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WEIGHTED QUADRATIC PARTITIONS MODULO P m

A NEW FORMULA AND A NEW DEMONSTRATION

ALI H. HAKAMI

Abstract. Let Q(x) = Q(x1, x2, . . . , xn ) be a quadratic form over Z, p be an odd prime. Let

V =VQ =Vpm denote the set of zeros of Q(x) in Zpm and |V | denotes the cardinality of V .

Set φ(Vpm ,y) =
∑

x∈V epm (x ·y) for y 6= 0 and φ(Vpm ,y) =
∣
∣Vpm

∣
∣− pm(n−1) for y = 0. In this

paper, we shall give a formula for the calculation of the function φ(V ,y).

1. Introduction

Let Q(x) = Q(x1, x2, . . . , xn) =
∑

1ÉiÉ jÉn ai j xi x j be a quadratic form with integer coeffi-

cients and p be an odd prime. Suppose that n is even and det AQ 6≡ 0 (mod p), where AQ is

n ×n defining matrix for Q(x). Let Vpm =Vpm (Q) denote the set of zeros of Q in Zn
pm . Let

∆pm (Q) =







(

(−1)n/2 det AQ /p
)

if p ∤ det AQ ,

0 if p
∣
∣det AQ ,

where (./p) denotes the Legendre-Jacobi symbol and let Q∗(x) be the inverse of the matrix

representing Q(x), ( mod pm). For y ∈Zn
pm set

φ(Vpm ,y) =







∑

x∈V epm (x ·y) for y 6= 0,
∣
∣Vpm

∣
∣−pm(n−1) for y = 0,

where epm (x) = e2πi x/pm

.

The purpose of this paper is to give an simpler formula for the calculation of the function

φ(V ,y). We shall first calculate the Gauss sum

S = S( f , pm) =
pm
∑

x=1

epm

(

f (x)
)

, (1)

for f (x)=λax2+x y, (λ, a, y ∈Z) and then we apply this sum to calculate the function φ(V ,y).

The final result is stated in the following theorem.
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Theorem 1. Let n be an even positive integer. For y ∈Zn , put y′ = p− j y in case p
∣
∣y , (i.e., p

∣
∣yi

for all i). Then

φ(V ,y) = p (mn/2)−m
m−1∑

j=0

p j |yi f or all i

δ j p j n/2ω j (y′),

where

δ j =







1 i f m − j i s even,

∆ i f m − j i s odd ,
(2)

and

ω j (y′) =







pm− j −pm− j−1, pm− j
∣
∣Q∗(y′),

−pm− j−1, pm− j−1
∥
∥Q∗(y′),

0, pm− j−1 ∤Q∗(y′).

(3)

Theorem 1 is given, in other forms in Carlitz papers [1] for m = 1 and in [2] for m = any

positive integer. Also his proof needs some work. We shall devote the rest of §3 to give the

proof in complete detail.

2. Preliminaries

In order to proceed from congruences (mod p) to congruences (mod pm), we need to

generalize results for exponential sums. Let Zpm = Z/(pm). Then we have the basic orthogo-

nality relationship that for any y ∈Zn
pm ,

∑

x∈Zn
pm

epm (x ·y) =







pmn i f y = 0,

0 i f y 6= 0.
(4)

Let G(pm) denote the multiplicative group of units modulo pm . Then

Lemma 2. [[4] , Lemma 1.5.] Let λ, a ∈Z. For any odd prime p and any positive integer m,

∑

λ∈G(pm )

epm (λa)=







pm −pm−1 i f pm |a,

−pm−1 i f pm−1‖a,

0 i f pm−1 ∤ a.

Let g be a polynomial with integer coefficients and let

S(g , pm) =
pm
∑

x=1

epm

(

g (x)
)

,
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where pm is a prime power with m Ê 2. Next lemma evaluates and estimates the pure expo-

nential sum S(g , pm). But to state the statement of this lemma, let ordp (x) denote the normal

exponent valuation on the p-adic field. In particular, for x 6= 0 ∈ Z, pordp (x) ‖x . For conve-

nience, we set ordp (0) =∞. For any nonzero polynomial g = g (X ) = a0 + a1X + ·· ·+ ad X d ∈
Z[X ] we define

ordp (g ) := min
0ÉiÉd

{ordp (ai )}.

For any polynomial g over Z we define

t = t (g ) := ordp

(

g ′(X )
)

,

where g ′ = g ′(X ) denotes the derivative of g (X ). Also we define the set of critical points asso-

ciated with the sum S(g , pm) to be the set

A =A (g , p) := {α1, . . . ,αD },

of zeros of the congruence

p−t g ′(x) ≡ 0 ( mod p), (5)

where t = ordp (g ′). For any α ∈ A let ν = να denote the multiplicity of α as a zero of the

congruence (5).

