WEIGHTED QUADRATIC PARTITIONS MODULO P^{m} A NEW FORMULA AND A NEW DEMONSTRATION

ALI H. HAKAMI

Abstract

Let $Q(\mathbf{x})=Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a quadratic form over \mathbb{Z}, p be an odd prime. Let $V=V_{Q}=V_{p^{m}}$ denote the set of zeros of $Q(\mathbf{x})$ in $\mathbb{Z}_{p^{m}}$ and $|V|$ denotes the cardinality of V. Set $\phi\left(V_{p^{m}}, \mathbf{y}\right)=\sum_{\mathbf{x} \in V} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y})$ for $\mathbf{y} \neq \mathbf{0}$ and $\phi\left(V_{\left.p^{m}, \mathbf{y}\right)}=\left|V_{p^{m}}\right|-p^{m(n-1)}\right.$ for $\mathbf{y}=\mathbf{0}$. In this paper, we shall give a formula for the calculation of the function $\phi(V, \mathbf{y})$.

1. Introduction

Let $Q(\mathbf{x})=Q\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{1 \leqslant i \leqslant j \leqslant n} a_{i j} x_{i} x_{j}$ be a quadratic form with integer coefficients and p be an odd prime. Suppose that n is even and $\operatorname{det} A_{Q} \not \equiv 0(\bmod p)$, where A_{Q} is $n \times n$ defining matrix for $Q(\mathbf{x})$. Let $V_{p^{m}}=V_{p^{m}}(Q)$ denote the set of zeros of Q in $\mathbb{Z}_{p^{m}}^{n}$. Let

$$
\Delta_{p^{m}}(Q)= \begin{cases}\left((-1)^{n / 2} \operatorname{det} A_{Q} / p\right) & \text { if } p \nmid \operatorname{det} A_{Q}, \\ 0 & \text { if } p \mid \operatorname{det} A_{Q},\end{cases}
$$

where (./p) denotes the Legendre-Jacobi symbol and let $Q^{*}(\mathbf{x})$ be the inverse of the matrix representing $Q(\mathbf{x}),\left(\bmod p^{m}\right)$. For $\mathbf{y} \in \mathbb{Z}_{p^{m}}^{n}$ set

$$
\phi\left(V_{p^{m}}, \mathbf{y}\right)= \begin{cases}\sum_{\mathbf{x} \in V} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y}) & \text { for } \mathbf{y} \neq \mathbf{0}, \\ \left|V_{p^{m}}\right|-p^{m(n-1)} & \text { for } \mathbf{y}=\mathbf{0},\end{cases}
$$

where $e_{p^{m}}(x)=e^{2 \pi i x / p^{m}}$.
The purpose of this paper is to give an simpler formula for the calculation of the function $\phi(V, \mathbf{y})$. We shall first calculate the Gauss sum

$$
\begin{equation*}
S=S\left(f, p^{m}\right)=\sum_{x=1}^{p^{m}} e_{p^{m}}(f(x)) \tag{1}
\end{equation*}
$$

for $f(x)=\lambda a x^{2}+x y,(\lambda, a, y \in \mathbb{Z})$ and then we apply this sum to calculate the function $\phi(V, \mathbf{y})$. The final result is stated in the following theorem.

Theorem 1. Let n be an even positive integer. For $\mathbf{y} \in \mathbb{Z}^{n}$, put $\mathbf{y}^{\prime}=p^{-j} \mathbf{y}$ in case $p \mid \mathbf{y}$, (i.e., $p \mid y_{i}$ for all i). Then

$$
\phi(V, \mathbf{y})=p^{(m n / 2)-m} \sum_{\substack{j=0 \\ p^{j} \mid y_{i} \text { for all } i}}^{m-1} \delta_{j} p^{j n / 2} \omega_{j}\left(\mathbf{y}^{\prime}\right),
$$

where

$$
\delta_{j}= \begin{cases}1 & \text { if } m-j \text { is even } \tag{2}\\ \Delta & \text { if } m-j \text { is odd }\end{cases}
$$

and

$$
\omega_{j}\left(\mathbf{y}^{\prime}\right)= \begin{cases}p^{m-j}-p^{m-j-1}, & p^{m-j} \mid Q^{*}\left(\mathbf{y}^{\prime}\right) \tag{3}\\ -p^{m-j-1}, & p^{m-j-1} \| Q^{*}\left(\mathbf{y}^{\prime}\right), \\ 0, & p^{m-j-1} \nmid Q^{*}\left(\mathbf{y}^{\prime}\right) .\end{cases}
$$

Theorem 1 is given, in other forms in Carlitz papers [1] for $m=1$ and in [2] for $m=$ any positive integer. Also his proof needs some work. We shall devote the rest of $\S 3$ to give the proof in complete detail.

