Available online at http://journals.math.tku.edu.tw/

COMMON FIXED POINT THEOREMS FOR CONTRACTION TYPE MAPPINGS IN PARTIALLY ORDERED METRIC SPACES

CHI-MING CHEN AND CHING-JU LIN

Abstract. The purpose of this paper is to present common fixed point theorems for a stronger Meir-Keeler type mapping in partially ordered metric space. Our results generalize some recent results.

1. Introduction and Preliminaries

Throughout this paper, by \Re^+ we denote the set of all nonnegative numbers, while \mathscr{N} is the set of all natural numbers. Existence of fixed point for contraction type maps in partially ordered sets has been considered recently in [1, 2, 3, 4, 5, 6, 7, 10].

In this paper, we define a stronger Meir-Keeler type mapping $\psi : \Re^+ \to [0,1)$ and we present a common fixed point theorem for this generalized nonlinear contraction in partially ordered complete metric spaces.

In 1973, Geraghty [8] introduced the following generalization of Banach's contraction principle.

Let *S* denote the class of the functions $\beta : \Re^+ \to [0, 1)$ which satisfy the condition

$$\beta(t_n) \to 1 \Rightarrow t_n \to 0.$$

Theorem 1 ([8]). Let (X, d) be a complete metric space, and let $f : X \to X$ be a mapping satisfying

$$d(fx, fy) \leq \beta(d(x, y)) \cdot d(x, y), \text{ for } x, y \in X,$$

where $\beta \in S$. Then f has a unique fixed point $z \in X$ and $\{f^n(x)\}$ converges to z for each $x \in X$.

Recently, A. Amini-Harandi and H. Emami^[3] proved a version of Theorem 1 in the context of complete partially ordered metric spaces, as follows:

*Research supported by the NSC.

Corresponding author: Chi-Ming Chen.

²⁰¹⁰ Mathematics Subject Classification. 47H10, 54C60, 54H25, 55M20.

Key words and phrases. Complete partially ordered space, common fixed point theorem, stronger Meir-Keeler type mapping.

Theorem 2 ([3]). Let (X, \leq) be a partially ordered set and suppose that there exists a metric din X such that (X, d) is a complete metric space. Let $f : X \to X$ be an increasing mapping such that there exists an element $x_0 \in X$ with $x_0 \leq f x_0$. Suppose that there exists $\beta \in S$ such that

$$d(fx, fy) \le \beta(d(x, y)) \cdot d(x, y), \text{ for } x, y \in X \text{ with } x \ge y.$$

Assume that either f is continuous or X is such that

if an increasing sequence
$$\{x_n\} \to x$$
 in X, then $x_n \leq x, \forall n$.

Besides, if

for each $x, y \in X$ there exists $z \in X$ which is comparable to x and y.

Then f has a unique fixed point.

We recall the notion of the Meir-Keeler type mapping. A function $\psi : \Re^+ \to \Re^+$ is said to be a Meir-Keeler type mapping(see [9]), if for each $\eta \in \Re^+$, there exists $\delta > 0$ such that for $t \in \Re^+$ with $\eta \le t < \eta + \delta$, we have $\psi(t) < \eta$. We now define a new stronger Meir-Keeler conetype mapping, as follows:

Definition 1. A mapping $\psi : \Re^+ \to [0, 1)$ is called a stronger Meir-Keeler type mapping, if for each $\eta > 0$, there exists $\delta > 0$ such that for $t \in \Re^+$ with $\eta \le t < \delta + \eta$, there exists $\gamma_\eta \in [0, 1)$ such that $\psi(t) < \gamma_\eta$.

Example 1. Le ψ : $\Re^+ \to [0, 1)$ be defined as $\psi(t) = \frac{t}{t+1}$, then ψ is a stronger Meir-Keeler type mapping.

2. Main results

Definition 2 ([4]). Let (X, \leq) be a partially ordered set and $f, g : X \to X$. Then f is said to be g-nondecreasing if for $x, y \in X$,

$$gx \leq gy \Longrightarrow fx \leq fy.$$

In the sequel, we prove the main result of this paper.

Theorem 3. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let $f, g : X \to X$ be such that $fX \subset gX$, and f be a g-nondecreasing mapping. Suppose that there exists a stronger Meir-Keeler type mapping $\psi : \Re^+ \to [0, 1)$ such that

$$d(fx, fy) \le \psi(d(gx, gy)) \cdot d(gx, gy), \text{ for } x, y \in X \text{ with } gx \ge gy.$$
(1)

Also suppose,

$$if \{gx_n\} \subset X \text{ is a nondecreasing sequence with } gx_n \to gz \in gX,$$

then $gx_n \leq gz$ and $gz \leq g^2 z$ for all $n \in \mathcal{N}$. (2)

Suppose also that gX is closed. If there exists an $x_0 \in X$ with $gx_0 \leq fx_0$, then f and g have a coincidence point.

