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AN INVERSE SPECTRAL PROBLEM FOR DIFFERENTIAL

OPERATORS WITH INTEGRAL DELAY

YU. KURYSHOVA

Abstract. The uniqueness theorem is proved for the solution of the inverse spectral prob-

lem for second-order integro-differential operators on a finite interval. These operators

are perturbations of the Sturm-Liouville operator with convolution and one-dimensional

operators. The main tool is an integral transform connected with solutions of integro-

differential operators.

1. Introduction

Consider the problem L = L(q, M ,R ,V ) of the form

ℓy(x) := −y ′′(x)+q(x)y(x)+

∫x

0
M (x − t )y(t )d t +R(x)

∫π

0
V (t )y(t )d t =λy(x), 0 ≤ x ≤π, (1)

y(0) = y ′(0) = 0, (2)

where λ is the spectral parameter, and q, M ,R ,V are continuous functions. The operator ℓ is

a perturbation of the Sturm-Liouville operator with convolution and one-dimensional oper-

ators. We study the inverse spectral problem for L. Inverse problems of spectral analysis con-

sist in recovering operators from their spectral characteristics. Such problems often appear

in many branches of natural sciences and engineering. For the Sturm-Liouville differential

operator, inverse spectral problems have been studied fairly completely (see the monographs

[1]-[5] and the references therein). Inverse problems for integro-differential and integral op-

erators are much more difficult for investigating, and nowadays there are only several isolated

results related to these “non-local" inverse problems (see [6]-[9] and the references therein).

The integro-differential operator ℓ, considered in the present paper, is the one-dimensional

perturbation of the Volterra integro-differential operator. We study the inverse problem of

recovering the perturbation provided that the Volterra part is known a priori. In order to for-

mulate the inverse problem for (1)-(2) we first introduce the spectral data for L.
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Let u(x,λ) be the solution of the Cauchy problem

−u′′(x,λ)+q(x)u(x,λ)+

∫x

0
M (x − t )u(t ,λ)d t +R(x)=λu(x,λ), u(0,λ) = u′(0,λ) = 0. (3)

Denote

∆(λ) := 1−

∫π

0
V (t )u(t ,λ)d t . (4)

The function ∆(λ) is entire in λ, and its zeros {λn } coincide with the eigenvalues of L. The

function ∆(λ) is called the characteristic function of L.

We note that if V (x) ≡ 0 or/and R(x)≡ 0, then ∆(λ) ≡ 1 (if R(x) ≡ 0, then u(x,λ)≡ 0, since

the Cauchy problem is equivalent to the homogeneous integral Volterra equation of second

kind), and L has no eigenvalues. In order to avoid this trivial case we will assume in the sequel

that

R(x)∼ d0xα, V (π−x) ∼ d1xβ, x → 0, d0d1 6= 0, (5)

where α,β≥ 0. In this case L has a countable set of eigenvalues {λn }n≥1. Moreover, if κn ≥ 1 is

a multiplicity of the zero λn of ∆(λ), then the functions

u j n(x) :=
∂ j u(x,λ)

∂λ j
|λ=λn

, j = 0,κn −1

are root functions of L. Denote α j n := u j n(π), n ≥ 1, j = 0,κn −1. The data

S := {λn ,α j n}n≥1, j=0,κn−1 are called the spectral data of L.

The inverse problem is formulated as follows: Let q and M be known a priori and fixed.

Given the spectral data S, construct R and V.

The goal of the present paper is to prove the uniqueness theorem for the solution of this

inverse problem. For this purpose together with L we consider a problem L̃ := L(q, M , R̃,Ṽ ).

We agree that if a certain symbol a denotes an object related to L, then ã will denote a similar

object related to L̃. Now we formulate the main result of the paper.

Theorem 1. If S = S̃, then R = R̃ and V = Ṽ . Thus, the specification of the spectral data S

uniquely determines the functions R and V.

In Section 2 we establish some auxiliary propositions, and in Section 3 we provide the

proof of Theorem 1.

2. Auxiliary propositions

Denote

ℓ1 y(x) :=−y ′′(x)+q(x)y(x)+

∫x

0
M (x − t )y(t )d t .
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Let S(x,λ) be the solution of the Cauchy problem

ℓ1S(x,λ)=λS(x,λ), S(0,λ) = 0, S ′(0,λ) = 1. (6)

By the same arguments as in [7] and [9] one gets that the following representation holds

S(x,λ)=
sinρx

ρ
+

∫x

0
K (x, t )

sinρt

ρ
d t , λ=ρ2, (7)

where K (x, t ) is a twice continuously differentiable function which does not depend on λ, and

K (x,0) = 0.