2. Preliminaries

In order to proceed from congruences $(\bmod p)$ to congruences $\left(\bmod p^{m}\right)$, we need to generalize results for exponential sums. Let $\mathbb{Z}_{p^{m}}=\mathbb{Z} /\left(p^{m}\right)$. Then we have the basic orthogonality relationship that for any $\mathbf{y} \in \mathbb{Z}_{p^{m}}^{n}$,

$$
\sum_{\mathbf{x} \in \mathbb{Z}_{p}^{n}} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y})= \begin{cases}p^{m n} & \text { if } \mathbf{y}=\mathbf{0} \tag{4}\\ 0 & \text { if } \mathbf{y} \neq \mathbf{0}\end{cases}
$$

Let $G\left(p^{m}\right)$ denote the multiplicative group of units modulo p^{m}. Then
Lemma 2. [[4], Lemma 1.5.] Let $\lambda, a \in \mathbb{Z}$. For any odd prime p and any positive integer m,

$$
\sum_{\lambda \in G\left(p^{m}\right)} e_{p^{m}}(\lambda a)= \begin{cases}p^{m}-p^{m-1} & \text { if } p^{m} \mid a, \\ -p^{m-1} & \text { if } p^{m-1} \| a, \\ 0 & \text { if } p^{m-1} \nmid a .\end{cases}
$$

Let g be a polynomial with integer coefficients and let

$$
S\left(g, p^{m}\right)=\sum_{x=1}^{p^{m}} e_{p^{m}}(g(x))
$$

where p^{m} is a prime power with $m \geqslant 2$. Next lemma evaluates and estimates the pure exponential sum $S\left(g, p^{m}\right)$. But to state the statement of this lemma, let ord ${ }_{p}(x)$ denote the normal exponent valuation on the p-adic field. In particular, for $x \neq 0 \in \mathbb{Z}, p^{\operatorname{ord}_{p}(x)} \| x$. For convenience, we set $\operatorname{ord}_{p}(0)=\infty$. For any nonzero polynomial $g=g(X)=a_{0}+a_{1} X+\cdots+a_{d} X^{d} \in$ $\mathbb{Z}[X]$ we define

$$
\operatorname{ord}_{p}(g):=\min _{0 \leqslant i \leqslant d}\left\{\operatorname{ord}_{p}\left(a_{i}\right)\right\} .
$$

For any polynomial g over \mathbb{Z} we define

$$
t=t(g):=\operatorname{ord}_{p}\left(g^{\prime}(X)\right)
$$

where $g^{\prime}=g^{\prime}(X)$ denotes the derivative of $g(X)$. Also we define the set of critical points associated with the sum $S\left(g, p^{m}\right)$ to be the set

$$
\mathscr{A}=\mathscr{A}(g, p):=\left\{\alpha_{1}, \ldots, \alpha_{D}\right\}
$$

of zeros of the congruence

$$
\begin{equation*}
p^{-t} g^{\prime}(x) \equiv 0 \quad(\bmod p) \tag{5}
\end{equation*}
$$

where $t=\operatorname{ord}_{p}\left(g^{\prime}\right)$. For any $\alpha \in \mathscr{A}$ let $v=v_{\alpha}$ denote the multiplicity of α as a zero of the congruence (5).

