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NECESSARY AND SUFFICIENT CONDITIONS FOR

THE SOLVABILITY OF THE INVERSE PROBLEM FOR

NON-SELF-ADJOINT PENCILS OF STURM-LIOUVILLE

OPERATORS ON THE HALF-LINE

V. A. YURKO

Abstract. Non-self-adjoint Sturm-Liouville differential operators on the half-line with a

boundary condition depending polynomially on the spectral parameter are studied. We

investigate the inverse problem of recovering the operator from the Weyl function. For

this inverse problem we provide necessary and sufficient conditions for its solvability

along with a procedure for constructing its solution by the method of spectral mappings.

1. Introduction

Consider the differential equation and the boundary condition L = L(q,U ):

ℓy := −y ′′
+q(x)y =λy, x > 0, (1)

U (y) := P1(λ)y ′(0)−P0(λ)y(0) = 0, (2)

where λ is the spectral parameter, q(x) ∈ L(0,∞) is a complex-valued function, which is called

the potential, and

Pk (λ) =
pk
∑

j=0

Pk jλ
pk− j , k = 0,1, pk ≥ 0,

are polynomials of degree pk with complex coefficients such that P1(λ) and P0(λ) has no com-

mon zeros.

In this paper, we study an inverse spectral problem for L. Inverse problems of spectral

analysis consist in recovering operators from their spectral characteristics and arise in many

fields. In particular, several examples of spectral problems arising in mechanical engineering

and having boundary conditions depending on the spectral parameter are provided in the

book [1] of Collatz; see also [2, 3, 4], where further references and links to applications can be

found.
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Classical inverse problems for Sturm-Liouville operators without λ in boundary condi-

tions have been studied fairly completely (see the monographs [5]-[10] and the references

therein). Inverse problems for differential operators with boundary conditions dependent on

the spectral parameter are more difficult to investigate, and nowadays there are only a num-

ber of papers in this direction (see [11]-[17]). In particular, [11]-[16] study such problems on a

finite interval. Inverse spectral problems for the non-self-adjoint Sturm-Liouville pencil (1)-

(2) on the half-line were considered in [17] where the inverse problem of recovering L from the

Weyl function was studied and a constructive solution of this inverse problem was provided.

In this paper we consider singular non-self-adjoint Sturm-Liouville pencils of the form

(1)-(2) on the half-line. We provide necessary and sufficient conditions for the solvability of

the inverse problem of recovering L from the Weyl function. The obtained results are natural

generalizations of the well-known results on the classical inverse problems.

Let for definiteness, p1 = p0. Other cases can be treated similarly. Without loss of gener-

ality we put P10 = 1. Denote by Zk = {zks}s=1,pk
the zeros of Pk (λ), k = 0,1. Then

Pk (λ) = Pk0

pk
∏

s=1

(λ− zks ), k = 0,1. (3)

Let λ = ρ2, and let for definiteness Imρ ≥ 0. Denote by Π+ the λ-plane with the two-sided

cut Π0 along the arc Λ+ := {λ : λ ≥ 0}, and Π := Π+ \ {0}; notice that here Π+,Π0 and Π must

be considered as images of subsets of the Riemann surface of the squareroot-function. Then,

under the map ρ→ ρ2 =λ, Π+, Π0 and Π correspond to the domains Ω+ = {ρ : Imρ > 0}, Ω0 =

{ρ : Imρ = 0} and Ω= {ρ : Imρ ≥ 0, ρ 6= 0}, respectively.

Let Φ(x,λ) be the solution of equation (1) under the conditions U (Φ) = 1, Φ(x,λ) =

O(exp(iρx)), x →∞, ρ ∈Ω+, where U is defined by (2). Denote M (λ) := Φ(0,λ). We will call

M (λ) the Weyl function for L, since it is a generalization of the concept of the Weyl function

for the classical Sturm-Liouville operator (see [8]).

Let Zk , k = 0,1, be known and fixed. The inverse problem is formulated as follows.

Inverse problem 1. Given the Weyl function M (λ), construct the potential q(x) and the

coefficient P00.

