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NORMALITY CRITERIA CONCERNING SHARING

HOLOMORPHIC FUNCTIONS

FENG LÜ

Abstract. In this paper, we study the problem of normal families of meromorphic func-
tions that share holomorphic functions with their linear differential polynomials. Mean-
while, some results about normal family are derived which improve and generalize sev-
eral related theorems obtained by Chang, Fang and Zalcman [2], Pang [5] and Schwick
[9].

1. Introduction and main results

In order to state our main results, we need the following definitions and notations.

Let f , g and a, b be holomorphic functions on a domain D in C. We denote the condition

that f (z)−a(z) = 0 implies g (z)−b(z)= 0 by f (z) = a(z)⇒ g (z) = b(z). If f (z) = a(z)⇒ g (z) =

b(z) and g (z) = b(z) ⇒ f (z) = a(z), we write f (z) = a(z) ⇔ g (z) = b(z). Moreover, we say

that f and g share a provide that f (z) = a(z) ⇔ g (z) = a(z). In what follows, we assume that

the reader is familiar with the basic notation and results in the Nevanlinna value distribution

theory (see, [11, 12]).

One important subject in the theory of normal family is to find the normal families. Ac-

cording to Bloch’s principle, a lot of normality criteria have been obtained by starting from

Picard type theorems [8].

In 1992, Schwick [9] drawn a connection between values shared by functions in F and

the normality of the family F . In fact, he proved the following results.

Theorem A. Let F be a family of meormophic functions in a domain D, and let a1, a2, a3 be

three distinct complex numbers. If for each f ∈ F , f and f ′ share a j ( j = 1,2,3), then F is

normal in D.

From then on, many normality criteria have been obtained in this direction (see, [1, 3, 4,

6, 7, 10]). In 2000, Pang and Zalcman [5] obtained the following result.
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Theorem B. Let F be a family of meormophic functions in a domain D, and let a, b, c and

d be complex numbers such that c 6= a and d 6= b. If for each f ∈ F , f = a ⇔ f ′ = b and

f = c ⇔ f ′ = d, then F is normal in D.

In 2005, Chang, Fang and Zalcman [2] replaced the condition f = c ⇔ f ′ = d by f = c ⇒

f ′ = d and improved Theorem B as follows.

Theorem C. Let F be a family of meormorphic functions in a domain D, and let a, b, c and

d be complex numbers such that b 6= 0, c 6= a and d 6= b. If for each f ∈F , f = a ⇔ f ′ = b and

f = c ⇒ f ′ = d, then F is normal in D.

Remark 1. As a matter of fact, if the condition d 6= b is omitted, Theorem B and C still hold.

From Theorem C, some questions are proposed as follows.

Question 1. Can the values a, b, c and d be weakened to holomorphic functions ?

Question 2. Can f ′ be extended to a linear differential polynomial in f ?

In the following, we use the notation

L[ f ] = a0 f ′
+a1 f (1.1)

for a linear differential polynomial in f , where a0, a1 are two holomorphic functions with

a0(z) 6= 0.

In the paper, by considering the above questions, we obtain a result as follows, which is

an improvement of the precious theorems.

Theorem 1.1. Let F be a family of meormorphic functions in a domain D, let L[ f ] be defined

as (1.1), and let a, b, c , d be four holomorphic functions in D. For each f ∈F , if

(1) a(z) 6= c(z);

(2) b(z)−a1(z)a(z)−a0(z)c ′(z) 6= 0;

(3) b(z)−a1(z)c(z)−a0(z)c ′(z) 6= 0;

(4) f (z) = a(z) ⇔ L[ f ](z)= b(z) and f (z) = c(z) ⇒ L[ f ](z)= d (z), then F is normal in D.

Suppose that a0 = 1 and a1 = 0 in (1.1), we find that the condition (2) coincides with (3)

in Theorem 1.1, and both of them reduce to b(z) 6= c ′(z). So, the following corollary is an

immediately consequence of Theorem 1.1.

Corollary 1.2. Let F be a family of meormorphic functions in a domain D, let a, b, c , d be

four holomorphic functions in D. For each f ∈F , if



NORMALITY CRITERIA CONCERNING SHARING HOLOMORPHIC FUNCTIONS 245

(1) a(z) 6= c(z);

(2) b(z) 6= c ′(z);

(3) f (z) = a(z)⇔ f ′(z) = b(z) and f (z) = c(z) ⇒ f ′(z) = d (z), then F is normal in D.

Remark 2. If the functions a, b, c , d reduces to constants, then Corollary 1.2 becomes Theo-

rem C. In [2, Theorem 2], the authors given an example to show the necessary of the condition

b 6= 0, which also shows the necessary of the assumption (3) in Theorem 1.1 and (2) in Corol-

lary 1.2. Now, we state the example here.

Example. Let

fn(z) =
(nz)2

(nz)2 −1
, n = 1,2, · · ·

and let F = { fn}∞n=1, D = {z : |z| < 1}. Then

f ′
n(z) =

−2n2z

[(nz)2 −1]2
.