Further, if f, g commute at their coincidence points, then f and g have a common fixed point in X.

Proof. Given $x_0 \in X$ such that $gx_0 \leq fx_0$. Since $fX \subset gX$, we can choose $x_1 \in X$ such that $gx_1 = fx_0$. Continuing this process, we define the sequence $\{x_n\}$ in X recursively as follows:

$$f x_n = g x_{n+1}$$
, for all $n \in \mathcal{N}$.

Since $gx_0 \leq fx_0$ and *f* is a *g*-nondecreasing mapping, we have

$$f x_0 \le f x_1 \le f x_2 \cdots \le f x_n \le f x_{n+1} \le \cdots$$

In what follows we will suppose that $d(fx_n, fx_{n+1}) > 0$ for all $n \in \mathcal{N}$, since if $fx_{n+1} = fx_n$ for some *n*, then $fx_{n+1} = gx_{n+1}$, that is, *f* and *g* have a coincidence point x_{n+1} , and so we complete the proof.

By (1), we have

$$d(fx_n, fx_{n+1}) \le \psi(d(gx_n, gx_{n+1})) \cdot d(gx_n, gx_{n+1})$$

$$\le d(gx_n, gx_{n+1})$$

$$\le d(fx_{n-1}, fx_n).$$
(*)

Then the sequence $\{d(fx_{n+1}, fx_n)\}$ is descreasing and bounded below. Let $\lim_{n\to\infty} d(fx_{n+1}, fx_n) = \eta \ge 0$. Then there exists $\kappa_0 \in \mathcal{N}$ and $\delta > 0$ such that for all $n > \kappa_0$

$$\eta \le d(fx_{n+1}, fx_n) < \eta + \delta.$$

For each $n \in \mathcal{N}$, since $\psi : \Re^+ \to [0, 1)$ is a stronger Meir-Keeler type mapping, for these η and $\delta > 0$ we have that for $d(f x_{\kappa_0+n+1}, f x_{\kappa_0+n}) \in \Re^+$ with $\eta \le d(f x_{\kappa_0+n+1}, f x_{\kappa_0+n}) < \delta + \eta$, there exists $\gamma_\eta \in [0, 1)$ such that $\psi(d(f x_{\kappa_0+n+1}, f x_{\kappa_0+n})) < \gamma_\eta$. Thus, by (*), we can deduce

$$d(fx_{\kappa_0+n+1}, fx_{\kappa_0+n}) = \psi(d(fx_{\kappa_0+n}, fx_{\kappa_0+n-1})) \cdot d(fx_{\kappa_0+n}, fx_{\kappa_0+n-1})$$

< $\gamma_\eta d(fx_{\kappa_0+n}, fx_{\kappa_0+n-1}),$

and it follows that for each $n \in \mathcal{N}$

$$d(f x_{\kappa_0+n+1}, f x_{\kappa_0+n}) < \gamma_{\eta} d(f x_{\kappa_0+n}, f x_{\kappa_0+n-1})$$

< \dots
< \gamma_n^n d(f x_{\kappa_0+1}, f x_{\kappa_0}).

So

$$\lim_{n\to\infty} d(f x_{\kappa_0+n+1}, f x_{\kappa_0+n}) = 0, \text{ since } \gamma_\eta < 1.$$

We now claim that $\lim_{n\to\infty} d(f x_{\kappa_0+m}, f x_{\kappa_0+n}) = 0$ for m > n. For $m, n \in \mathcal{N}$ with m > n, we have

$$d(fx_{\kappa_0+m}, fx_{\kappa_0+n}) \leq \sum_{i=n}^{m-1} d(fx_{\kappa_0+i+1}, fx_{\kappa_0+i}) < \frac{\gamma_{\eta}^{m-1}}{1-\gamma_{\eta}} d(fx_{\kappa_0+1}, fx_{\kappa_0}),$$

and hence $d(fx_m, fx_n) \rightarrow 0$, since $0 < \gamma_\eta < 1$. So $\{fx_n\}$ is a Cauchy sequence.