Write

$$
S\left(g, p^{m}\right)=\sum_{\alpha=0}^{p-1} S_{\alpha}
$$

where for any integer α,

$$
S_{\alpha}=S_{\alpha}\left(g, p^{m}\right):=\sum_{\substack{x=1 \\ x \equiv \alpha(\bmod p)}}^{p^{m}} e_{p^{m}}(g(x)) .
$$

Lemma 3. [[3], Theorem2.1] Let p be an odd prime and g be a non-constant polynomial defined over \mathbb{Z}. If $m \geqslant t+2$ then for any integer α we have:
(i) If $\alpha \notin \mathscr{A}$ then $S_{\alpha}\left(g, p^{m}\right)=0$.
(ii) If α is a critical point of multiplicityv then

$$
\begin{equation*}
\left|S_{\alpha}\left(g, p^{m}\right)\right| \leqslant v p^{t /(v+1)} p^{(m(1-1 /(v+1)) .} \tag{6}
\end{equation*}
$$

(iii) If α is a critical point of multiplicity one then

$$
S_{\alpha}\left(g, p^{m}\right)= \begin{cases}e_{p^{m}}\left(g\left(\alpha^{*}\right)\right) p^{(m+t) / 2} & \text { if } m-t \text { is even }, \\ \chi\left(A_{\alpha}\right) e_{p^{m}}\left(g\left(\alpha^{*}\right)\right) G_{p} p^{(m+t-1) / 2} & \text { if } m-t \text { is odd }\end{cases}
$$

where α^{*} is the unique lifting of α^{*} to a solution of the congruence $p^{-t} g^{\prime}(x) \equiv 0\left(\bmod p^{[(m-t+1) / 2]}\right)$, and $A_{\alpha} \equiv 2 p^{-t} g^{\prime \prime}\left(\alpha^{*}\right)(\bmod p)$. In particular, we have equality in (6). Here G_{p} is the classical Gauss sum,

$$
G_{p}:=\sum_{x=1}^{p} e_{p}\left(x^{2}\right)= \begin{cases}\sqrt{p} & \text { if } p \equiv 1(\bmod 4) \\ i \sqrt{p} & \text { if } p \equiv 3(\bmod 4)\end{cases}
$$

and χ is the quadratic character $\bmod p$.

3. Determination of $\phi(V, \mathbf{y})$ modulo p^{m}

We start this section by calculating the sum $S\left(f, p^{m}\right)$. The following lemma allows us to find the evaluation of $\phi(V, \mathbf{y})$. A special case of this lemma (when $m=2$) was proved in [[4], Lemma 2.3].

Lemma 4. Let p be an odd prime with $p \nmid a$ and $\lambda, a \in \mathbb{Z}$. Let the sum S as in (1). Let $j \in$ $\{0,1,2, \ldots, m-1\}$. Then

$$
S= \begin{cases}\left.e_{p^{m-j}(-\overline{4}} \bar{a} \bar{\lambda}^{\prime} y^{\prime 2}\right) p^{(m+j) / 2} & \text { if } p^{j} \| \lambda, p^{j} \mid y \text { and } m-j \text { is even }, \\ \chi\left(4 a \lambda^{\prime}\right) e_{p^{m-j}}\left(-\overline{4} \bar{a} \bar{\lambda}^{\prime} y^{\prime 2}\right) G_{p} p^{(m+j-1) / 2} & \text { if } p^{j} \| \lambda, p^{j} \mid y \text { and } m-j \text { is odd }, \\ 0 & \text { if } p^{j} \| \lambda, \text { but } p^{j} \nmid y\end{cases}
$$

where χ is the Legendre Symbol, $\lambda^{\prime}=\lambda p^{-j}, y^{\prime}=y p^{-j}$ and $\bar{\lambda}, \bar{\lambda}^{\prime}, \bar{a}$ are inverses $\bmod p^{m}$.
Proof. We shall require applying Lemma 2. Assume that $p \nmid a$. Then the critical point congruence is

$$
p^{-t} f^{\prime}(x) \equiv 0 \quad(\bmod p)
$$

or equivalently,

$$
\begin{equation*}
p^{-t}(\lambda a 2 x+y) \equiv 0 \quad(\bmod p) \tag{7}
\end{equation*}
$$

where $t=\operatorname{ord}_{p}\left(f^{\prime}\right)$. Now we have to treat two cases:
Case (i): Assume that $p^{j} \| \lambda$ and $p^{j} \mid y$, with $j \in\{0,1,2, \ldots, m-1\}$. Then $t=j$ because $p^{t} \|(2 a \lambda, y)$. Thus (7) is equivalent to

$$
\begin{equation*}
2 a \frac{\lambda}{p^{j}} x \equiv-\frac{y}{p^{j}} \quad(\bmod p) \tag{8}
\end{equation*}
$$