We note that if p1 > 0, then in general M (λ) does not uniquely determine all coefficients

of the boundary condition. In Section 2 we study spectral properties of L. In Section 3 we

provide an algorithm for the solution of the inverse problem considered. This algorithm is

based on the reduction of our nonlinear inverse problem to the solution of the so-called main

equation, which is a linear integral equation in a suitable Banach space. In this part of the

paper we essentially use the results from [17]. The main result of the paper is Theorem 4 (see
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Section 4) where necessary and sufficient conditions are given for the solvability of Inverse

problem 1.

2. Spectral properties

Denote by WN the set of functions f (x), x ≥ 0 such that the functions f ( j )(x), j = 0, N −1

are absolutely continuous on [0,T ] for each fixed T > 0, and f ( j )(x) ∈ L(0,∞), j = 0, N . We shall

say that L ∈ W̄N if q ∈WN . We shall subsequently solve the inverse problem in the classes W̄N .

Let S1(x,λ), S2(x,λ) and ϕ(x,λ) be solutions of equation (1) under the initial conditions

S1(0,λ) = S ′
2(0,λ) = 0, S ′

1(0,λ) = S2(0,λ) = 1,

ϕ(0,λ) = P1(λ), ϕ′(0,λ) = P0(λ).

For each fixed x, and ν= 0,1, the functions S(ν)
j

(x,λ), j = 1,2, andϕ(ν)(x,λ) are entire in λ, and

〈S2(x,λ),S1(x,λ)〉 ≡ 1, where 〈y(x), z(x)〉 := y z ′− y ′z is the Wronskian of y and z. Moreover,

|S(ν)
j

(x,λ)| ≤C |ρ| j+ν−2
|exp(−iρx)|, x ≥ 0, ν= 0,1, ρ ∈Ω. (4)

Clearly,

ϕ(x,λ) = P1(λ)S2(x,λ)+P0(λ)S1(x,λ).

It is known [8] that equation (1) has a unique solution e(x,ρ), Imρ ≥ 0, x ≥ 0, with the prop-

erties:

(1) For each fixed x ≥ 0, and ν = 0,1, the functions e (ν)(x,ρ) are analytic for ρ ∈ Ω+, and are

continuous for ρ ∈Ω.

(2) For x →∞, ν= 0,1, and each fixed δ> 0,

e (ν)(x,ρ) = (iρ)νexp(iρx)(1+o(1)), (5)

uniformly for ρ ∈ Ω, |ρ| ≥ δ. For each ρ ∈ Ω+, e(x,ρ) ∈ L2(0,∞). Moreover, e(x,ρ) is the

unique solution of (1) (up to a multiplicative constant) having this property.

(3) For |ρ|→∞, ρ ∈Ω, ν= 0,1,

e (ν)(x,ρ)= (iρ)νexp(iρx)
(

1+
N+1
∑

s=1

ωsν(x)

(iρ)s
+o

( 1

ρN+1

))

, ω1ν(x) :=−
1

2

∫∞

x
q(t )d t , (6)

uniformly for x ≥ 0.

The function e(x,ρ) is called the Jost solution for (1).

Denote

∆(ρ) := P1(λ)e ′(0,ρ)−P0(λ)e(0,ρ). (7)
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According to (5) and the definition of Φ(x,λ) and M (λ) we have

Φ(x,λ) =
e(x,ρ)

∆(ρ)
, M (λ)=

e(0,ρ)

∆(ρ)
. (8)

It follows from (4), (6)-(8) that for ρ ∈Ω, |ρ| >ρ∗, ν= 0,1, x ≥ 0,

|Φ
(ν)(x,λ)| ≤C |ρ|ν−1

|λ|−p1 |exp(iρx)|, |ϕ(ν)(x,λ)| ≤C |ρ|ν|λ|p1 |exp(−iρx)|. (9)

Denote

Λ = {λ= ρ2 :ρ ∈Ω, ∆(ρ)= 0},

Λ
′
= {λ= ρ2 : ρ ∈Ω+, ∆(ρ)= 0}, Λ

′′
= {λ= ρ2 : ρ ∈Ω0, ρ 6= 0, ∆(ρ)= 0}.