Lemma 1. The following relations are valid

Kt t (x, t )−Kxx (x, t )+q(x)K (x, t )+M (x − t )+

∫x

t
M (x −ξ)K (ξ, t )dξ = 0, (8)

q(x)= 2
dK (x, x)

d x
. (9)

Proof. Differentiating (7) twice with respect to x, we get

S ′(x,λ) = cosρx +K (x, x)
sinρx

ρ
+

∫x

0
Kx (x, t )

sinρt

ρ
d t ,

S ′′(x,λ) = −ρ sinρx +
d

d x

(

K (x, x)
sinρx

ρ

)

+Kx (x, t )|t=x
sinρx

ρ
+

∫x

0
Kxx (x, t )

sinρt

ρ
d t .

Substituting into (6) we calculate

ρ sinρx −
d

d x

(

K (x, x)
sinρx

ρ

)

−Kx (x, t )|t=x
sinρx

ρ
−

∫x

0
Kxx (x, t )

sinρt

ρ
d t

+q(x)
sinρx

ρ
+q(x)

∫x

0
K (x, t )

sinρt

ρ
d t +

∫x

0
M (x − t )

sinρt

ρ
d t

+

∫x

0
M (x − t )

(

∫t

0
K (t ,ξ)

sinρξ

ρ
dξ

)

d t = ρ sinρx +ρ

∫x

0
K (x, t )sinρt d t .

Integrating twice by parts the last integral we obtain

∫x

0

(

−Kxx (x, t )+q(x)K (x, t )+M (x − t )+

∫x

t
M (x −ξ)K (ξ, t )dξ

)sinρt

ρ
d t

−Kx (x, t )|t=x
sinρx

ρ
−

dK (x, x)

d x

sinρx

ρ
−K (x, x)cosρx +q(x)

sinρx

ρ

= −K (x, x)cosρx +K (x,0)+Kt (x, t )|t=x
sinρx

ρ
−

∫x

0
Kt t (x, t )

sinρt

ρ
d t .

Since

Kx (x, t )|t=x +Kt (x, t )|t=x =
dK (x, x)

d x
, K (x,0) = 0,
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it follows that
∫x

0
A(x, t )sinρt d t +B (x)sinρx = 0, (10)

where

A(x, t ) = Kt t (x, t )−Kxx (x, t )+q(x)K (x, t )+M (x − t )+

∫x

t
M (x −ξ)K (ξ, t )dξ,

B (x) = q(x)−2
dK (x, x)

d x
.

Fix x and take ρ =ρn := (2πn +π/2)x−1 in (10). Then

lim
n→∞

∫x

0
A(x, t )sin(ρn t x−1)d t = 0,

and consequently, (10) yields B (x) ≡ 0. Therefore,

∫x

0
A(x, t )sinρt d t = 0 for all ρ, and hence

A(x, t ) = 0 for 0 ≤ t ≤ x. Lemma 1 is proved. ���

Lemma 2. Let f ∈C 2[0,π], and let

h(x) := f (x)+

∫x

0
K (x, t ) f (t )d t . (11)

Then

ℓ1h(x)=− f ′′(x)−

∫x

0
K (x, t ) f ′′(t )d t + f (0)Kt (x, t )|t=0, x ∈ [0,π]. (12)

Proof. Differentiating (11) twice we get

h′(x) = f ′(x)+K (x, x) f (x)+

∫x

0
Kx (x, t ) f (t )d t ,

h′′(x) = f ′′(x)+
d

d x

(

K (x, x) f (x)
)

+Kx (x, t )|t=x f (x)+

∫x

0
Kxx (x, t ) f (t )d t ,

and consequently,

ℓ1h(x) = − f ′′(x)−
d

d x

(

K (x, x) f (x)
)

−Kx (x, t )|t=x f (x)−

∫x

0
Kxx (x, t ) f (t )d t

+q(x) f (x)+

∫x

0
q(x)K (x, t ) f (t )d t +

∫x

0
M (x − t ) f (t )d t

+

∫x

0
M (x − t )

(

∫t

0
K (t ,ξ) f (ξ)dξ

)

d t .