Put $\lambda^{\prime}=\lambda / p^{j}$ and $y^{\prime}=y / p^{j}$, then (8) becomes

$$
2 a \lambda^{\prime} x \equiv-y^{\prime} \quad(\bmod p)
$$

or equivalently, there is a unique critical point α given by

$$
\alpha=x \equiv-\overline{2 a \lambda^{\prime}} y^{\prime} \quad(\bmod p) .
$$

Thus if $m-j$ is even,

$$
S=S_{\alpha}=e_{p^{m}}\left(f\left(\alpha^{*}\right)\right) p^{(m+t) / 2}=e_{p^{m}}\left(\lambda a \alpha^{*^{2}}+y \alpha^{*}\right) p^{(m+j) / 2}
$$

where α^{*} is the unique lifting of α, to a solution of (7) $\bmod p^{(m-j+1) / 2}$. We can take $\alpha^{*} \equiv$ $-\overline{2} \bar{a} \bar{\lambda}^{\prime} y^{\prime}\left(\bmod p^{m}\right)$ where $\bar{a}, \bar{\lambda}$ are inverses $\bmod p^{m}$. Then

$$
\begin{array}{rlrl}
f\left(\alpha^{*}\right)=\lambda a \alpha^{* 2}+y \alpha^{*} & \equiv p^{j} \lambda^{\prime} a \bar{\lambda}^{2} \overline{4} \bar{a}^{2} y^{\prime 2}-p^{j} y^{\prime 2} \overline{\lambda^{\prime}} \overline{2 a}\left(\bmod p^{m}\right) \\
& \equiv & p^{j} y^{\prime 2}\left(\overline{4} \bar{a} \overline{\lambda^{\prime}}-\overline{2} \bar{a} \overline{\lambda^{\prime}}\right) & \left(\bmod p^{m}\right) \\
& \equiv & -\overline{4} \bar{a} \bar{\lambda}^{\prime} y^{\prime 2} p & \left(\bmod p^{m}\right)
\end{array}
$$

If $m-j$ is odd, then

$$
A_{\alpha} \equiv 2 p^{-t} f^{\prime \prime}\left(\alpha^{*}\right) \equiv 2 p^{-j} 2 a \lambda \equiv 4 a \lambda^{\prime} \quad(\bmod p)
$$

Thus

$$
\begin{aligned}
S & =S_{\alpha}=\chi\left(A_{\alpha}\right) e_{p^{m}}\left(\lambda a \alpha^{* 2}+y \alpha^{*}\right) G_{p} p^{(m+j-1) / 2} \\
& =\chi\left(4 a \lambda^{\prime}\right) e_{p^{m-j}}\left(-\overline{4} \bar{a} \bar{\lambda}^{\prime} y^{\prime 2}\right) G_{p} p^{(m+j-1) / 2} .
\end{aligned}
$$

Case (ii): Suppose that $p^{j} \| \lambda$ but $p^{j} \nmid y$, with $j \in\{1,2, \ldots, m-1\}$; say $p^{k} \| y$ with $k<j$. Then we see that $t=k$. By (7), the critical point congruence is

$$
p^{t}(2 a \lambda x) \equiv-y p^{-t} \quad(\bmod p),
$$

or equivalently,

$$
0 \equiv-y p^{k} \quad(\bmod p)
$$

which has no solution. Consequently $S=0$, and this completes the proof of Lemma 3.
Now we shall evaluate $\phi(V, \mathbf{y})$ for the case of a diagonal quadratic form.
Suppose that $(\mathbf{x})=\sum_{i=1}^{n} a_{i} x_{i}^{2}$; with $p \nmid a_{i}, 1 \leqslant i \leqslant n$. We remark that if $\mathbf{y} \neq \mathbf{0}$, then by the orthogonality property of exponential sums,

$$
\begin{aligned}
\sum_{\mathbf{x} \in \mathbf{V}} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y}) & =\sum_{\mathbf{x} \in \mathbb{Z}_{p^{m}}^{n}} p^{-m}\left(\sum_{\lambda=0}^{p^{m}-1} e_{p^{m}}(\lambda Q(\mathbf{x}))\right) e_{p^{m}(\mathbf{x} \cdot \mathbf{y})} \\
& =p^{-m} \sum_{\lambda} \sum_{\mathbf{x}} e_{p^{m}}(\lambda Q(\mathbf{x})+\mathbf{x} \cdot \mathbf{y})
\end{aligned}
$$

$$
=\underbrace{p^{-m} \sum_{\mathbf{x}} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y})}_{S_{1}}+\underbrace{p^{-m} \sum_{\lambda \neq 0} \sum_{\mathbf{x}} e_{p^{m}}(\lambda Q(\mathbf{x})+\mathbf{x} \cdot \mathbf{y})}_{S_{2}}
$$

