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AN INVERSE SPECTRAL PROBLEM FOR DIFFERENTIAL
OPERATORS WITH INTEGRAL DELAY

YU. KURYSHOVA

Abstract. The uniqueness theorem is proved for the solution of the inverse spectral prob-
lem for second-order integro-differential operators on a finite interval. These operators
are perturbations of the Sturm-Liouville operator with convolution and one-dimensional
operators. The main tool is an integral transform connected with solutions of integro-
differential operators.

1. Introduction

Consider the problem L = L(q, M, R, V) of the form

(y(x) := —y" (%) + q(x) y(x) +f M(x— t)y(t)dt+R(x)f Viymdr=Ayx),0<x<m, (1)
0 0
y(0) = y'(0) =0, 2)

where A is the spectral parameter, and g, M, R, V are continuous functions. The operator ¢ is
a perturbation of the Sturm-Liouville operator with convolution and one-dimensional oper-
ators. We study the inverse spectral problem for L. Inverse problems of spectral analysis con-
sist in recovering operators from their spectral characteristics. Such problems often appear
in many branches of natural sciences and engineering. For the Sturm-Liouville differential
operator, inverse spectral problems have been studied fairly completely (see the monographs
[1]-[5] and the references therein). Inverse problems for integro-differential and integral op-
erators are much more difficult for investigating, and nowadays there are only several isolated
results related to these “non-local" inverse problems (see [6]-[9] and the references therein).
The integro-differential operator ¢, considered in the present paper, is the one-dimensional
perturbation of the Volterra integro-differential operator. We study the inverse problem of
recovering the perturbation provided that the Volterra part is known a priori. In order to for-
mulate the inverse problem for (1)-(2) we first introduce the spectral data for L.
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Let u(x, 1) be the solution of the Cauchy problem

—u”(x,]t)+q(x)u(x,7t)+/ Mx—-Hu(t,)dt+R(x) = Au(x, 1), uO,1)=u0,1)=0. 3
0

Denote .
AA) = l—f V(u(t,A)dt. (4)
0

The function A(A) is entire in A, and its zeros {A,} coincide with the eigenvalues of L. The
function A(A) is called the characteristic function of L.

We note that if V(x) = 0 or/and R(x) =0, then A(A1) =1 (if R(x) =0, then u(x, 1) =0, since
the Cauchy problem is equivalent to the homogeneous integral Volterra equation of second
kind), and L has no eigenvalues. In order to avoid this trivial case we will assume in the sequel
that

R(x) ~dox®, V(w—x)~dixP, x—0, dod; #0, 6)

where a, f = 0. In this case L has a countable set of eigenvalues {1,},>1. Moreover, ifx,, = 1 is
a multiplicity of the zero 1, of A(A), then the functions

ol u(x,\)

, j=0,x,—-1
oAl a=a, / "

Ujn(x) =

are root functions of L. Denote , := uj,(7), n =1, j =0,x, — 1. The data
§:= 1A @jn} s, jopa,=7 ATE called the spectral data of L.

The inverse problem is formulated as follows: Let g and M be known a priori and fixed.
Given the spectral data S, construct R and V.

The goal of the present paper is to prove the uniqueness theorem for the solution of this
inverse problem. For this purpose together with L we consider a problem L := L(q, M, R, V).
We agree that if a certain symbol a denotes an object related to L, then g will denote a similar
object related to L. Now we formulate the main result of the paper.

Theorem 1. IfS =S, then R = R and V = V. Thus, the specification of the spectral data S

uniquely determines the functions R and V.

In Section 2 we establish some auxiliary propositions, and in Section 3 we provide the
proof of Theorem 1.
2. Auxiliary propositions

Denote X
l1y(x):=—y"(x) + q(x)y(x) +f0 M(x- 10y dt.
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Let S(x, 1) be the solution of the Cauchy problem
01S(x,A) =AS(x,A), S(0,1)=0,S'(0,A)=1. (6)

By the same arguments as in [7] and [9] one gets that the following representation holds

. i .
S(x,A) = smpp agn f K(x, 1) s“;)p dr, A=p? )
0

where K(x, t) is a twice continuously differentiable function which does not depend on A, and
K(x,0)=0.