Obviously, Λ=Λ
′∪Λ

′′ is a bounded set, Λ′′ ⊂Π0, and Λ
′ is a bounded and at most countable

set.

Theorem 1. The Weyl function M (λ) is analytic in Π+ \Λ′ and continuous in Π \Λ. The set of

singularities of M (λ) (as an analytic function) coincides with the set Λ0 := Λ+∪Λ. For |ρ| →

∞, ρ ∈Ω,

M (λ)=
1

(iρ)λp1

(

1+
N+1
∑

s=1

as

(iρ)s
+o

( 1

ρN+1

))

, (10)

where a1 =P00.

Theorem 1 follows from (6)-(8).

Definition 1. The set of singularities of the Weyl function M (λ) is called the spectrum of L

(and is denoted by σ(L)). The values of the parameter λ, for which equation (1) has nontriv-

ial solutions satisfying the conditions U (y) = 0, y(∞) = 0 (i.e. limx→∞ y(x) = 0), are called

eigenvalues of L, and the corresponding solutions are called eigenfunctions of L.

The following theorem was proved in [17].

Theorem 2. L has no eigenvalues λ> 0. Moreover, ifλ0 = ρ2
0 > 0 and∆(ρ0) = 0, then ∆(−ρ0) 6= 0.

The set Λ′ coincides with the set of non-zero eigenvalues of L.

Denote

V (λ) :=
1

2πi

(

M−(λ)−M+(λ)
)

, λ> 0,

where M±(λ) = lim
z→0, Re z>0

M (λ± i z). Taking (10) into account we calculate

V (λ) =
1

(πρ)λp1

(

1+
N+1
∑

s=1

vs

ρs
+o

( 1

ρN+1

))

, (11)
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where v2s+1 = 0, v2s = (−1)s a2s .

3. The main equation

For studying the inverse problem we agree that together with L we consider a pair L̃ of

the same form but with different potential q̃ . If a certain symbol α denotes an object related

to L, then the corresponding symbol α̃ with tilde will denote the analogous object related to

L̃, and α̂ :=α− α̃. Then Zk = Z̃k , k = 0,1.

Let M (λ) be the Weyl function for L. Using (10) we find P00 = a1, and construct Pk (λ), k =

0,1, by (3) where P10 = 1. We choose a model pair L̃ = L(q̃ ,U ) such that q̃ ∈ WN , Pk (λ) =

P̃k (λ), k = 0,1, and arbitrary in the rest. For example, one can take q̃(x) ≡ 0. In the λ - plane

we consider the contour γ = γ′∪γ′′ (with counterclockwise circuit), where γ′ is a bounded

closed contour encircling the set Λ∪ Λ̃∪ {0}, and γ′′ is the two-sided cut along the arc {λ : λ>

0, λ∉ i nt γ′}. It is proved in [17] that the following relation holds

ϕ̃(x,λ) =ϕ(x,λ)+
1

2πi

∫

γ
Ã(x,λ,µ)ϕ(x,µ)dµ, (12)

where

Ã(x,λ,µ) = D̃(x,λ,µ)
M̂(µ)

P1(µ)
, D̃(x,λ,µ) :=

〈ϕ̃(x,λ),ϕ̃(x,µ)〉

(λ−µ)
.

Moreover, for λ,µ ∈ γ, λ= ρ2, µ= θ2,

|ϕ(x,λ)|, |ϕ̃(x,λ)| ≤C |λ|p1 , |Ã(x,λ,µ)| ≤
C |λ|p1 |M̂ (µ)|

|ρ−χθ|+1
,

where χ := sign(ReρReθ). The integral in (12) converge absolutely for each λ ∈ γ and x ≥ 0.