Taking (9) into account we infer

ℓ1h(x) = − f ′′(x)+

∫x

0
f (t )

(

−Kxx (x, t )+q(x)K (x, t )+M (x − t )+

∫x

t
M (x −ξ)K (ξ, t )dξ

)

d t

−Kx (x, t )|t=x f (x)−
dK (x, x)

d x
f (x)−K (x, x) f ′(x)+2

dK (x, x)

d x
f (x).
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Together with (8) this yields

ℓ1h(x) =− f ′′(x)−

∫x

0
f (t )Kt t (x, t )d t −Kx (x, t )|t=x f (x)+

dK (x, x)

d x
f (x)−K (x, x) f ′(x).

Integrating the integral by parts twice we calculate

ℓ1h(x) =− f ′′(x)−

∫x

0
K (x, t ) f ′′(t )d t + f (0)Kt (x, t )|t=0 ,

i.e. (12) is valid. Lemma 2 is proved. ���

3. The proof of Theorem 1

For each fixed t , let g (x, t ,λ), x ≥ t be the solution of the Cauchy problem

−g ′′(x, t ,λ)+q(x)g (x, t ,λ)−λg (x, t ,λ)+

∫x

t
M (x −ξ)g (ξ, t ,λ)dξ= 0, (13)

g (t , t ,λ) = 0, gx (x, t ,λ)|x=t = 1 (14)

with respect to x. It is easy to check that

u(x,λ) =

∫x

0
g (x, t ,λ)R(t )d t , (15)

where u(x,λ) was defined by (3). Fix t in (13)-(14) and make the substitution x = z + t ,

g1(z,λ) := g (z + t , t ,λ). Then (13)-(14) take the form

−g ′′
1 (z,λ)+q(z + t )g1(z,λ)−λg1(z,λ)+

∫z

0
M (z −τ)g1(τ,λ)dτ= 0, (16)

g1(0,λ) = 0, g ′
1(0,λ) = 1. (17)

Similar to (7) one gets the representation

g1(z,λ) =
sinρz

ρ
+

∫z

0
P1(z,τ, t )

sinρτ

ρ
dτ,

where P1(z,τ, t ) is a smooth function. Therefore,

g (x, t ,λ)=
sinρ(x − t )

ρ
+

∫x−t

0
P(x,τ, t )

sinρτ

ρ
dτ, (18)

where P(x,τ, t ) = P1(z,τ, t ). Substituting (18) into (15) we get

u(x,λ)=

∫x

0

(sinρ(x − t )

ρ
+

∫x−t

0
P(x,τ, t )

sinρτ

ρ
dτ

)

R(t )d t ,

and consequently,

u(x,λ) =

∫x

0

(

R(x − t )+

∫x−t

0
P(x, t ,τ)R(τ)dτ

)sinρt

ρ
d t . (19)



300 YU. KURYSHOVA

Substituting (19) into (4) we calculate

∆(λ) = 1−

∫π

0
V (t )d t

∫t

0

(

R(t − s)+

∫t−s

0
P(t , s,τ)R(τ)dτ

)sinρs

ρ
d s.

This yields

∆(λ) = 1−

∫π

0

sinρs

ρ

(

∫π

s
V (t )

(

R(t − s)+

∫t−s

0
P(t , s,τ)R(τ)dτ

)

d t
)

d s

or

∆(λ) = 1+

∫π

0
B (t )

sinρt

ρ
d t , (20)

where

B (t )=−

∫π

t
V (s)

(

R(s − t )+

∫s−t

0
P(s, t ,τ)R(τ)dτ

)

d s (21)

Changing the variable s =π−ξ in (21) we infer

B (t )=−

∫π−t

0
V (π−ξ)

(

R(π−ξ− t )+

∫π−ξ−t

0
P(π−ξ, t ,τ)R(τ)dτ

)

dξ.

Taking x =π− t , we rewrite the last relation in the following form

B (π−x)=−

∫x

0
V (π−ξ)

(

R(x −ξ)+

∫x−ξ

0
P(π−ξ,π−x,τ)R(τ)dτ

)

dξ. (22)

It follows from (5) and (22) that B (t )∈C [0,π], and

B (π−x) = d xα+β+1(1+o(1)), x → 0, (23)

where d = −d0d1 6= 0. Using (20) and (23) by the well-known method (see, for example, [10])

one gets that the function ∆(λ) is entire in λ of order 1/2, and

∆(λ) = 1+O(ρ−1), λ= ρ2
> 0, λ→+∞, (24)

|∆(λ)| ≥ Cδ|ρ|
−γexp(|Imρ|π), ρ ∈Gδ, (25)

where γ = α+β+3, Gδ = {ρ : |ρ−ρn| ≥ δ ∀n ≥ 1}, λ = ρ2, λn = ρ2
n , δ > 0. According to (24)

and Hadamard’s factorization theorem, the function ∆(λ) is uniquely determined by its zeros.