Lemma 1. The following relations are valid

K (x, 1) = Ky (x, ) + g(X) K (x, 1) + M(x— 1) +f Mx-§K(E, 1)dE =0, (8)
I3
dK(x,x)
qx)=2——F. 9)
dx

Proof. Differentiating (7) twice with respect to x, we get

. ; inof
S'(x,A) = cos px + K(x, x) sn;px +f0 K. (x, 1) sn;p dt,

sinpx sinpt

1 X
§"(x,A) = —psinpx + i(K(x,x) )+Kx(x, t)|t:xw +f Kex(x, 1) dt.
dx Y 0

Substituting into (6) we calculate

. a sinpx sinpx * sinpt
psmpx——(K(x,x) i )—Kx(x,t)n:x p —f Kxx(x,t)—p dat
dx p P 0 p

X 3 t— X ] t
+q(x)f K(x,t)%dl#f M(x—n22P
0 0

sinpx dt

+4q(x)
X t 1 X

+f M(x—t)(f K(t,f)%d{)dt:psinpx+pf K(x,t)sinptdt.
0 0 0

Integrating twice by parts the last integral we obtain

f(_Kxx(x’”“i(xmw)+M(x—t)+f M(x—f)K(f,t)df)—smptdt
0 t

. AK (x, %) si .
sinpx ;; X) sinpx — K(x,x) cos px + 4(x) sinpx

=Ky (X, 0)|t=x

. . o
= —K(x,x)cospx+ K(x,0) + K; (x, t)”:xsmpx _f K, (x, ) smpt .
p 0 o

Since
dK(x,x)

Kx(x; t)lt:x+Kt(x; t)lt:x: dx ’

K(x,0)=0,
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it follows that B
f A(x, t)sinptdt+ B(x)sinpx =0, (10)
0

where

Ax, 1) = Ky (X, 8) = Kex (%, ) + g(X) K (x, 1) + M (x — t)+f M(x—-8§K(, 1) dg,
t

Blx) = (x)_ZdK(x,x)
=4 dx

Fix x and take p = p,, := 27n+7/2)x ' in (10). Then

X

lim A(x,t) sin(pntx_l) dr=0,

n—o0 0

X
and consequently, (10) yields B(x) = 0. Therefore, f A(x,t)sinptdt =0 for all p, and hence
0

A(x, 1) =0for0 <t < x. Lemma 1 is proved. O

Lemma 2. Let f € C?[0,7], and let
h(x) ::f(x)+f K(x, 0 f(1) dt. (11
0

Then .
(ih(x)=—f"(x) _fo K, ) f" (0 dt+ f0)K(x, )|¢=0, X € [0,7]. (12)

Proof. Differentiating (11) twice we get
h'(x) = f'(x) + K(x, x) f (x) + fo ’ Ke(x,0)f(0)dt,
R'(x) = f"(0 + %(K(x,x)f(x)) + K (%, 1) r=x f (%) +f0xKxx(x, nfadt,
and consequently,
O1h(x) = —f"(x) - %(K(x, X)f(x)) — Ky (x, O)jp=xf (%) —fOxKxx(x, nfdt
+q(x)f(x)+f0x q(x)K(x, t)f(t)dt+f0xM(x— nfde
+f0xM(x— t)(fOtK(t,g‘)f(g‘) d¢)d.
Taking (9) into account we infer
l1h(x) = —f”(x)+f0xf(t)(—Kxx(x, 1)+ qxX)K(x, t)+M(x—t)+ftxM(x—€)K(£, t)df)dl‘

dK(x, x) , dK(x,x)
P fx)=Kx,x)f (x)+2 I

— K (%, ) =x f () — fx).
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Together with (8) this yields

dK(x,x)
X

l(1h(x)=—f"(x) —fo FOK(x, 0)dt— Ky (x, 1) = f (X) + f(x)—K(x,x) f' ().

Integrating the integral by parts twice we calculate
X
Oy h(x) =—f"(x) —f Kx, ) f"(0)dt+ fO)K¢(x, 0)1=0,
0

i.e. (12) is valid. Lemma 2 is proved. O

3. The proof of Theorem 1

For each fixed t, let g(x, £, 1), x = ¢ be the solution of the Cauchy problem

¢ ) + g0g(x, A~ Ag(x, )+ f Mx-0gE 6, )dé=0,  (3)
t
g(t» tyA) :0» gx(x) t»/’L)DC:t:l (14)

with respect to x. It is easy to check that
X
u(x,A) = f gx, t, VR(1) dt, (15)
0

where u(x,1) was defined by (3). Fix ¢ in (13)-(14) and make the substitution x = z + ¢,
g1(z,A) ;= g(z+t,t,1). Then (13)-(14) take the form

-8l (2, ) +qz+1)g1(z, M) — Ag1(z, ) +f0 M(z—-1)g (1,A)dt =0, (16)
g(0,1)=0, g (0,1)=1. 17

Similar to (7) one gets the representation

. . .
g1(z,1) = Smp= +f Pi(z,7,1) et dr,
p 0 p

where P;(z,7, t) is a smooth function. Therefore,

U .
glx, 1,A) = % + f P(x,7,1) s“;p ar, (18)
0

where P(x,1,t) = P1(z,7, t). Substituting (18) into (15) we get

X 1 _ X—t 1
u(x, A) :f (w +f P10 ar) Ry ar,
0 p 0 P

and consequently,

xX—t

sinpt

P(x, t,7)R(T) dr) dr. 19)

u(x,)t):f (R(x—t)+f
0 0
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Substituting (19) into (4) we calculate

sinps

b4 3 —s
AQA) = 1—[ V(t)dtf (R(t—s)+f P(t,5,1)R(T) dr)
0 0 0

This yields

T o1 T r—s
AQA) = 1—[ Smps(f V(t)(R(t—s)+f P(t,s,7)R(T) dr)dt)ds
0 1Y s 0

or )
sinpt

AL = 1+f B()
0

B(f) :—f V(s)(R(s—t)+f
t 0

Changing the variable s = 7 — ¢ in (21) we infer

dt, (20)

where
Ss—t

P(s, t,7)R(T) dr) ds @1)