Analogously to (12) one can obtain the relation

Φ̃(x,λ) =Φ(x,λ)+
1

2πi

∫

γ
ã(x,λ,µ)ϕ(x,µ)dµ, λ ∈ Jγ, (13)

where Jγ = {λ : λ∉ γ∪ i nt γ′}, and

ã(x,λ,µ) =
〈Φ̃(x,λ),ϕ̃(x,µ)〉

λ−µ
·

M̂ (µ)

P1(µ)
.

Relation (12) can be considered as a linear integral equation with respect to ϕ(x,λ) with x as

a parameter. Equation (12) is called the main equation of the inverse problem.

Let us consider the Banach space C (γ) of continuous bounded functions z(λ), λ ∈ γ, with

the norm ‖z‖ = sup
λ∈γ

|z(λ)|. Denote by C ′(γ) the set of functions f (λ) such that f (λ)|λ|−p1 ∈

C (γ). The following theorem was proved in [17].
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Theorem 3. For each fixed x ≥ 0, the main equation (12) has a unique solution ϕ(x,λ) ∈C ′(γ).

Denote

ε0(x)=
1

2πi

∫

γ
ϕ̃(x,µ)ϕ(x,µ)

M̂(µ)

P1(µ)
dµ. (14)

Lemma 1. The following relation holds

q(x)= q̃(x)+ε(x), (15)

where ε(x) =−2ε′0(x).

Proof. In order to simplify calculations we will assume in the sequel that V̂ (λ)λp1+1/2 ∈ L(λ∗,

∞), for sufficiently large λ∗. For example, it is always true if N > 1 and v̂2 = 0. Since

d

d x
〈ϕ̃(x,λ),ϕ̃(x,µ)〉 = (λ−µ)ϕ̃(x,λ)ϕ̃(x,µ),

it follows that

D̃ ′(x,λ,µ) = ϕ̃(x,λ)ϕ̃(x,µ). (16)

Differentiating (12) twice with respect to x and using (16) and (14) we get

ϕ̃′(x,λ)−ε0(x)ϕ̃(x,λ) = ϕ′(x,λ)+
1

2πi

∫

γ
Ã(x,λ,µ)ϕ′(x,µ)dµ, (17)

ϕ̃′′(x,λ) = ϕ′′(x,λ)+
1

2πi

∫

γ
Ã(x,λ,µ)ϕ′′(x,µ)dµ

+
1

2πi

∫

γ
2ϕ̃(x,λ)ϕ̃(x,µ)

M̂(µ)

P1(µ)
ϕ′(x,µ)dµ

+
1

2πi

∫

γ
(ϕ̃(x,λ)ϕ̃(x,µ))′

M̂(µ)

P1(µ)
ϕ(x,µ)dµ. (18)

In (18) we replace the second derivatives using equation (1), and then we replace ϕ(x,λ) using

(12). This yields

q̃(x)ϕ̃(x,λ) = q(x)ϕ̃(x,λ)+
1

2πi

∫

γ
〈ϕ̃(x,λ),ϕ̃(x,µ)〉

M̂(µ)

P1(µ)
ϕ(x,µ)dµ

+
1

2πi

∫

γ
2ϕ̃(x,λ)ϕ̃(x,µ)

M̂(µ)

P1(µ)
ϕ′(x,µ)dµ+

1

2πi

∫

γ
(ϕ̃(x,λ)ϕ̃(x,µ))′

M̂(µ)

P1(µ)
ϕ(x,µ)dµ.

After canceling terms with ϕ̃′(x,λ) we arrive at (15). ���

Thus, we obtain the following algorithm for the solution of Inverse problem 1.

Algorithm 1. Let the function M (λ) be given. Then

(1) Construct P00 and Pk (λ), k = 0,1.
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(3) Find ϕ(x,λ) by solving equation (12).

(4) Construct q(x) via (15).

This algorithm is similar to the corresponding algorithm from [17], but here we use an-

other formula for calculating q(x). This formula is more effective for numerical analysis (see

[18]).

