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SPECTRAL ANALYSIS FOR THE MATRIX STURM-LIOUVILLE

OPERATOR ON A FINITE INTERVAL

N. BONDARENKO

Abstract. The inverse spectral problem is investigated for the matrix Sturm-Liouville

equation on a finite interval. Properties of spectral characteristics are provided, a con-

structive procedure for the solution of the inverse problem along with necessary and suf-

ficient conditions for its solvability is obtained.

1. Introduction

1.1. In this paper, the inverse spectral problem is investigated for the matrix Sturm-

Liouville equation. Inverse spectral problems are to recover operators from their spectral

characteristics.

The scalar case has been studied fairly completely (see [1, 2, 3]). The matrix case is more

difficult for investigating. Different statements of inverse spectral problems for the matrix

case were given in [4], [5] and [6] with corresponding uniqueness theorems. A constructive

solution procedure was provided in [7], but for the special case of the simple spectrum only.

Necessary and sufficient conditions were obtained in [8] for the case when the spectrum is

asymptotically simple, that is an important restriction. Moreover, the method used by the

authors of [8] does not give a reconstruction procedure. We also note that necessary and suf-

ficient conditions on spectral data were given in [9] for Sturm-Liouville operators with matrix-

valued potentials in the Sobolev space W −1
2 . This class of potentials differs from one consid-

ered in this paper.

In this paper, we study the self-adjoint matrix Sturm-Liouville operator in the general

case, without any special restrictions on the spectrum. Properties of spectral characteristics

are investigated, and necessary and sufficient conditions are obtained for the solvability of the

inverse problem. We provide a constructive procedure for the solution of the inverse problem

in the general case, that is a generalization of the algorithm from [7]. For solving the inverse

problem we develop the ideas of the method of spectral mappings [3].
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1.2. Consider the boundary value problem L = L(Q(x),h, H ) for the matrix Sturm-Liouville

equation:

ℓY := −Y ′′+Q(x)Y =λY , x ∈ (0,π), (1)

U (Y ) := Y ′(0)−hY (0) = 0, V (Y ) := Y ′(π)+HY (π) = 0. (2)

Here Y (x) = [yk (x)]k=1,m is a column vector, λ is the spectral parameter, and Q(x) =
[Q j k (x)] j ,k=1,m, where Q j k (x) ∈ L2(0,π) are complex-valued functions. We will subsequently

refer to the matrix Q(x) as the potential. The boundary conditions are given by the matrices

h = [h j k] j ,k=1,m, H = [H j k] j ,k=1,m, where h j k and H j k are complex numbers. In this paper we

study the self-adjoint case, when Q =Q∗, h =h∗, H = H∗.

Let ϕ(x,λ) and S(x,λ) be matrix-solutions of equation (1) under the initial conditions

ϕ(0,λ) = Im , ϕ′(0,λ) = h, S(0,λ) = 0m , S ′(0,λ) = Im .

where Im is the identity m ×m matrix, 0m is the zero m ×m matrix.

The function ∆(λ) := det[V (ϕ)] is called the characteristic function of the boundary value

problem L. The zeros of the entire function ∆(λ) coincide with the eigenvalues of L (counting

with their multiplicities, see Lemma 3), and they are real in the self-adjoint case.

Let ω = ω∗ be some m ×m matrix. We will write L(Q(x),h, H ) ∈ A(ω), if the problem L

has a potential from L2(0,π) and h +H + 1
2

∫π
0 Q(x)d x =ω. Without loss of generality we may

assume that L ∈ A(ω), where ω ∈ D = {ω : ω= diag{ω1, . . . ,ωm},ω1 ≤ . . . ≤ωm}.

One can achieve this condition applying the standard unitary transform.

In order to formulate the main result we need the following lemmas that will be proved

in Section 2.