Now, if $\mathbf{y}=\mathbf{0}$, this implies that

$$
|V|=p^{m(n-1)}+S_{2} \quad \Rightarrow \quad S_{2}=|V|-p^{m(n-1)}=\phi(V, \mathbf{0})
$$

Next suppose that $\mathbf{y} \neq \mathbf{0}$. Then, by (4), as some $y_{i} \neq 0$,

$$
S_{1}=p^{-m} \sum_{\mathbf{x}} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y})=p^{-m} \prod_{i=1}^{n} \sum_{x_{i}}^{p^{m}} e_{p^{m}}\left(x_{i} y_{i}\right)=0
$$

while

$$
\begin{align*}
S_{2} & =p^{-m} \sum_{\lambda \neq 0} \sum_{\mathbf{x}} e_{p^{m}}(\lambda Q(\mathbf{x})+\mathbf{x} \cdot \mathbf{y}) \\
& =p^{-m} \sum_{\lambda \neq 0} \underbrace{\sum_{\mathbf{x}} e_{p^{m}}\left(\lambda\left(a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+\cdots+a_{n} x_{n}^{2}\right)+x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}\right)}_{S_{\lambda}} . \tag{9}
\end{align*}
$$

Hence we have $S_{2}=\phi(V, \mathbf{y})$ for all \mathbf{y}. From now on we shall use $\phi(V, y)$ to mean S_{2} and vice versa. The inside sum S_{λ} in (9) may be rewritten

$$
\begin{align*}
S_{\lambda} & =\sum_{\mathbf{x}} e_{p^{m}}\left(\left[\lambda a_{1} x_{1}^{2}+x_{1} y_{1}\right]+\cdots+\left[\lambda a_{n} x_{n}^{2}+y_{n} x_{n}\right]\right) \\
& =\sum_{x_{1}} e_{p^{m}}\left(\lambda a_{1} x_{1}^{2}+y_{1} x_{1}\right) \cdots \sum_{x_{n}} e_{p^{m}}\left(\lambda a_{n} x_{n}^{2}+y_{n} x_{n}\right) \tag{10}\\
& =\prod_{i=1}^{n} \underbrace{\sum_{x_{i}=1}^{p^{m}} e_{p^{m}}\left(\lambda a_{i} x_{1}^{2}+x_{i} y_{i}\right)}_{\text {Gauss sum }} .
\end{align*}
$$

As a consequence of Lemma 3, we have the following Lemma.
Lemma 5. Suppose n is even. Let S_{λ} as in (10). Let $p^{j} \| \lambda, 0 \leqslant j \leqslant m-1$. Assume $p \nmid a_{1} \cdot a_{2} \cdots \cdot a_{n}$. Then

$$
S_{\lambda}= \begin{cases}\left.\delta_{j} p^{(m+j) n / 2} e_{p^{m-j}\left(-\overline{4} \bar{\lambda}^{\prime}\right.} Q^{*}\left(\mathbf{y}^{\prime}\right)\right) & \text { if } p^{j} \mid y_{i} \text { for all } i, \tag{11}\\ 0 & \text { if } p^{j} \nmid y_{i}, \text { for some } i,\end{cases}
$$

where $\lambda^{\prime}=p^{-j} \lambda, y^{\prime}=p^{-j} y$ and

$$
\delta_{j}= \begin{cases}1 & \text { if } m-j \text { is even } \\ \Delta & \text { if } m-j \text { is odd }\end{cases}
$$

with $\Delta=\chi\left((-1)^{n / 2}\right) \chi\left(a_{1} \cdots a_{n}\right)$.
Proof. First let us suppose that $p^{j} \| \lambda$ and that $p^{j} \mid y_{i}$ for all i. Put $\lambda^{\prime}=p^{-j} \lambda$ and $y_{i}^{\prime}=p^{-j} y_{i}$. Then by Lemma 3, if $m-j$ is even,

