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EQUIVALENCE OF THE CONVERGENCE OF MANN

ITERATION WITH MODIFIED ERRORS AND

ISHIKAWA ITERATION WITH MODIFIED ERRORS

FOR THE CLASS OF UNIFORMLY CONTINUOUS,

STRONGLY PSEUDOCONTRACTIVE MAPS

G. V. R. BABU AND M. V. R. KAMESWARI

Abstract. We prove that the convergence of the Mann iteration with modified errors is equiva-

lent to the convergence of the Ishikawa iteration with modified errors for the class of uniformly

continuous and strongly pseudocontractive maps. Our results improve the results of Soltuz [14]

and extend the results of Rhoades and Soltuz [12] to the iterations with modified errors.

1. Introduction

Throught this paper, E denotes a real Banach space and E∗, the dual of E; and I

denotes the identity operator on E.
We denote by J , the duality map from E to 2E

∗

defined by

J(x) = {f∗ ∈ E∗ : 〈x, f∗〉 = ‖x‖2 = ‖f‖2},

where 〈·, ·〉 is the generalized duality pairing of E and E∗.
A map T from E to E is said to be strongly pseudocontractive if there exists t > 1

such that
‖x − y‖ ≤ ‖(1 + r)(x − y) − rt(Tx − Ty)‖ (1.1.1)

for all x, y in E and r > 0.
If t = 1, then T is called a pseudocontrative map.
A mapping T with domain D(T ) and range R(T ) in E is called accretive if for all

x, y ∈ D(T ), there exists t > 1 such that

‖x − y‖ ≤ ‖(x − y) + k(Tx − Ty)‖ (1.1.2)

for every k > 0, and T is said to be strongly accretive if there is a positive constant k

such that T − kI is accretive.
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The pseudocontractive maps are characterized by the fact that the mapping T is
pseudocontractive if and only if I − T is accretive.

As a consequence of the result of Kato [9], T is pseudocontractive if and only if for all
x, y ∈ D(T ), there exists j(x−y) ∈ J(x−y) such that 〈(I−T )x−(I−T )y, j(x−y)〉 ≥ 0.

Furthermore, T is strongly pseudocontractive if and only if there exists a k > 0 such
that

〈(I − T )x − (I − T )y, j(x − y)〉 ≥ k‖x − y‖2 (1.1.3)

for all x, y in D(T ).
Also, from Bogin [1], it follows that the inequality (1.1.3) inplies that T is strongly

pseudocontractive with k ∈ (0, 1) if and only if for all x, y ∈ D(T ) the following inequality
holds:

‖x − y‖ ≤ ‖x − y + s[(I − T − kI)x − (I − T − kI)y]‖ (1.1.4)

for all s > 0.
According to Deimling [5], if K is a closed convex subset of E and T : K → K is

continuous, strongly pseudocontractive then T has a unique fixed point in K. Further,
it is proved ([6], Theorem 13.1, p.125) that if T : E → E is continuous and strongly
accretive then T is surjective; i.e., for a give f ∈ E the equation Tx = f has a unique
solution.

For a selfmap T of K, we denote F (T ), the fixed point set of T .
Let K be a nonempty convex subset of E and T a selfmap of K. For u0 ∈ K, the

sequence {un}
∞
n=0 ⊂ K defined by

un+1 = (1 − αn)un + αnTun, n = 0, 1, 2, . . . (1.1.5)

is called the Mann iteration, where {αn} is a sequence of positive numbers in (0, 1)
satisfying

lim
n→∞

αn = 0 and Σαn = ∞. (1.1.6)

For x0 ∈ K, the sequence {xn}
∞
n=0 ⊂ K defined by

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnTxn, n = 0, 1, 2, . . . , (1.1.7)

is called the Ishikawa iteration, where {αn} and {βn} are sequences of positive numbers
in (0, 1) satisfying

lim
n→∞

αn = 0, lim
n→∞

βn = 0 and Σαn = ∞. (1.1.8)

In recent years, Mann and Ishikawa iterations have been studied extensively by several
authors [2, 3, 4, 7, 13] for the class of strongly pseudocontractive operators.

Rhoades and Soltuz [12] studied the equivalence between the convergences of Mann
and Ishikawa iterations and established the following theorem.