Clearly, if f ∈F , f and f ′ vanish only at 0, also f 6= 1. Thus, we have f (z) = 0 ⇔ f ′(z) = 0 and

f (z)= 1 ⇒ f ′(z) = d for any d . However, F is not normal in D.

Remark 3. For families of holomorphic functions, Theorem 1.1 still valid if the condition (2)

is deleted. The proofs of our results have roots in [2].

2. The lemma

To prove our result, we need the following lemma, which is essential to our proofs.

Lemma 2.1 ([7]). Let F be a family of functions meromorphic in the unit disc ∆, all of whose

zeros have multiplicity at least k, and suppose that there exists A ≥ 1 such that | f (k)(z)| ≤ A

whenever f (z) = 0. If F is not normal at z0 in the unit disc, then there exist, for each 0 ≤α≤ k

(a) points zn ∈∆, zn → z0;

(b) functions fn ∈F and

(c) positive number ρn → 0 such that ρ−α
n fn(zn +ρnξ)= gn(ξ) → g (ξ) locally uniformly, where

g is a non-constant meromorphic function inC, all of whose zeros have multiplicity at least

k, such that g ♯(ξ) ≤ g ♯(0) = k A+1. In particular, g has order at most two.

3. Proof of the Theorem 1.1

Since normality is a local property, we assume that D = ∆, the unit disc. Set G = {F :

F = f − c , f ∈ F }. In view of the form of L[ f ] and the assumption, we can easily deduce

F (z)= 0 ⇒ F ′(z) =φ(z), where

φ=
d −a1c −a0c ′

a0
.
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Suppose that F is not normal at z0 ∈ ∆. We have A = maxz∈D1 {|φ(z)|}, where r > 0 is

a constant and D1 = {z : |z − z0| ≤ r } ⊂ ∆. Then, in domain D2 = {z : |z − z0| <
r
2 }, we have

F (z) = 0 ⇒|F ′(z)| = |φ(z)| ≤ M , where

M = max{A, 1} ≥ 1.

Obviously, G is not normal at z0 as well. Then, by Lemma 1, we can find a sequence

of functions Fn ∈ G , a sequence of complex numbers zn → z0 and a sequence of positive

numbers ρn → 0, such that

gn(ξ) =ρ−1
n Fn(zn +ρnξ) = ρ−1

n [ fn(zn +ρnξ)−c(zn +ρnξ)] → g (ξ) (3.1)

converges locally uniformly in C, where g is a non-constant meromorphic function, which

satisfies g ♯(ξ) ≤ g ♯(0) = M +1.

In the following, we claim that

(I) g (ξ) = 0⇒ g ′(ξ) =φ(z0),

(II) g ′(ξ) 6=B ,

(III) g (ξ) 6=∞,

where B =
b(z0)−a0(z0)c ′(z0)−a1(z0)c(z0)

a0(z0) 6= 0 is a constant.

We prove the claim as follows.

By (3.1), we have

g ′
n(ξ) = f ′

n(zn +ρnξ)−c ′(zn +ρnξ) → g ′(ξ). (3.2)

Furthermore

L[ fn](zn +ρnξ)

a0(zn +ρnξ)
= f ′

n(zn +ρnξ)+
a1(zn +ρnξ)

a0(zn +ρnξ)
fn(zn +ρnξ)

= f ′
n(zn +ρnξ)+

a1(zn +ρnξ)

a0(zn +ρnξ)
[ρngn(ξ)+c(zn +ρnξ)]

→g ′(ξ)+c ′(z0)+
a1(z0)

a0(z0)
c(z0).

(3.3)

Suppose that g (η0) = 0. Note that g 6= 0, by Hurwitz’s theorem and (3.1), there exists a

sequence ηn → η0 such that (for n large enough)

fn(zn +ρnηn) = c(zn +ρnηn).
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Since f (z) = c(z) ⇒ L[ f ](z) = d (z), we have L[ fn](zn +ρnηn) = d (zn +ρnηn). Then, it follows

from (3.3) that

g ′(η0) = lim
n→∞

L[ fn](zn +ρnηn)

a0(zn +ρnηn)
−c ′(z0)−

a1(z0)

a0(z0)
c(z0)

= lim
n→∞

d (zn +ρnηn)

a0(zn +ρnηn)
−c ′(z0)−

a1(z0)

a0(z0)
c(z0)

=
d (z0)−a0(z0)c ′(z0)−a1(z0)c(z0)

a0(z0)
=φ(z0),

which implies (I).

With (3.3), we deduce

L[ fn](zn +ρnξ)−b(zn +ρnξ)

a0(zn +ρnξ)
→ g ′(ξ)+c ′(z0)+

a1(z0)

a0(z0)
c(z0)−

b(z0)

a0(z0)

=g ′(ξ)−
b(z0)−a0(z0)c ′(z0)−a1(z0)c(z0)

a0(z0)
= g ′(ξ)−B.