Write

S(g , pm)=
p−1∑

α=0

Sα,

where for any integer α,

Sα = Sα(g , pm) :=
pm
∑

x=1
x≡α( mod p)

epm (g (x)).

Lemma 3. [[3], Theorem2.1] Let p be an odd prime and g be a non-constant polynomial de-

fined over Z. If m Ê t +2 then for any integer α we have:

(i) If α ∉A then Sα(g , pm)= 0.

(ii) If α is a critical point of multiplicity ν then

∣
∣Sα(g , pm)

∣
∣Éνp t /(ν+1)p(m(1−1/(ν+1)). (6)

(iii) If α is a critical point of multiplicity one then

Sα(g , pm) =







epm

(

g (α∗)
)

p(m+t )/2 i f m − t i s even,

χ(Aα) epm

(

g (α∗)
)

Gp p(m+t−1)/2 i f m − t i s odd,
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whereα∗ is the unique lifting ofα∗ to a solution of the congruence p−t g ′(x) ≡ 0 ( mod p [(m−t+1)/2]),

and Aα ≡ 2p−t g ′′(α∗)( mod p). In particular, we have equality in (6). Here Gp is the classical

Gauss sum,

Gp :=
p∑

x=1

ep (x2) =







p
p if p ≡ 1 ( mod 4),

i
p

p if p ≡ 3 ( mod 4),

and χ is the quadratic character mod p.

3. Determination of φ(V ,y) modulo pm

We start this section by calculating the sum S( f , pm). The following lemma allows us to

find the evaluation of φ(V ,y). A special case of this lemma (when m = 2) was proved in [[4],

Lemma 2.3].

Lemma 4. Let p be an odd prime with p ∤ a and λ, a ∈ Z. Let the sum S as in (1). Let j ∈
{0,1,2, . . . ,m −1}. Then

S =







epm− j (−4̄āλ̄′ y ′2)p (m+ j )/2 i f p j ‖λ , p j
∣
∣y and m − j i s even,

χ
(

4aλ′)epm− j

(

−4̄āλ̄′y ′2) Gp p(m+ j−1)/2 i f p j ‖λ , p j
∣
∣y and m − j i s odd,

0 i f p j ‖λ , but p j ∤ y,

where χ is the Legendre Symbol , λ′ =λp− j , y ′ = y p− j and λ̄, λ̄′, ā are inverses mod pm .

Proof. We shall require applying Lemma 2. Assume that p ∤ a. Then the critical point congru-

ence is

p−t f ′(x) ≡ 0 ( mod p),

or equivalently,

p−t (λa2x + y) ≡ 0 ( mod p), (7)

where t = ordp ( f ′). Now we have to treat two cases:

Case (i): Assume that p j ‖λ and p j
∣
∣y , with j ∈ {0,1,2, . . . ,m − 1}. Then t = j because

p t
∥
∥(2aλ, y). Thus (7) is equivalent to

2a
λ

p j
x ≡−

y

p j
( mod p). (8)

Put λ′ =λ/p j and y ′ = y/p j , then (8) becomes

2aλ′ x ≡−y ′ ( mod p),
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or equivalently, there is a unique critical point α given by

α= x ≡−2aλ′y ′ ( mod p).

Thus if m − j is even,

S = Sα = epm

(

f (α∗)
)

p (m+t )/2 = epm

(

λaα∗2

+ yα∗
)

p(m+ j )/2,

where α∗ is the unique lifting of α, to a solution of (7) mod p(m− j+1)/2. We can take α∗ ≡
−2̄ ā λ̄′ y ′ ( mod pm) where ā, λ̄ are inverses mod pm . Then

f (α∗) =λaα∗2 + yα∗ ≡ p jλ′aλ′24̄ā2 y ′2 −p j y ′2λ̄′2a ( mod pm)

≡ p j y ′2(4̄āλ′− 2̄āλ′) ( mod pm)

≡ −4̄āλ̄′y ′2p ( mod pm)

and so Sα = epm− j (−4̄āλ̄′y ′2)p(m+ j )/2.

If m − j is odd, then

Aα ≡ 2p−t f ′′(α∗) ≡ 2p− j 2aλ ≡ 4aλ′ ( mod p).

Thus

S = Sα = χ(Aα)epm (λaα∗2 + yα∗)Gp p(m+ j−1)/2

= χ (4aλ′)epm− j (−4̄āλ̄′y ′2)Gp p (m+ j−1)/2.