Theorem 1.1. Let K be a closed, convex subset of E and T a Lipschitz, strongly

pseudocontractive selfmap of K. Consider the Mann and Ishikawa iterations with the

same initial point as in (1.1.5) and (1.1.7), {αn} and {βn} are sequences of positive

numbers in (0, 1) satisfying (1.1.8). Then the following are equivalent:
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(1) The Mann iteration (1.1.5) converges to x∗ ∈ F (T ).

(2) The Ishikawa iteration (1.1.7) converges to x∗ ∈ F (T ).

In 1995, Liu [10] introduced iterations with errors as follows:

For a nonempty convex subset K of E and T : K → E, for u0 ∈ K, the sequence
{un}

∞
n=0 ⊂ K defined by

un+1 = (1 − αn)un + αnTun + en, n = 0, 1, 2, . . . (A)

where (i) {αn} is a sequence of positive numbers in (0, 1) satisfying (1.1.6) and (ii)
Σ‖en‖ < ∞, is called the Mann iteration with errors.

For x0 ∈ K, the sequence {xn}
∞
n=0 ⊂ K defined by

xn+1 = (1 − αn)xn + αnTyn + pn,

yn = (1 − βn)xn + βnTxn + qn, n = 0, 1, 2, . . . (B)

where (i) {αn} and {βn} are sequences of positive numbers satisfying (1.1.8) and (ii)

Σ‖pn‖ < ∞, Σ‖qn‖ < ∞, is called the Ishikawa iteration with errors.
Soltuz [14] obtained the following result, to establish the equivalence between the

Mann and Ishikawa iterations with errors.

Theorem 1.2. Let K be a nonempty, bounded, convex and closed subset of E and

T : K → E a strongly pseudocontractive and Lipschitzian map with Lipschitz constant

L > 1 with T (K) bounded and F (T ) 6= ∅. If x0 = u0 ∈ K, then the following assertions

are equivalent:

(1) The Mann iteration with errors (A) converges to x∗ ∈ F (T ).
(2) The Ishikawa iteration with errors (B) converges to x∗ ∈ F (T ).

In particular, the conditions Σ‖en‖ < ∞, Σ‖pn‖ < ∞ and Σ‖qn‖ < ∞ imply that
the error terms in (A) and (B) tend to zero as n → ∞. This is incompatible with the

randomness of the occurrence of errors. Afterwards, in 1998, Xu [15] introduced a more

satisfactory error terms in iterations in the following way.
Let K be a nonempty convex subset of E and T : K → K a mapping. For given

u0 ∈ E, the sequence {un}
∞
n=0 ⊂ K defined by

un+1 = anun + bnTun + cnen, n = 0, 1, 2, . . . (M)

where {en} is a bounded sequence in K and {an}, {bn}, {cn} are sequences in (0, 1) such

that an + bn + cn = 1, for all n ≥ 0, is called the Mann iteration with modified errors.

For a given x0 ∈ E, the sequence {xn}
∞
n=0 ⊂ K defined by

xn+1 = anxn + bnTyn + cnpn,

yn = a′
nxn + b′nTxn + c′nqn, n = 0, 1, 2, . . . (I)
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where {pn}, {qn} are bounded sequences in K and {an}, {bn}, {cn}, {a′
n
}, {b′

n
} and

{c′
n
} are sequences in (0, 1) such that an + bn + cn = 1 = a′

n
+ b′

n
+ c′

n
= 1, for all n ≥ 0,

is called the Ishikawa iteration with modified errors. If K is bounded then the sequences

{pn}, {qn} and {en} in the iterations can be arbitrarily.

In 1998, Chidume [3] established the following convergence theorems.

Theorem 1.3. Let K be a closed, convex and bounded subset of E, T : K → K a

uniformly continuous and strongly pseudocontractive mapping. For a given x0, p0, q0 ∈ K,

the sequence {xn}
∞
n=0 defined by

xn+1 = anxn + bnTyn + cnpn,

yn = a′
nxn + b′nTxn + c′nqn, n = 0, 1, 2, . . . (1.3.1)

where {pn}, {qn} are arbitrary sequences in K and {an}, {bn}, {cn}, {a′
n}, {b′n} and

{c′n} are sequences in (0, 1) satisfying

(i) an + bn + cn = 1 = a′
n + b′n + c′n = 1, for all n ≥ 0,

(ii) Σbn = ∞,

(iii) Σcn < ∞, and

(iv) limn→∞ bn = limn→∞ b′
n

= limn→∞ c′
n

= 0.