Lemma 2. The following relations hold

M̂(λ) =
1

2πi

∫

γ

M̂(µ)

λ−µ
dµ, λ∈ Jγ, (19)

Pk (λ)M̂ (λ) =
1

2πi

∫

γ

Pk (µ)M̂ (µ)

λ−µ
dµ, λ ∈ Jγ. (20)

Proof. Consider the contour γ0
R = (γ∩ {λ : |λ| ≤ R})∪ {λ : |λ| = R} (with clockwise circuit). By

Cauchy‘s integral formula

M̂(λ) =
1

2πi

∫

γ0
R

M̂ (µ)

λ−µ
dµ, λ ∈ i nt γ0

R . (21)

By virtue of (10), |M̂ (λ)| ≤C |λ|−p1−1, |λ|→∞, and consequently,

lim
R→∞

1

2πi

∫

|µ|=R

M̂(µ)

λ−µ
dµ= 0.

Together with (21) this yields (19). Relation (20) is proved similarly. ���

Lemma 3. The following relations hold

1

2πi

∫

γ
Ã(0,λ,µ)ϕ(ν)(0,µ)dµ= 0, ν= 0,1, (22)

1

2πi

∫

γ
P1(µ)M̂ (µ)dµ= 0. (23)

Proof. Since

Ã(x,λ,µ) =
〈ϕ̃(x,λ),ϕ̃(x,µ)〉

(λ−µ)
·

M̂ (µ)

P1(µ)
, ϕ̃(0,λ) = P1(λ), ϕ̃′(0,λ) = P0(λ),

it follows that

1

2πi

∫

γ
Ã(0,λ,µ)ϕ(0,µ)dµ= P1(λ)

1

2πi

∫

γ

P0(µ)M̂(µ)

λ−µ
dµ−P0(λ)

1

2πi

∫

γ

P1(µ)M̂ (µ)

λ−µ
dµ .

Using (20) we calculate

1

2πi

∫

γ
Ã(0,λ,µ)ϕ(0,µ)dµ= P1(λ)P0(λ)M̂ (λ)−P0(λ)P1(λ)M̂ (λ) = 0,
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i.e. (22) is proved for ν= 0. For ν= 1, arguments are similar.

Put x = 0 in (14) and (17). Then

ε0(0) =
1

2πi

∫

γ
P1(µ)M̂(µ)dµ.

Since ϕ̃′(0,λ) =ϕ′(0,λ) = P0(λ), it follows from (17) and (22) that ε0(0) = 0, i.e. (23) is

proved. ���

4. Necessary and sufficient conditions

Let us now formulate necessary and sufficient conditions for the solvability of Inverse

problem 1. Denote in the sequel by VN the set of functions M (λ) such that

(i) the functions M (λ) are analytic inΠ+ with the exception of an at most countable bounded

set Λ′ of poles, and are continuous in Π with the exception of bounded set Λ (in general,

Λ and Λ
′ are different for each function M (λ));

(ii) for |λ|→∞, (10) holds, where as are complex numbers.

Since Zk , k = 0,1, are known, we construct Pk (λ) by (3), where P10 = 1, P00 = a1.

Theorem 4. For a function M (λ) ∈VN to be the Weyl function for a certain L ∈ W̄N , it is neces-

sary and sufficient that the following conditions hold:

(1) Relation(23) holds;

(2) (Condition S) For each fixed x ≥ 0, equation (12) has a unique solution ϕ(x,λ) ∈C ′(γ);

(3) ε0(x) ∈WN+1, where the function ε0(x) is defined by (14).

Under these conditions q(x) is constructed via (15).