$$
\begin{aligned}
S_{\lambda} & \left.=e_{p^{m-j}(-\overline{4}}^{a_{1}} \bar{\lambda}^{\prime} y_{1}^{\prime 2}\right) p^{(m+j) / 2} \cdots e_{p^{m-j}}\left(-\overline{4} \overline{a_{n}} \bar{\lambda}^{\prime} y_{n}^{\prime 2}\right) p^{(m+j) / 2} \\
& =p^{(m+j) n / 2} e_{p^{m-j}}\left((-\overline{4}) \overline{a_{1}} \bar{\lambda}^{\prime} y_{1}^{\prime 2}+(-\overline{4}) \overline{a_{2}} \bar{\lambda}^{\prime} y_{2}^{\prime 2}+\cdots+(-\overline{4}) \overline{a_{n}} \bar{\lambda}^{\prime} y_{n}^{\prime 2}\right) \\
& =p^{(m+j) n / 2} e_{p^{m-j}}^{\left.\left((-\overline{4}) \bar{\lambda}^{\prime}\right)\left(\overline{a_{1}} y_{1}^{\prime 2}+\overline{a_{2}} y_{2}^{\prime 2}+\cdots+\overline{a_{n}} y_{n}^{\prime 2}\right)\right)} \\
& =p^{-\overline{4} \bar{\lambda} Q^{*}\left(y_{1}, \ldots, y_{n}\right)=\overline{-4 \lambda} Q^{*}(\mathbf{y}),} \\
& p_{p^{(m+j) n / 2}} e^{m-j}\left(-\overline{4} \bar{\lambda}^{\prime} Q^{*}\left(\mathbf{y}^{\prime}\right)\right),
\end{aligned}
$$

where $Q^{*}(\mathbf{y})$, as defined earlier, is the quadratic form associated with the inverse of the matrix for $Q \bmod p^{m}$. If $m-j$ is odd, then again by Lemma 3,

$$
\begin{aligned}
& \left.S_{\lambda}=\chi\left(4 a_{1} \lambda^{\prime}\right) e_{p^{m-j}(-\overline{4}} \bar{a}_{1} \bar{\lambda}^{\prime} y_{1}^{\prime 2}\right) G_{p} p^{(m+j-1) / 2} \cdots \\
& \text { - } \left.\chi\left(4 a_{1} \lambda^{\prime}\right) e_{p^{m-j}(-\overline{4}} \bar{a}_{n} \bar{\lambda}^{\prime} y_{n}^{\prime 2}\right) G_{p} p^{(m+j-1) / 2} \\
& =p^{n(m+j-1) / 2} G_{p^{n}} \chi\left(4 \lambda^{\prime} a_{1} \cdots 4 \lambda^{\prime} a_{n}\right) e_{p^{m-j}}\left(\overline{(-4)} \bar{\lambda}^{\prime} Q^{*}\left(y_{1}^{\prime 2}+y_{2}^{\prime 2}+\cdots+y_{n}^{\prime 2}\right)\right) \\
& =p^{n(m+j-1) / 2} p^{n / 2} \overbrace{\chi\left((-1)^{n / 2}\right) \underbrace{\chi\left(a_{1} \cdots a_{n}\right)}_{n \text { is even }}}^{\Delta} e_{p^{m-j}}\left(\overline{(-4)} \bar{\lambda}^{\prime} Q^{*}\left(\mathbf{y}^{\prime}\right)\right) \\
& =p^{n(m+j) / 2} \Delta e_{p^{m-j}}\left(\overline{(-4)} \bar{\lambda}^{\prime} Q^{*}\left(\mathbf{y}^{\prime}\right)\right) \text {. }
\end{aligned}
$$

Next suppose that $p^{j} \| \lambda$ but $p^{j} \nmid y_{i}$ for some i. Then it is easily seen that (by Lemma 3) $S_{\lambda}=0$. Thus the proof of Lemma 4 is complete.

By our discussion which will come later in $\$ 4$, Lemma 4 can be generalized to an arbitrary nonsingular quadratic form $\left(\bmod p^{m}\right)$ as follows.