Case (ii): Suppose that p j ‖λ but p j ∤ y , with j ∈ {1,2, . . . ,m−1}; say pk
∥
∥y with k < j . Then we

see that t = k . By (7), the critical point congruence is

p t (2aλx) ≡−y p−t ( mod p),

or equivalently,

0 ≡−y pk ( mod p),

which has no solution. Consequently S = 0, and this completes the proof of Lemma 3. ���

Now we shall evaluate φ(V ,y) for the case of a diagonal quadratic form.

Suppose that (x) =
∑n

i=1 ai x2
i

; with p ∤ ai , 1 É i É n. We remark that if y 6= 0, then by the

orthogonality property of exponential sums,

∑

x∈V

epm (x ·y) =
∑

x∈Zn
pm

p−m

(
pm−1∑

λ=0

epm (λQ(x))

)

epm (x ·y)

= p−m
∑

λ

∑

x

epm (λQ(x)+x ·y)
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= p−m
∑

x

epm (x ·y)

︸ ︷︷ ︸

S1

+p−m
∑

λ6=0

∑

x

epm (λQ(x)+x ·y)

︸ ︷︷ ︸

S2

.

Now, if y = 0, this implies that

|V | = pm(n−1) +S2 ⇒ S2 = |V |−pm(n−1) =φ(V ,0).

Next suppose that y 6= 0. Then, by (4), as some yi 6= 0,

S1 = p−m
∑

x

epm (x ·y) = p−m
n∏

i=1

pm
∑

xi

epm (xi yi ) = 0,

while

S2 = p−m
∑

λ6=0

∑

x

epm (λQ(x)+x ·y)

= p−m
∑

λ6=0

∑

x

epm

(

λ(a1x2
1 +a2x2

2 +·· ·+an x2
n)+x1 y1 +x2 y2 +·· ·+xn yn

)

︸ ︷︷ ︸

Sλ

.

(9)

Hence we have S2 = φ(V ,y) for all y. From now on we shall use φ(V ,y) to mean S2 and vice

versa. The inside sum Sλ in (9) may be rewritten

Sλ =
∑

x

epm

(

[λa1x2
1 +x1 y1]+·· ·+ [λan x2

n + yn xn]
)

=
∑

x1

epm (λa1x2
1 + y1x1) · · ·

∑

xn

epm (λan x2
n + yn xn) (10)

=
n∏

i=1

pm
∑

xi=1

epm (λai x2
1 +xi yi )

︸ ︷︷ ︸

Gauss sum

.

As a consequence of Lemma 3, we have the following Lemma.

Lemma 5. Suppose n is even. Let Sλ as in (10). Let p j ‖λ , 0 É j É m−1. Assume p ∤ a1·a2 ·· · ··an .

Then

Sλ =







δ j p(m+ j )n/2epm− j (−4λ′Q∗(y′)) i f p j
∣
∣yi f or al l i ,

0 i f p j ∤ yi , f or some i ,
(11)
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where λ′ = p− jλ, y ′ = p− j y and

δ j =







1 i f m − j i s even,

∆ i f m − j i s odd ,

with∆= χ
(

(−1)n/2
)

χ(a1 · · ·an).

Proof. First let us suppose that p j ‖λ and that p j
∣
∣yi for all i . Put λ′ = p− jλ and y ′

i
= p− j yi .

Then by Lemma 3, if m − j is even,

Sλ = epm− j (−4̄a1λ̄
′ y ′

1
2)p(m+ j )/2 · · ·epm− j (−4̄anλ̄

′ y ′
n

2)p (m+ j )/2

= p(m+ j )n/2epm− j

(

(−4̄)a1 λ̄
′ y ′

1
2 + (−4̄)a2λ̄

′ y ′
2

2 +·· ·+ (−4̄)an λ̄′ y ′
n

2
)

= p(m+ j )n/2epm− j

((

(−4̄) λ̄′)(

a1 y ′
1

2 + a2 y ′
2

2 +·· ·+an y ′
n

2
))

︸ ︷︷ ︸

−4̄λ̄Q∗(y1,...,yn)=−4λQ∗(y),

= p(m+ j )n/2epm− j

(

−4̄λ̄′Q∗(y′)
)

,

where Q∗(y), as defined earlier, is the quadratic form associated with the inverse of the matrix

for Q mod pm. If m − j is odd, then again by Lemma 3,

Sλ= χ(4a1λ
′)epm− j (−4̄ā1λ̄

′y ′
1

2)Gp p (m+ j−1)/2 · · · ·

· χ(4a1λ
′)epm− j (−4̄ānλ̄

′y ′
n

2)Gp p(m+ j−1)/2

= pn(m+ j−1)/2Gpn χ(4λ′a1 · · ·4λ′an)epm− j

(

(−4) λ̄′Q∗(y ′
1

2 + y ′
2

2 +·· ·+ y ′
n

2)
)

= pn(m+ j−1)/2pn/2

∆
︷ ︸︸ ︷

χ((−1)n/2) χ(a1 · · ·an)
︸ ︷︷ ︸

n is even

epm− j

(

(−4) λ̄′ Q∗(y′)
)

= pn(m+ j )/2
∆epm− j

(

(−4) λ̄′ Q∗(y′)
)

.