Under the assumptions of the theorem this yields

∆(λ) ≡ ∆̃(λ). (26)

We consider the function

F (λ) :=
u(π,λ)− ũ(π,λ)

∆(λ)
.

Using (19), (25) and the assumptions of the theorem we conclude that the function F (λ) is

entire in λ, and F (λ) =O(λp ) as |λ|→∞, with p ≥ 0. By Liouville’s theorem one gets that F (λ)
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is a polynomial. On the other hand, taking (19) and (24) into account we infer that F (λ) tends

to zero as λ> 0, λ→+∞. Therefore F (λ) ≡ 0, i.e.

u(π,λ)≡ ũ(π,λ). (27)

Furthermore, it follows from (19) and (27) that

∫π

0

(

R(π− t )− R̃(π− t )+

∫π−t

0
P(π, t ,τ)(R(τ)− R̃(τ))dτ

)

sinρt d t ≡ 0,

and consequently,

R(π− t )− R̃(π− t )+

∫π−t

0
P(π, t ,τ)(R(τ)− R̃(τ))dτ≡ 0,

or

R(x)− R̃(x)+

∫x

0
P(π,π−x,τ)(R(τ)− R̃(τ))dτ≡ 0.

Since this homogeneous integral equation has only the trivial solution it follows that

R(x)= R̃(x), x ∈ [0,π]. (28)

Let the functions u0(x,λ) and R0(x) be the solutions of the integral equations

u(x,λ)= u0(x,λ)+

∫x

0
K (x, t )u0(t ,λ)d t , R(x)= R0(x)+

∫x

0
K (x, t )R0(t )d t . (29)

In view of (3) and (29),

u0(0,λ) = u′
0(0,λ) = 0,ℓ1u(x,λ)=λu(x,λ)−R(x).

Moreover, applying Lemma 2 one gets

ℓ1u(x,λ) =−u′′
0 (x,λ)−

∫x

0
K (x, t )u′′

0 (t ,λ)d t . (30)

It follows from (29) and () that

ℓ1u(x,λ) =λu0(x,λ)+λ

∫x

0
K (x, t )u0(t ,λ)d t −R0(x)−

∫x

0
K (x, t )R0(t )d t .

Comparing this relation with (30) we obtain

u′′
0 (x,λ)+λu0(x,λ)−R0(x)+

∫x

0
K (x, t )(u′′

0 (t ,λ)+λu0(t ,λ)−R0(t ))d t = 0,

and consequently,

u′′
0 (x,λ)+λu0(x,λ) = R0(x). (31)
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The solution of the Cauchy problem (31), () has the form

u0(x,λ) =

∫x

0

sinρ(x − t )

ρ
R0(t )d t . (32)

Denote

V0(x) =V (x)+

∫π

x
K (t , x)V (t )d t . (33)

It follows from (4), (29) and (33) that

∆(λ) = 1−

∫π

0
V0(t )u0(t ,λ)d t . (34)

Taking (28), (29) and (32) into account we obtain u0(x,λ) ≡ ũ0(x,λ). Together with (26) and

(34) this yields
∫π

0
(V0(t )− Ṽ0(t ))u0(t ,λ)d t ≡ 0.

Using (32) again we calculate

∫π

0

(

∫π

s
(V0(t )− Ṽ0(t ))R0(t − s)d t

)

sinρs d s ≡ 0,

and consequently,
∫π

s
(V0(t )− Ṽ0(t ))R0(t − s)d t ≡ 0, s ∈ [0,π],

or
∫x

0
(V0(π−ξ)− Ṽ0(π−ξ))R0(x −ξ)dξ≡ 0, x ∈ [0,π].

Applying Titchmarsh’s theorem we infer V0(π−ξ) ≡ Ṽ0(π−ξ), ξ ∈ [0,π] or

V0(x) ≡ Ṽ0(x), x ∈ [0,π].

By virtue of (33) this yields

V (x) ≡ Ṽ (x), x ∈ [0,π],

and Theorem 1 is proved. ���
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