(3.4)

Suppose that g ′(θ0) = B , obviously g ′ 6= B . Otherwise g ′ = B and g (ξ) = Bξ+C , where C is a

constant. From (I), we deduce B =φ(z0). Then, a simple calculation shows that

M +1 = g ♯(0) ≤ |φ(z0)| < M +1,

which is a contradiction.

Then, by Hurwitz’s theorem and (3.4), there exists a sequence θn → θ0, such that (for n

sufficiently large)

L[ fn](zn +ρnθn)−b(zn +ρnθn) = 0

From the assumption, we have fn(zn +ρnθn) = a(zn +ρnθn). Then, by (3.1) and a(z) 6= c(z),

we derive that
g (θ0) = lim

n→∞
ρ−1

n [ fn(zn +ρnρn)−c(zn +ρnρn)]

= lim
n→∞

ρ−1
n [a(zn +ρnηn)−c(zn +ρnηn)] =∞,

a contradiction. Thus, we prove (II).

Now, we prove (III). Suppose that g (ξ0) =∞. Since g 6= ∞, there exists a closed disc K =

{ξ : |ξ−ξ0| ≤ δ} on which 1/g and 1/gn are holomorphic (for n large enough) and 1/gn → 1/g

uniformly. From a(z) 6= c(z), we deduce

1

gn(ξ)
−

ρn

a(zn +ρnξ)−c(zn +ρnξ)
→

1

g (ξ)
(3.5)

uniformly on K . Assume that the multiplicity of the zero of 1/g at ξ0 be m. Then, ( 1
g

)(m)(ξ0) 6=

0. Noting that 1/g is not a constant, then, by Hurwitz’s theorem and (3.5), there exist ξn, j →
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ξ0 ( j = 1,2 · · · ,m) such that

1

gn(ξn, j )
−

ρn

a(zn +ρnξn, j )−c(zn +ρnξn, j )
= 0. (3.6)

It is not difficult from (3.6) to deduce

fn(zn +ρnξn, j ) = a(zn +ρnξn, j ), ( j = 1,2 · · · ,m). (3.7)

Thus, we have

L[ fn](zn +ρnξn, j ) = b(zn +ρnξn, j ). (3.8)

Observing that the form of L[ f ], we derive

f ′
n(zn +ρnξn, j ) =

b −a1a

a0
|z=zn+ρnξn, j

.

Furthermore,

g ′
n(zn +ρnξn, j ) = f ′

n(zn +ρnξn, j )−c ′(zn +ρnξn, j )

=
b −a1a −a0c ′

a0
|z=zn+ρnξn, j

, ( j = 1,2 · · · ,m).
(3.9)

It follows from b(z)−a1(z)a(z)−a0(z)c ′(z) 6= 0 that, for j = 1,2 · · · ,m,

(
1

gn
)′|ξ=ξn, j

=−
g ′

n(ξn, j )

g 2
n(ξn, j )

=−ρ2
n

b −a1a −a0c ′

(a −c)2
|z=zn+ρnξn, j

6= 0.

That is ξn, j 6= ξn,i (1 ≤ i 6= j ≤m). Set

Hn(ξ) = (
1

gn (ξ)
)′+ρ2

n

b −a1a −a0c ′

(a −c)2
|z=zn+ρnξ

.

For j = 1,2 · · · ,m, we have Hn(ξn, j )= 0 and

Hn(ξ) → (
1

g (ξ)
)′ (3.10)

uniformly on K . Combining (3.10), Hurwitz’s theorem and Hn(ξn, j ) = 0 ( j = 1,2 · · · ,m) yields

that ξ0 is a zero of ( 1
g )′ with multiplicity m, and thus ( 1

g )(m)(ξ0) = 0, which is a contradiction.

Thus, we prove (III).

Hence, we finish the proof of the claim.

It follows from (III) that g is an entire function and therefore of exponential type. By (II),

we have

g ′(ξ) = B +λµeµξ, (3.11)
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where λ(6= 0), µ are two constant. Suppose that µ = 0, then g ′ = B . From g ♯(0) = M +1, it is

easy to deduce a contradiction. Now, we assume that µ 6= 0. Integral (3.11) yields

g (ξ) = Bξ+D +λeµξ, (3.12)

where D is a constant. Let β0 be a zero of g (ξ). It means that

Bβ0 +D +λeµβ0 = 0. (3.13)

By (I), we have g ′(β0) =φ(z0). That is

B +λµeµβ0 =φ(z0). (3.14)

Combining (3.13) and (3.14) yields β0 =
B−φ(z0)−Dµ

µB
, which indicates that g has the unique

zero β0. But it is obvious from (3.12) that g has infinitely many zeros.

Thus, G is normal at z0, and F is normal at z0 as well. Furthermore, F is normal in D.

Hence, we complete the proof of the Theorem 1.1.
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