Lemma 6. Let p be an odd prime, n be even and $Q(\mathbf{x})$ any quadratic form. Let $p^{j} \| \lambda, 0 \leqslant j \leqslant$ $m-1$. Assume $\operatorname{det} A_{Q} \not \equiv 0(\bmod p)$, where A_{Q} is the $n \times n$ defining matrix for $Q(\mathbf{x})$. Then

$$
S_{\lambda}= \begin{cases}\delta_{j} p^{(m+j) n / 2} e_{p^{m-j}}\left(-\overline{4} \overline{\lambda^{\prime}} Q^{*}\left(\mathbf{y}^{\prime}\right)\right) & \text { if } p^{j} \mid y_{i}, \text { for all } i, \\ 0 & \text { if } p^{j} \nmid y_{i}, \text { for some } i,\end{cases}
$$

where $\lambda^{\prime}=p^{-j} \lambda, y^{\prime}=p^{-j} y$ and δ_{j} as given in (2).

We are now ready to prove Theorem 1
Proof of Theorem 1. Recall that $\phi(V, \mathbf{y})=p^{-m} \sum_{\lambda \neq 0} S_{\lambda}=S_{2}$. Fix $\mathbf{y}=\left(y_{1}, \ldots, y_{n}\right)$. Put $\mathbf{y}^{\prime}=p^{-j} \mathbf{y}$, $\lambda^{\prime}=p^{-j} \lambda$. Then according to Lemma 5 ,

$$
\begin{aligned}
\sum_{\lambda=1}^{p^{m}-1} S_{\lambda} & =\sum_{\substack{j=0 \\
p^{j} \mid y_{i}, \text { for all } i}}^{m-1} \sum_{p^{j} \| \lambda} \delta_{j} p^{(m+j) n / 2} e_{p^{m-j}}\left(-\overline{4} \bar{\lambda}^{\prime} Q^{*}\left(\mathbf{y}^{\prime}\right)\right) \\
& =\sum_{\substack{j=0 \\
p^{j} \mid y_{i}, \text { for all } i}}^{m-1} \delta_{j} p^{(m+j) n / 2} \sum_{\substack{\lambda^{\prime}=1 \\
p \nmid \lambda^{\prime}}}^{p^{m-j}} e_{p^{m-j}}\left(-\overline{4} \bar{\lambda}^{\prime} Q^{*}\left(\mathbf{y}^{\prime}\right)\right) \\
& =\sum_{\substack{j=0 \\
m-1}} \delta_{j} p^{(m+j) n / 2} \omega_{j}\left(\mathbf{y}^{\prime}\right), \\
& p^{j} \mid y_{i}, \text { for all } i
\end{aligned}
$$

where we have used Lemma 1 applied to the second sum in the second step above. Hence, it follows that

$$
\phi(V, \mathbf{y})=p^{-m} \sum_{\substack{j=0 \\ p^{j} \mid y_{i}, \text { for all } i}}^{m-1} \delta_{j} p^{(m+j) n / 2} \omega_{j}\left(\mathbf{y}^{\prime}\right)=p^{(m n / 2)-m} \sum_{\substack{j=0 \\ p^{j} \mid y_{i} \text { forall } i}}^{m-1} \delta_{j} p^{j n / 2} \omega_{j}\left(\mathbf{y}^{\prime}\right) .
$$

This completes the proof of Theorem 1.

4. Remark

In the last section we calculated $\phi(V, \mathbf{y})$ for the case of diagonal quadratic forms. Suppose now that $Q(\mathbf{x})$ is any quadratic form. Let $V_{p^{m}}$ be the set of solution of the quadratic congruence $Q(\mathbf{x}) \equiv 0\left(\bmod p^{m}\right)$. Let $\mathbf{x}=T(\mathbf{u})$ where T is a transformation that diagonalizes Q, so that $Q(T(\mathbf{u}))=Q_{1}(\mathbf{u})$, a diagonal quadratic form. Let $V_{p^{m}}^{\prime}$ be the set of solution of the quadratic congruence $Q_{1}(\mathbf{u}) \equiv 0\left(\bmod p^{m}\right)$. Set $T^{t}(\mathbf{y})=\mathbf{v}$. We first show that $\phi\left(V_{p^{m}}, \mathbf{y}\right)=$ $\phi\left(V_{p^{m}}^{\prime}, \mathbf{v}\right)$. Note that, since T is a nonsingular transformation $\bmod p, \mathbf{y} \equiv \mathbf{0}(\bmod p)$ is equivalent to $\mathbf{v} \equiv \mathbf{0}(\bmod p)$. If $\mathbf{y} \equiv \mathbf{0}(\bmod p)$, then