Then {xn}
∞
n=0 converges strongly to x∗ ∈ F (T ).

Theorem 1.4. Let E, K and T be as in Theorem 1.3. For a given x0, p0 ∈ K, the

sequence {xn}
∞
n=0 defined by

xn+1 = anxn + bnTxn + cnpn, n = 0, 1, 2, . . .

where {pn} is an arbitrary sequence in K and {an}, {bn}, and {cn} are sequences in

(0, 1) satisfying

(i) an + bn + cn = 1, for all n ≥ 0,

(ii) Σbn = ∞,

(iii) Σcn < ∞, and

(iv) limn→∞ bn = 0.

Then {xn}
∞
n=0 converges strongly to x∗ ∈ F (T ).

In this paper, we prove that the convergence of Mann iteration with modified errors

and Ishikawa iteration with modified errors are equivalent for the class of uniformly con-

tinuous and strongly pseudocontractive maps. Also, we obtain the equivalence between

the convergences of Mann and Ishikawa iterations with modified errors to the solution of

the operator equation Ax = f (Corollary 2.5) and x + Tx = f (Corollary 2.6).

To prove our main results, we use the following lemma.

Lemma 1.5.([10]). Let ρn be a non-negative sequence of reals satisfying

ρn+1 ≤ (1 − λn)ρn + σn + γn,
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with {λn : n = 0, 1, 2, . . .} ⊂ [0, 1], Σλn = ∞, σn = o(λn), and Σγn < ∞. Then

limn→∞ ρn = 0.

2. Main Results

Theorem 2.1. Let E, K and T be as in Theorem 1.3. For a given x0, p0, q0, u0

and e0 ∈ E, we define the sequences {un}
∞
n=0 and {xn}

∞
n=0 by

un+1 = anun + bnTun + cnen, n = 0, 1, 2, 3, . . . (2.1.1)

and

xn+1 = anxn + bnTyn + cnpn,

yn = a′
nxn + b′nTxn + c′nqn, n = 0, 1, 2, . . . (2.1.2)

where {pn}, {qn} and {en} are arbitrary sequences in K and {an}, {bn}, {cn}, {a′
n
},

{b′n} and {c′n} are sequences in (0, 1) satisfying

(i) an + bn + cn = 1 = a′
n

+ b′
n

+ c′
n

= 1, for all n ≥ 0,

(ii) Σbn = ∞,

(iii) Σcn < ∞, and

(iv) limn→∞ bn = limn→∞ b′n = limn→∞ c′n = 0.

If u0 = x0 ∈ K, then the following are equivalent:

(1) The Mann iteration with modified errors {un} defined by (2.1.1) converges to x∗ ∈

F (T ).

(2) The Ishikawa iteration with modified errors {xn} defined by (2.1.2) converges to

x∗ ∈ F (T ).

Proof. Set αn = bn + cn. From (2.1.2), we have

xn+1 = (1 − αn)xn + αnTyn − cn(Tyn − pn).

Thus

xn = (1 + αn)xn+1 + αn(I − T − kI)xn+1 − (1 − k)αnxn

+(2 − k)α2
n(xn − Tyn) + αn(Txn+1 − Tyn)

+cn[1 + (2 − k)αn][Tyn − pn]. (2.1.3)

Similarly from (2.1.1), we get

un = (1 + αn)un+1 + αn(I − T − kI)un+1 − (1 − k)αnun

+(2 − k)α2
n(un − Tun) + αn(Tun+1 − Tun)

+cn[1 + (2 − k)αn][Tun − en]. (2.1.4)
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Hence from (2.1.3) and (2.1.4), we have

xn − un = (1 + αn)(xn+1 − un+1) + αn(I − T − kI)xn+1 − αn(I − T − kI)un+1

−(1 − k)αn(xn − un) + (2 − k)α2
n
(xn − Tyn − un + Tun)

+αn(Txn+1 − Tyn − Tun+1 + Tun)

+cn[1 + (2 − k)αn](Tyn − pn − Tun + en).