The necessity part of Theorem 4 was proved above. We prove now the sufficiency. Let a

function M (λ) ∈ VN , satisfying the hypothesis of Theorem 4, be given, and let ϕ(x,λ) be the

solution of the main equation (12). Then (12) gives us the analytic continuation of ϕ(x,λ)

to the whole λ- plane, and for each fixed x ≥ 0, the function ϕ(x,λ) is entire in λ of order

1/2. Using Lemma 1.5.1 from [8], by the standard technique, one can show that the functions

ϕ(ν)(x,λ), ν= 0,1,2, are absolutely continuous with respect to x on compact sets, and

|ϕ(ν)(x,λ)| ≤C |ρ|ν|λ|p1 exp(|τ|x), |η(x,λ)| ≤C |λ|p1+1 exp(|τ|x), (24)

where η(x,λ) := ℓϕ(x,λ)−λϕ(x,λ). We construct the function Φ(x,λ) via (13), and q(x) by

(15). Thus, we have a pair L = L(q,U ). Obviously, L ∈ W̄N .
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Lemma 4. The following relations hold

ℓϕ(x,λ) =λϕ(x,λ), ℓΦ(x,λ) =λΦ(x,λ).

Proof. Differentiating (12) twice with respect to x, we obtain (17) and (18). It follows from (18)

and (12) that

−ϕ̃′′(x,λ)+q(x)ϕ̃(x,λ) = ℓϕ(x,λ)+
1

2πi

∫

γ
Ã(x,λ,µ)ℓϕ(x,µ)dµ

+
1

2πi

∫

γ
〈ϕ̃(x,λ),ϕ̃(x,µ)〉

M̂(µ)

P1(µ)
ϕ(x,µ)dµ

−2ϕ̃(x,λ)
1

2πi

∫

γ
(ϕ̃(x,λ)ϕ̃(x,µ))′

M̂ (µ)

P1(µ)
ϕ(x,µ)dµ.

Taking (15) into account we get

ℓ̃ϕ̃(x,λ) = ℓϕ(x,λ)+
1

2πi

∫

γ
Ã(x,λ,µ)ℓϕ(x,µ)dµ

+
1

2πi

∫

γ
〈ϕ̃(x,λ),ϕ̃(x,µ)〉

M̂(µ)

P1(µ)
ϕ(x,µ)dµ. (25)

Using (13) we calculate similarly

Φ̃
′(x,λ)−ε0(x)Φ̃(x,λ) = Φ

′(x,λ)+
1

2πi

∫

γ

〈Φ̃(x,λ),ϕ̃(x,µ)〉

λ−µ
·

M̂ (µ)

P1(µ)
ϕ′(x,µ)dµ, (26)

ℓ̃Φ̃(x,λ) = ℓΦ(x,λ)+
1

2πi

∫

γ

〈Φ̃(x,λ),ϕ̃(x,µ)〉

λ−µ
·

M̂ (µ)

P1(µ)
ℓϕ(x,µ)dµ

+
1

2πi

∫

γ
〈Φ̃(x,λ),ϕ̃(x,µ)〉

M̂(µ)

P1(µ)
ϕ(x,µ)dµ. (27)

It follows from (25) that

λϕ̃(x,λ) = ℓϕ(x,λ)+
1

2πi

∫

γ
Ã(x,λ,µ)ℓϕ(x,µ)dµ+

1

2πi

∫

γ
(λ−µ)Ã(x,λ,µ)ϕ(x,µ)dµ.

Taking (12) into account we deduce for a fixed x ≥ 0,

η(x,λ)+
1

2πi

∫

γ
Ã(x,λ,µ)η(x,µ)dµ= 0, λ ∈ γ. (28)

According to (24) we have

|η(x,λ)| ≤C |λ|p1+1, λ ∈ γ. (29)

By virtue of (28) and (29),

|η(x,λ)| ≤C |λ|p1

(

1+

∫∞

λ∗

µp1+1|V̂ (µ)|

|ρ−θ|+1
dµ

)

, λ ∈ γ, θ > 0, Re ρ ≥ 0.
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Since
θ

ρ(|ρ−θ|+1)
≤ 1 for θ,ρ ≥ 1,

this yields

|η(x,λ)| ≤C |λ|p1+1/2, λ ∈ γ. (30)

Using (30) instead of (29) and repeating the preceding arguments we infer

|η(x,λ)| ≤C |λ|p1 , λ ∈ γ.