Since gX is closed and $\{fx_n\} = \{gx_{n+1}\} \subset gX$, there exists $\mu \in X$ such that

$$\lim_{n\to\infty}gx_n=g\mu=\lim_{n\to\infty}fx_n.$$

Now we claim that μ is a coincidence point of f and g. Using (1), we have

$$\begin{aligned} d(g\mu, f\mu) &\leq d(g\mu, fx_n) + d(fx_n, f\mu) \\ &\leq d(g\mu, fx_n) + \psi(d(gx_n, g\mu)) \cdot d(gx_n, g\mu) \\ &< d(g\mu, fx_n) + d(gx_n, g\mu). \end{aligned}$$

Letting $n \to \infty$, we get $g\mu = f\mu$.

Suppose that *f* and *g* commute at μ . Let $v = g\mu = f\mu$. Then

$$fv = fg\mu = gf\mu = gv$$

By (2), since $g\mu \leq g^2\mu = g\nu$, $g\mu = f\mu$ and $g\nu = f\nu$, we deduce

$$\begin{split} d(f\mu, f\nu) &\leq \psi(d(g\mu, g\nu)) \cdot d(g\mu, g\nu) \\ &< d(f\mu, f\nu). \end{split}$$

Hence $d(f\mu, f\nu) = 0$, that is $d(\nu, f\nu) = 0$. Therefore,

$$fv = gv = v$$
.

So we proved that *f* and *g* have a common fixed point in *X*.

By Theorem 3, if g = I = the identity mapping, then we immediate obtain the following corollaries.

Corollary 1. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Let $f : X \to X$ be a nondecreasing mapping. Suppose that there exists a stronger Meir-Keeler type mapping $\psi : \Re^+ \to [0, 1)$ such that

$$d(fx, fy) \le \psi(d(x, y)) \cdot d(x, y), \text{ for } x, y \in X \text{ with } x \le y.$$

Also suppose,

if
$$\{x_n\} \subset X$$
 is a nondecreasing sequence with $x_n \to z \in X$

then
$$x_n \leq z$$
 for all $n \in \mathcal{N}$.

If there exists an $x_0 \in X$ with $x_0 \leq f x_0$, then f has a fixed point in X.

Corollary 2. Let (X, \leq) be a partially ordered set and suppose that there exists a metric d in X such that (X, d) is a complete metric space. Suppose $f : X \to X$ be a nondecreasing mapping and

$$d(f x, f y) \le k d(x, y)$$
, for $x, y \in X$ with $x \le y$ where $k \in (0, 1)$.

Also suppose,

if $\{x_n\} \subset X$ *is a nondecreasing sequence with* $x_n \to z \in X$ *,*

then
$$x_n \leq z$$
 for all $n \in \mathcal{N}$.

If there exists an $x_0 \in X$ with $x_0 \leq f x_0$, then f has a fixed point in X.

References

- [1] R. P. Agarwal, M. A. El-Gebeily and D. O'Regan, *Generalized contractions in partially ordered metric spaces*, Appl. Anal., **87**(2008), 109–116.
- [2] I. Altun and G. Durmaz, Some fixed point theorems on ordered cone metric spaces, Rend. Circ. Mat. Palermo, 58(2009), 319–325.
- [3] A. Amini-Harandi and H. Emami, *A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations*, Nonlinear Anal., **72**(2010), 2238–2242.
- [4] L. Ciric, N. Cakic, M. Rajovic and J. S. Ume, *Monotone generalized nonlinear contractions in partially ordered metric spaces*, Fixed Point Theory Appl., 2008(2008), Article ID 131294, 11 pages.
- [5] T. Gnana Bhaskar and V. Lakshmikantham, *Fixed point theorems in partially ordered metric spaces and applications*, Nonlinear Anal., **65**(2006), 1379–1393.
- [6] V. Lakshmikantham and L. Ciric, *Coupled fixed point theorems for nonlinear contractions in partially ordered metric spaces*, Nonlinear Anal., **70**(2009), 4341–4349.
- [7] J. Caballero, J. Harjani and K. Sadarangani, *Contractive-like mapping principles in ordered metric spaces and application to ordinary differential equations*, Fixed Point Theory Appl., 2010(2010), Article ID 916064, 14 pages.
- [8] M. Geraghty, On contractive mappings, Proc. Amer. Math. Soc., 40(1973), 604–608.
- [9] A. Meir and E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl., 28(1969), 326-329.
- [10] B. Samet and C. Vetro, *Coupled fixed point, F-invariant set and fixed point of N-order*, Ann. Funct. Anal. 1(2010), 46–56.

Department of Applied Mathematics, National Hsinchu University of Education, Taiwan. E-mail: ming@mail.nhcue.edu.tw

Department of Applied Mathematics, National Hsinchu University of Education, Taiwan. E-mail: g9824201@mail.nhcue.edu.tw