Now on taking norms on both sides, we have

‖xn − un‖ ≥ ‖(1 + αn)(xn+1 − un+1) + αn(I − T − kI)xn+1

−αn(I − T − kI)un+1‖ − (1 − k)αn‖xn − un‖

−(2 − k)α2
n
‖xn − Tyn − un + Tun‖

−αn‖Txn+1 − Tyn − Tun+1 + Tun‖

−cn[1 + (2 − k)αn]‖Tyn − pn − Tun + en‖. (2.1.5)

By using the inequality (1.1.4) with x = xn+1, y = un+1 and s = αn

1+αn

we get

‖xn − un‖ ≥ (1 + αn)‖xn+1 − un+1‖ − (1 − k)αn‖xn − un‖

−(2 − k)α2
n‖xn − Tyn − un + Tun‖

−αn‖Txn+1 − Tyn − Tun+1 + Tun‖

−cn[1 + (2 − k)αn]‖Tyn − pn − Tun + en‖.

Thus

(1 + αn)‖xn+1 − un+1‖ ≤ (1 + (1 − k)αn)‖xn − un‖

+(2 − k)α2
n
‖xn − Tyn − un + Tun‖

+αn‖Txn+1 − Tyn − Tun+1 + Tun‖

+cn[1 + (2 − k)αn]‖Tyn − pn − Tun + en‖.

This implies

‖xn+1 − un+1‖ ≤
(1 + (1 − k)αn)

(1 + αn)
‖xn − un‖ + (2 − k)α2

n[‖xn − Tyn‖ + ‖un − Tun‖]

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+cn[1 + (2 − k)αn][‖Tyn − pn‖ + ‖Tun − en‖]

≤ (1 − kαn + α2
n)‖xn − un‖ + (2 − k)α2

n[‖xn − Tyn‖ + ‖un − Tun‖]

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+cn[1 + (2 − k)αn][‖Tyn − pn‖ + ‖Tun − en‖]

≤ (1 − kαn)‖xn − un‖ + (3 − k)α2
n‖xn − Tyn‖

+(2 − k)α2
n
‖un − Tun‖ + α2

n
‖un − Tyn‖

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+2cnln[‖Tyn − pn‖ + ‖Tun − en‖] (2.1.6)
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where ln = (1 + (2 − k)αn) ≤ M1, with M1 = 3 − k. Thus

‖xn+1 − un+1‖ ≤ (1 − kαn)‖xn − un‖ + (4 − k)α2
n
D

+(2 − k)α2
n
‖un − Tun‖

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+2cnlnD (2.1.7)

where D is the diameter of K.
Write βn = b′

n
+ c′

n
in (2.1.2), then we have

yn = (1 − βn)xn + βnTxn − c′
n
(Txn − qn)

Consider

‖xn+1 − yn‖ ≤ ‖xn+1 − xn‖ + ‖xn − yn‖

≤ (αn + cn)D + (βn + c′
n
)D → 0 as n → ∞.

Now by using uniform continuity of T , we get

‖Txn+1 − Tyn‖ → 0 as n → ∞. (2.1.8)

Since T is uniformly continuous and strongly pseudocontractive on K, it follows by
Deimling [5] that F (T ) 6= ∅.

We now prove the conclusion of the theorem.
First suppose that un → x∗, x∗ ∈ F (T ). Then

‖Tun − un‖ → 0 as n → ∞. (2.1.9)

Also, ‖un − un+1‖ → 0 as n → ∞. Again by using the uniform continuity of T , we get

‖Tun − Tun+1‖ → 0 as n → ∞. (2.1.10)

Write

ρn = ‖xn − un‖, λn = kαn,

σn = (4 − k)α2
n
D + (2 − k)α2

n
‖un − Tun‖

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖], and

γn = 2cnlnD in (2.1.7), we get

ρn+1 ≤ (1 − λn)ρn + σn + γn.

From (2.1.8), (2.1.9) and (2.1.10), we have σn

λn

→ 0 as n → ∞, so that σn = o(λn)
and Σγn < ∞. Now on using Lemma 1.5, we get

lim
n→∞

ρn = 0. (2.1.11)
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Since un → x∗ and from (2.1.11), we have

‖xn − x∗‖ ≤ ‖xn − un‖ + ‖un − x∗‖ → 0 as n → 0

which implies xn → x∗ as n → ∞.
Conversely suppose that xn → x∗ as n → ∞. Then

‖un − un+1‖ ≤ αn‖un − Tun‖ + cn‖Tun − en‖

≤ (αn + cn)D → 0 as n → ∞.