According to Condition S of Theorem 4, the homogeneous equation (28) has only the trivial

solution η(x,λ) ≡ 0. Consequently,

ℓϕ(x,λ) =λϕ(x,λ). (31)

It follows from (27) and (31) that

λΦ̃(x,λ) = ℓΦ(x,λ)+
1

2πi

∫

γ

〈Φ̃(x,λ),ϕ̃(x,µ)〉

λ−µ

M̂(µ)

P1(µ)
µϕ(x,µ)dµ

+
1

2πi

∫

γ
(λ−µ)

〈Φ̃(x,λ),ϕ̃(x,µ)〉

λ−µ

M̂(µ)

P1(µ)
ϕ(x,µ)dµ.

Together with (13) this yields ℓΦ(x,λ) =λΦ(x,λ). ���

Lemma 5. The following relations hold

ϕ(0,λ) = P1(λ), ϕ′(0,λ) = P0(λ),

U (Φ) = 1, Φ(0,λ) = M (λ),

Φ(x,λ) = O(exp(iρx)), x →∞.

Proof. It follows from (24) that

|ϕ(ν)(0,λ)| ≤C |ρ|ν|λ|p1 . (32)

We recall that in the necessity it was proved that (22) is valid. Using (32), by the same argu-

ments as in the proof of Lemma 3, one can get that (22) is valid also in the sufficiency.

Taking x = 0 in (12) and using (22) we get

ϕ(0,λ) = P1(λ), (33)

It follows from (14), (23) and (33) that

ε0(0) =
1

2πi

∫

γ
P1(µ)M̂ (µ)dµ= 0. (34)
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Taking x = 0 in (17) and using (22) and (34) we get

ϕ′(0,λ) = P0(λ). (35)

Using (13) and (33) we calculate

Φ̃(0,λ) =Φ(0,λ)+
1

2πi

∫

γ
ã(0,λ,µ)P1(µ)dµ,

and consequently,

Φ̃(0,λ) =Φ(0,λ)+ Φ̃(0,λ)
1

2πi

∫

γ

P0(µ)M̂ (µ)

λ−µ
dµ− Φ̃

′(0,λ)
1

2πi

∫

γ

P1(µ)M̂ (µ)

λ−µ
dµ .

By virtue of Lemma 2 and the relation U (Φ̃) = 1, this yields

Φ̃(0,λ) =Φ(0,λ)− M̂ (λ). (36)

Similarly, using (26) and (33)-(35) we calculate

P1(λ)Φ̃′(0,λ) =P1(λ)Φ(0,λ)−P0(λ)M̂ (λ). (37)

Since U (Φ̃) = 1, Φ̃(0,λ) = M̃(λ), it follows from (36) and (37) that U (Φ) = 1, Φ(0,λ) = M (λ).

Furthermore, let us rewrite (13) in the form

Φ(x,λ) = Φ̃(x,λ)+
1

2πi

∫

γ

Φ̃
′(x,λ)ϕ̃(x,µ)− Φ̃(x,λ)ϕ̃′(x,µ)

λ−µ
·

M̂(µ)

P1(µ)
ϕ(x,µ)dµ, (38)

where λ ∈ Jγ. According to (9) and (10) we have

|ϕ(ν)(x,λ)|, |ϕ̃(ν)(x,λ)| ≤ C |ρ|ν|λ|p1 , λ∈ γ, x ≥ 0, ν= 0,1,

|Φ̃
(ν)(x,λ)| ≤ C |ρ|ν−1

|λ|−p1 |exp(iρx)|, ρ ∈Ω, |ρ| > ρ∗, ν= 0,1, x ≥ 0,

|M̂ (λ)(P1(λ))−1
| ≤ C |λ|−2p1−1, ρ ∈Ω, |ρ| > ρ∗.

Together with (38) this yields for a fixed λ∈ Jγ:

|Φ(x,λ)exp(−iρx)| ≤Cλ

(

1+

∫∞

λ∗

dµ

µ1/2|λ−µ|

)

,

and consequently, Φ(x,λ) =O(exp(iρx)), x →∞. ���

Thus, M (λ) is the Weyl function for the constructed pair L(q(x),U ), and Theorem 4 is

proved. ���
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