove that
* Suuly, @, B,12,0,w) €Sy u(y, a, B, 11,0, 0)

Since it is also given that 0 < 1; < A, < 1 therefore

Y 1+ kA 0®) 0 (1 + wkAw*)(k+ 1) (Blyl + kA w*) a1
k=n

< Z 1+ k0™ (1 + pkAow™) (k + 1) (Bly| + kA20™) a1,

therefore if f € Sn M(y,a B, A2,0,w) implies f €S, ,(y,a, B, A1,0,w). This implies that
Sn,y(% ayﬂ) 12»6)(1)) - Sn,y(% ayﬂ) A],O,(D). D

The proof of the remaining parts of the theorem is similar.
8. Hadamard Product

Let f,g € o/ (n) where f(z) is given in (1.2) and g(z) = z - % bk+1zk+1 then the modified

Hadamard productf * g is defined by (f * g) =z — Z Ars1brs1 25

=n



240 MASLINA DARUS AND IMRAN FAISAL

Theorem 7.19. (a). If f(z) = z— Z ak+1z ESnﬂ(y,a B, AU,w)andg(z) = z— Z bk+1z
€ Snuy,a, B,A,0,w) then prove that(f*g)(z) €Suuly,a, B,1,0,0).

b). If f(z) =z— Z Api12F ERnu(y,a B, 1,0,w)

and g(z)=z— Z bk+1z ERn#(y,a B, 1,0,w)
k=
then prove that (f * 8)(2) € Ry u(y, a, B, 1,0, w).

Proof. (a) Since it is given that f(z) = z— Z ak+1z les, 1, a, B, 4,0, w), this implies that
k=

Y 1+ kAP A + pkAo®) (k+ D(Blyl + kAo ags < Bly,
k=n

similarly g(z) = z— Z bk+1z le Rpu(y, a, B, 4,0, w) implies

—n
f 1+ kAw®) O (1 + pkAw®) (k + 1) (Bly] + kAw®) bis1 < Blyl,
k=n

because

f 1+ kAw®) P (1 + pkdo®) (k+ 1) (Bly| + kAw®) Ggs1bisn
k=n

< Y 1+ ko0 A + pkAw®) (k+ 1D (Bly] + kAo®) ag.,

=n

b

< Blyl. O

Other work regarding differential operators for various problems can be found in ([11],
(24]-[28], [20], [14], [13]).
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