T—¢—

n—1 t
B(t):—f V(n—f)(R(n—g‘—t)+f P(r-¢, t,T)R(T)dT)dg‘.
0 0

Taking x = m — ¢, we rewrite the last relation in the following form

X x—¢&
Br—x) = —f V(n—f)(R(x—€)+f P —&,7—x,T)R(T) dr)df. 22)
0 0
It follows from (5) and (22) that B(¢) € C[0, ], and
Bt —x) =dx*P*1(1+0(1)), x—0, (23)

where d = —dyd,; # 0. Using (20) and (23) by the well-known method (see, for example, [10])
one gets that the function A(A) is entire in A of order 1/2, and

AN =1+0(p7Y, A=p?>0, A — +oo, (24)
IA)| = Cslpl Y exp([Imp|n), p € G, (25)

wherey=a+B+3,Gs=1{p: lp—pnl =6 Yn=1}, A = p?, A, = p2, § > 0. According to (24)
and Hadamard’s factorization theorem, the function A(A) is uniquely determined by its zeros.
Under the assumptions of the theorem this yields

A =AN). (26)

We consider the function
u(m,A) —i(m,A)

A(A)
Using (19), (25) and the assumptions of the theorem we conclude that the function F(A) is

F(A) :=

entire in A, and F(1) = O(AP) as |A] — oo, with p = 0. By Liouville’s theorem one gets that F(A)
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is a polynomial. On the other hand, taking (19) and (24) into account we infer that F(1) tends
to zero as A >0, A — +oo. Therefore F(1) =0, i.e.

u(r,A) = a(m, A). (27
Furthermore, it follows from (19) and (27) that
b1 B Tt -
f (ROT -1 - Rer-1) +f P(, 1,7)(R() - R(v)) dr ) sinptd1 =0,
0 0
and consequently,
n—t

Rr—t)—R(m—1) +f P(m, t,7)(R(T)—R(1))dT =0,
0

or
R(x)—ﬁ(x)+f P@r,m—-x,7)(R(1) - R(1))dT =0.
0

Since this homogeneous integral equation has only the trivial solution it follows that
R(x)=Rx), xel0,n]. (28)
Let the functions 1 (x, 1) and Ry(x) be the solutions of the integral equations
x x
u(x, A) = up(x, D) + fo K(x, Hug(t,A)dt, R(x) = Ry(x) + fo K(x, )Ro(t) dt. (29)
In view of (3) and (29),
up(0,A) = uh(0,1) = 0,41 u(x, 1) = Au(x, ) — R(x).
Moreover, applying Lemma 2 one gets
Oru(x, ) = —ug(x,ﬂt)—foxK(x, Dugy(t,A) dr. (30)
It follows from (29) and () that
lru(x,A) = Aug(x, 1) + )Lfox K(x, Hug(t,V)dt— Ro(x) — fox K(x,t)Ro(t) dt.
Comparing this relation with (30) we obtain
uy (x,A) + Aug(x, 1) — Ro(x) + fox K(x, 1) (ug (£, 1) + Aug(t, A1) — Ry (1) dt =0,

and consequently,
ug (x, A) + Aug(x, 1) = Ry(x). (31)
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The solution of the Cauchy problem (31), () has the form

o (x, A) = f SIpL=0 p Har. (32)
0 p
Denote n
Volx) = V(x) + f K(,x)V(D)dr. (33)

It follows from (4), (29) and (33) that
A =1 —f Vo(Bug(t,A)dt. (34)
0

Taking (28), (29) and (32) into account we obtain uy(x,A) = #y(x, 1). Together with (26) and
(34) this yields

fo (Vo (1) = Vo) ug(t,A) dt = 0.

Using (32) again we calculate

f (f (Vo(t)—Vo(t))Ro(t—s)dt)sinpsdszO,
0 s

and consequently,
T
f (Vo(1) = Vo(£))Ro(r—$)dt =0, s€ [0, 7],
N

or
L (Vo — &) — Vo (r — E) Ro(x — &) dE =0, x € [0, 7).

Applying Titchmarsh’s theorem we infer Vj (1 — &) = Vor - &), E€[0,7] or
Vo(x) = Vp(x), x € [0,7].

By virtue of (33) this yields
V(x) = V(x), x€[0,7],

and Theorem 1 is proved. O
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