Thus by the uniform continuity of T , we get

‖Tun − Tun+1‖ → ∞ as n → ∞. (2.1.12)

Now, write

ρn = ‖xn − un‖, λn = kαn,

σn = (6 − 2k)α2
nD + αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖] and

γn = 2cnlnD, in (2.1.7), we get

ρn+1 ≤ (1 − λn)ρn + σn + γn, n = 1, 2, 3, . . . .

From (2.1.12) and (2.1.8), we have
σ = o(λn) and Σγn < ∞. Thus by using Lemma 1.5, we get
‖xn − un‖ → 0 as n → ∞.

Since xn → x∗, we have
‖un − x∗‖ ≤ ‖xn − un‖ + ‖xn − x∗‖ → 0 as n → ∞ which implies that
un → x∗ as n → ∞.

This completes the proof of the theorem.

Remarks 2.2.

(i) Theorem 2.1 is proved under the assumption that T is uniformly continuous, by
relaxing the Lipschitz property of T in Theorem 1.2.

(ii) From Theorem 2.1, it follows that Theorem 1.3 and Theorem 1.4 are equivalent,
provided the initial points of the iterations are same.

Theorem 2.3. Let K be a closed and convex subset of E. Assume that T : K → K

is uniformly continuous and strongly pseudocontractive map with k ∈ (0, 1) with T (K)
bounded. For x0, u0, p0, q0 and e0 in K, we define the sequence {un}

∞
n=0 and {xn}

∞
n=0

iteratively by x0 = u0 ∈ K as (2.1.1) and (2.1.2) respectively, where {pn}, {qn} and {en}
are bounded sequences in K and {an}, {bn}, {cn}, {a

′
n}, {b

′
n} and {c′n} are sequences in

(0, 1) satisfying (i) - (iv) of Theorem 2.1. Then the following are equivalent:

(1) The Mann iteration with modified errors {un} defined by (2.1.1) converges to x∗ ∈
F (T ).
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(2) The Ishikawa iteration with modified errors {xn} defined by (2.1.2) converges to

x∗ ∈ F (T ).

Proof. By Deimling [5], F (T ) 6= ∅.

Write

M2 = sup
n≥1

‖Tyn − pn‖ and M3 = sup
n≥1

‖Tun − en‖.

From (2.1.6), we have

‖xn − un‖ ≤ (1 − kαn)‖xn − un‖ + (3 − k)α2
n
‖xn − Tyn‖

+(2 − k)α2
n
‖un − Tun‖ + α2

n
‖un − Tyn‖

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖] + cnln(M2 + M3) (2.3.1)

Let

M = ‖x0 − u0‖ + sup
n≥1

{‖Tyn − Tun‖ + ‖Tyn − pn‖ + ‖Tun − en‖}.

Obviously 0 ≤ M < ∞.

Clearly ‖x0−u0‖ ≤ M . Suppose that ‖xn−un‖ ≤ M . We prove that ‖xn+1−un+1‖ ≤

M .

From (2.1.1) and (2.1.2), we have

‖xn+1 − un+1‖ ≤ (1 − αn)‖xn − un‖ + αn[‖Tyn − Tun‖ + cn[‖Tyn − pn‖+‖Tun − en‖]

≤ (1 − αn)‖xn − un‖ + αn[‖Tyn − Tun‖ + ‖Tyn − pn‖ + ‖Tyn − en‖]

≤ (1 − αn)M + αnM = M.

Hence

‖xn − un‖ ≤ M for all n ∈ N. (2.3.2)

From (2.1.1) and (2.1.2), we have

‖xn+1 − yn‖ ≤ (βn − αn)‖xn‖ + αn‖Tyn‖ + βn‖Txn‖

+cn‖Tyn − pn‖ + c′
n
‖Txn − qn‖ (2.3.3)

First we suppose that un → x∗. It is clear that from (2.3.2), the sequence {xn} is

bounded. Then

‖xn+1 − yn‖ ≤ (βn − αn)‖xn‖ + αn‖Tyn‖ + βn‖Txn‖

+cn‖Tyn − pn‖ + c′
n
‖Txn − qn‖ → 0 as n → ∞.