Next suppose that p j ‖λ but p j ∤ yi for some i . Then it is easily seen that (by Lemma 3) Sλ= 0.

Thus the proof of Lemma 4 is complete. ���

By our discussion which will come later in §4, Lemma 4 can be generalized to an arbitrary

nonsingular quadratic form ( mod pm) as follows.

Lemma 6. Let p be an odd prime, n be even and Q(x) any quadratic form. Let p j ‖λ , 0 É j É
m −1. Assume det AQ 6≡ 0( mod p), where AQ is the n ×n defining matrix for Q(x). Then

Sλ =







δ j p(m+ j )n/2epm− j (−4λ′Q∗(y′)) i f p j
∣
∣yi , f or al l i ,

0 i f p j ∤ yi , f or some i ,

where λ′ = p− jλ, y ′ = p− j y and δ j as given in (2).
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We are now ready to prove Theorem 1

Proof of Theorem 1. Recall that φ(V ,y) = p−m ∑

λ6=0 Sλ = S2. Fix y = (y1, . . . , yn). Put y′ = p− j y,

λ′ = p− jλ. Then according to Lemma 5,

pm−1∑

λ=1

Sλ =
m−1∑

j=0

p j |yi , for all i

∑

λ
p j ‖λ

δ j p(m+ j )n/2epm− j

(

−4̄λ̄′Q∗(y′)
)

=
m−1∑

j=0

p j |yi , for all i

δ j p(m+ j )n/2
pm− j
∑

λ′=1
p∤λ′

epm− j

(

−4̄λ̄′Q∗(y′)
)

=
m−1∑

j=0

p j |yi , for all i

δ j p(m+ j )n/2 ω j (y′),

where we have used Lemma 1 applied to the second sum in the second step above. Hence, it

follows that

φ(V ,y) = p−m
m−1∑

j=0

p j |yi , for all i

δ j p(m+ j )n/2 ω j (y′)= p(mn/2)−m
m−1∑

j=0

p j |yi forall i

δ j p j n/2ω j (y′).

This completes the proof of Theorem 1. ���

4. Remark

In the last section we calculated φ(V ,y) for the case of diagonal quadratic forms. Sup-

pose now that Q(x) is any quadratic form. Let Vpm be the set of solution of the quadratic

congruence Q(x) ≡ 0(mod pm). Let x = T (u) where T is a transformation that diagonalizes

Q , so that Q(T (u)) = Q1(u), a diagonal quadratic form. Let V ′
pm be the set of solution of

the quadratic congruence Q1(u) ≡ 0(mod pm). Set T t (y) = v. We first show that φ(Vpm ,y) =
φ(V ′

pm ,v). Note that, since T is a nonsingular transformation mod p, y ≡ 0 ( mod p) is equiva-

lent to v ≡ 0 ( mod p). If y ≡ 0 ( mod p), then

φ(Vpm ,y) =
∣
∣Vpm

∣
∣−p2(n−1) =

∣
∣
∣V ′

pm

∣
∣
∣−p2(n−1) =ϕ(V ′

pm ,v).

For y 6≡ 0 ( mod p), we have

φ(Vpm ,y)=
∑

x∈Vpm

epm (x ·y)

=
∑

Q(x)≡0( mod pm )

epm (x ·y)
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=
∑

Q(T (u))≡0( mod pm )

epm (T (u) ·y)

=
∑

Q1(u)≡0( mod pm )

epm (u ·T t (y))

=
∑

u∈V ′
pm

epm (u ·T t (y))

=φ(V ′
pm ,T t (y))

=φ(V ′
pm ,v).

Say Q(x) = xt AQ x, where AQ is the associated matrix for Q . Then

Q1(u) =Q (T (u)) = (T (u))t AQ (T (u)) =ut T t AQ T
︸ ︷︷ ︸

AQ1

u

And

Q∗
1 (v) =Q∗

1

(

T t (y)
)

=
(

T t y
)t

[

T −1 A−1
Q (T t )−1

]

T t (y)= yt A−1
Q y =Q∗

1 (y).

Thus by our result for diagonal forms we have for the original quadratic form that

φ(V ,y) = p(mn/2)−m
m−1∑

j=0

p j |yi for all i

δ j p j n/2ω j (y′),

where δ j and ω j as defined in (2) and (3).
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