$$
\phi\left(V_{p^{m}}, \mathbf{y}\right)=\left|V_{p^{m}}\right|-p^{2(n-1)}=\left|V_{p^{m}}^{\prime}\right|-p^{2(n-1)}=\varphi\left(V_{p^{m}}^{\prime}, \mathbf{v}\right)
$$

For $\mathbf{y} \not \equiv \mathbf{0}(\bmod p)$, we have

$$
\begin{aligned}
\phi\left(V_{p^{m}}, \mathbf{y}\right) & =\sum_{\mathbf{x} \in V_{p^{m}}} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y}) \\
& =\sum_{Q(\mathbf{x}) \equiv 0\left(\bmod p^{m}\right)} e_{p^{m}}(\mathbf{x} \cdot \mathbf{y})
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{Q(T(\mathbf{u})) \equiv 0\left(\bmod p^{m}\right)} e_{p^{m}}(T(\mathbf{u}) \cdot \mathbf{y}) \\
& =\sum_{Q_{1}(\mathbf{u}) \equiv 0\left(\bmod p^{m}\right)} e_{p^{m}}\left(\mathbf{u} \cdot T^{t}(\mathbf{y})\right) \\
& =\sum_{\mathbf{u} \in V_{p^{m}}^{\prime}} e_{p^{m}}\left(\mathbf{u} \cdot T^{t}(\mathbf{y})\right) \\
& =\phi\left(V_{p^{m}}^{\prime}, T^{t}(\mathbf{y})\right) \\
& =\phi\left(V_{p^{m}}^{\prime}, \mathbf{v}\right) .
\end{aligned}
$$

Say $Q(\mathbf{x})=\mathbf{x}^{t} A_{Q} \mathbf{x}$, where A_{Q} is the associated matrix for Q. Then

$$
Q_{1}(\mathbf{u})=Q(T(\mathbf{u}))=(T(\mathbf{u}))^{t} A_{Q}(T(\mathbf{u}))=\mathbf{u}^{t} \underbrace{T^{t} A_{Q} T}_{A_{Q_{1}}} \mathbf{u}
$$

And

$$
Q_{1}^{*}(\mathbf{v})=Q_{1}^{*}\left(T^{t}(\mathbf{y})\right)=\left(T^{t} \mathbf{y}\right)^{t}\left[T^{-1} A_{Q}^{-1}\left(T^{t}\right)^{-1}\right] T^{t}(\mathbf{y})=\mathbf{y}^{\mathbf{t}} A_{Q}^{-1} \mathbf{y}=Q_{1}^{*}(\mathbf{y})
$$

Thus by our result for diagonal forms we have for the original quadratic form that

$$
\phi(V, \mathbf{y})=p^{(m n / 2)-m} \sum_{\substack{j=0 \\ p^{j} \mid y_{i} \text { for all } i}}^{m-1} \delta_{j} p^{j n / 2} \omega_{j}\left(\mathbf{y}^{\prime}\right),
$$

where δ_{j} and ω_{j} as defined in (2) and (3).

Acknowledgement

The author would like to thank the anonymous referee for his productive and useful comments and suggestions.

References

[1] L. Carlitz, Weighted quadratic partitions over a finite field, Cand. J. Math., 5 (1953), 317-323.
[2] ——, Weighted quadratic partitions ($\bmod p^{r}$), Math Zeitschr. Bd., 59(1953), 40-46.
[3] T. Cochrane and Z. Zheng, Pure and mixed exponential sums, Acta Arithmetica, XCI.3. (1999), 249-278.
[4] A. Hakami, Small zeros of quadratic congruences to a prime power modulus. PhD thesis, Kansas State University, 2009.

[^0]E-mail: aalhakami@kku.edu.sa

[^0]: Department of Mathematics, King Khalid University, P.O.Box 9004, Abha, Postal Code: 61431, Saudi Arabia.