Now by using the uniform continuity of T , we get

‖Txn+1 − Tyn‖ → 0 as n → ∞. (2.3.4)
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Since un → x∗, clearly ‖un − un+1‖ → 0 as n → ∞.
Again by using the uniform continuity of T , we get

‖Tun − Tun+1‖ → 0 as n → ∞. (2.3.5)

Now

‖xn − Tyn‖ ≤ ‖xn − un‖ + ‖un − Tun‖ + ‖Tun − Tyn‖

≤ ‖xn − un‖ + ‖un − Tun‖ + D1, (2.3.6)

where D1 is the diameter of T (K), and

‖Tyn − un‖ ≤ ‖Tyn − Tun‖ + ‖Tun − un‖. (2.3.7)

On substituting (2.3.6) and (2.3.7) in (2.3.1), we get

‖xn − un‖ ≤ (1 − kαn)‖xn − un‖ + (3 − k)α2
n[‖xn − un‖ + ‖un − Tun‖ + D1]

+(2 − k)α2
n
‖un − Tun‖ + α2

n
[‖Tyn − Tun‖ + ‖un − Tun‖]

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+cn[1 + (2 − k)αn][‖Tyn − pn‖ + ‖Tun − en‖]

≤ (1 − kαn + (3 − k)α2
n
)‖xn − un‖ + (6 − 2k)α2

n
‖un − Tun‖

+(4 − k)α2
n
D1 + αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+cnln(M2 + M3). (2.3.8)

Since αn → 0 as n → ∞, there exists n0 ∈ N such that αn ≤ 5k

8(3−k) for all n ≥ n0.
Thus

1 − kαn + (3 − k)α2
n ≤ 1 −

3kαn

8
for all n ≥ n0. (2.3.9)

Hence from (2.3.8) and (2.3.9), we have

‖xn+1 − un+1‖ ≤
(

1 −
3kαn

8

)

‖xn − un‖ + (6 − 2k)α2
n
‖un − Tun‖ + (4 − k)α2

n
D1

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+cnln(M2 + M3) for all n ≥ n0. (2.3.10)

Now by applying Lemma 1.5 with

ρn = ‖xn − un‖, λn =
3kαn

8
,

σn = (6 − 2k)α2
n‖Tun − un‖ + (4 − k)α2

nD1

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖], and

γn = cnln(M2 + M3), we get σn = o(λn) and γn < ∞, and

‖xn − un‖ → 0 as n → ∞, which implies xn → x∗ as n → ∞.
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Conversely suppose that xn → x∗ as n → ∞.

Then by using (2.1.1), we get

‖un+1 − un‖ ≤ αn‖Tun − un‖ + cn‖Tun − en‖

≤ αn(‖Tun‖ + ‖un‖) + cn‖Tun − qn‖ → 0 as n → ∞.

Thus by the uniform continuity of T , we have

‖Tun − Tun+1‖ → ∞ as n → ∞. (2.3.11)

We use the following estimates:

‖xn − Tyn‖ ≤ ‖xn − Txn‖ + ‖Txn − Tyn‖ (2.3.12)

‖un − Tun‖ ≤ ‖un − xn‖ + ‖xn − Txn‖ + ‖Txn − Tun‖ (2.3.13)

‖un − Tyn‖ ≤ ‖un − Tun‖ + ‖Tun − Tyn‖

≤ ‖xn − un‖ + ‖xn − Txn‖

+‖Txn − Tun‖ + ‖Tun − Tyn‖. (2.3.14)

On substituting (2.3.12), (2.3.13) and (2.3.14) in (2.3.10), we get

‖xn+1 − un+1‖ ≤ (1 − kαn + (3 − k)α2
n
)‖xn − un‖ + (6 − 2k)α2

n
‖xn − Txn‖

+(7 − 2k)α2
n
D1 + αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖]

+cnln(M1 + M2) (2.3.15)

≤
(

1 −
3kαn

8

)

‖xn − un‖ + (6 − 2k)α2
n
‖xn − Txn‖

+(7 − 2k)α2
n
D1 + αn‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖

+cnln(M1 + M2) for all n ≥ n0. (2.3.16)

Write

ρn = ‖xn − un‖, λn =
3kαn

8

σn = (6 − 2k)α2
n‖xn − Txn‖ + (7 − 2k)α2

nD1

+αn[‖Txn+1 − Tyn‖ + ‖Tun+1 − Tun‖], and

γn = cnln(M2 + M3).

Here we observe that σn = o(λn).

Now on using Lemma 1.5, we get

‖xn − un‖ → 0 as n → ∞, which implies un → x∗ as n → ∞.

This completes the proof of the theorem.
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Remarks 2.4.

(i) In Theorem 2.3, we assumed that the range of T is bounded whereas in Theorem
1.2, Soltuz [14] assumed that both the domain and range of T are bounded. Thus,
boundedness of the domain of T of Theorem 1.2 is redundant.

(ii) Theorem 2.3 generalizes Theorem 1.2 in the sense that we relaxed the boundedness
assumption on the set K and the Lipschitz property of the map T by the uniform
continuity of T in Theorem 2.3.

Corollary 2.5. Let E be a real Banach space and A : E → E be a uniformly

continuous and strongly accretive map with the range of (I − A) is bounded. For a fixed

f ∈ E, define A∗ : E → E by A∗x = f + x − Ax for each x ∈ E. For a given x0, p0, q0,

u0 and e0 ∈ E, we define the sequences {un}
∞
n=0 and {xn}

∞
n=0 iteratively by

un+1 = anun + bnA∗un + cnen, n = 0, 1, 2, 3, . . . . (2.5.1)

and

xn+1 = anxn + bnA∗yn + cnpn,

yn = a′
n
xn + b′

n
A∗xn + c′

n
qn, n = 0, 1, 2, . . . (2.5.2)

where {pn}, {qn} and {en} are arbitrary bounded sequences in K and {an}, {bn}, {cn},
{a′

n
}, {b′

n
} and {c′

n
} are sequences in (0, 1) satisfying (i) - (iv) of Theorem 2.1 with

x0 = u0 in E, then the following are equivalent:

(1) The Mann iteration with modified errors (2.5.1) converges to the solution of the

equation Ax = f .

(2) The Ishikawa iteration with modified errors (2.5.2) converges to the solution of the

equation Ax = f .

Proof. Existence of the solution follows from Deimling [5]. Since A is uniformly
continuous it follows that A∗ is uniformly continuous. Since the range of (I − A) is
bounded, we have ‖f + (I − A)xn‖ is bounded and also ‖f + (I − A)yn‖ is bounded.
Hence Theorem 2.3 gives the conclusion of Corollary 2.5.

Corollary 2.6. Let E be a real Banach space and T : E → E a uniformly continuous

and strongly accretive map. Suppose the range of T is bounded. For a fixed f ∈ E, define

S : E → E by Sx = f − Tx for each x ∈ E. For a given x0, p0, q0, u0 and e0 ∈ E, we

define the sequences {un}
∞
n=0 and {xn}

∞
n=0 iteratively by

un+1 = anun + bnSun + cnen, n = 0, 1, 2, 3, . . . . (2.6.1)

xn+1 = anxn + bnSyn + cnpn,

yn = a′
n
xn + b′

n
Sxn + c′

n
qn, n = 0, 1, 2, . . . (2.6.2)

where {pn}, {qn} and {en} are arbitrary bounded sequences in K and {an}, {bn}, {cn},
{a′

n}, {b′n} and {c′n} are sequences in (0, 1) satisfying (i) - (iv) of Theorem 2.1 with

x0 = u0 in E, then the following are equivalent:
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(1) The Mann iteration with modified errors (2.6.1) converges to the solution of the

equation x + Tx = f .

(2) The Ishikawa iteration converges with modified errors (2.6.2) to the solution of the

equation x + Tx = f .

Proof. We define A = I + T , then clearly A is uniformly continuous and strongly
accretive. Hence on using Deimling’s result [6], the equation Ax = f has a unique
solution, say x∗ in E. Since the range of T is bounded it follows that range of I − A is
bounded. Also,

Sx = f − Tx = f − (A − I)x = f + (I − A)x = A∗x,

where A∗ is as defined in Corollary 2.5. Now from Corollary 2.5, the conclusion follows.
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