Lemma 1. Let L ∈ A(ω), ω ∈ D. The boundary value problem L has a countable set of eigenval-

ues {λnq }n≥0,q=1,m , and

ρnq =
√

λnq = n +
ωq

πn
+
κnq

n
, {κnq }n≥0 ∈ l2, q = 1,m. (3)

Let Φ(x,λ) = [Φ j k (x,λ)] j ,k=1,m be a matrix-solution of equation (1) under the boundary

conditions U (Φ) = Im, V (Φ) = 0m . We call Φ(x,λ) the Weyl solution for L. Put M (λ) :=Φ(0,λ).

The matrix M (λ) = [M j k(λ)] j ,k=1,m is called the Weyl matrix for L. The notion of the Weyl

matrix is a generalization of the notion of the Weyl function (m-function) for the scalar case

(see [1], [3]). The Weyl functions and their generalizations often appear in applications and

in pure mathematical problems, and they are natural spectral characteristics in the inverse

problem theory for various classes of differential operators.
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Using the definition for M (λ) one can easily check that

M (λ) =−(V (ϕ))−1V (S). (4)

It follows from representation (4) that the matrix-function M (λ) is meromorphic in λ with

simple poles in the eigenvalues {λnq } of L (see Lemma 4).

Denote

αnq := Res
λ=λnq

M (λ).

The data Λ := {λnq ,αnq }n≥0, q=1,m are called the spectral data of the problem L.

Let {λnk qk
}k≥0 be all the distinct eigenvalues from the collection {λnq }n≥0,q=1,m . Put

α′
nk qk

:=αnk qk
, k ≥ 0, α′

nq = 0m , (n, q)∉ {(nk , qk )}k≥0.

Denote

1 = m1 < . . . <mp+1 = m +1,

ωms
= . . . =ωms+1−1 =:ω(s), s = 1, p

where p is the number of different values among {ωq }q=1,m . Let

α(s)
n =

ms+1−1
∑

q=ms

α′
nq , s = 1, p .

Lemma 2. Let L ∈ A(ω), ω ∈ D. Then the following relation holds

α(s)
n =

2

π
I (s) +

κ(s)
n

n
, {‖κ(s)

n ‖}n≥0 ∈ l2, s = 1, p , (5)

where

I (s) = [I (s)
j k

] j ,k=1,m, I (s)
j k

=
{

1, ms ≤ j = k ≤ ms+1 −1,

0, ot her wi se,

and ‖.‖ is a matrix norm: ‖a‖= max j ,k a j k .

Consider the following inverse problem.

Inverse Problem 1. Given the spectral data Λ, construct Q , h and H .

We will write {λnq ,αnq }n≥0,q=1,m ∈ Sp, if for λnq =λkl we always have αnq =αkl .

The main result of this paper is

Theorem 1. Let ω ∈ D. For data {λnq ,αnq }n≥0,q=1,m ∈ Sp to be the spectral data for a certain

problem L ∈ A(ω) it is necessary and sufficient to satisfy the following conditions.



308 N. BONDARENKO

(1) The asymptotics (3) and (5) are valid.

(2) All λnq are real, αnq = (αnq )∗, αnq ≥ 0 for all n ≥ 0, q = 1,m, and the ranks of the matrices

αnq coincide with the multiplicities of λnq .

(3) For any row vector γ(λ) that is entire in λ, and that satisfy the estimate

γ(λ) =O(exp(|Im
p
λ|π)), |λ|→∞,

if γ(λnq )αnq = 0 for all n ≥ 0, q = 1,m, then γ(λ) ≡ 0.

We prove necessity of the conditions of Theorem 1 in Section 2 and sufficiency in Sec-

tion 4. In Section 3 the constructive procedure is provided for the solution of Inverse Prob-

lem 1.

2. Necessity

2.1. Let us study some properties of the spectral data.

Lemma 3. The zeroes of the characteristic function ∆(λ) coincide with the eigenvalues of the

boundary value problem L. The multiplicity of each zero λ0 of the function ∆(λ) equals to the

multiplicity of the corresponding eigenvalue (by the multiplicity of the eigenvalue we mean the

number of the corresponding linearly independent vector eigenfunctions).

Proof. (1) Let λ0 be an eigenvalue of L, and let Y 0 be an eigenfunction corresponding to λ0.

Let us show that Y 0(x) =ϕ(x,λ0)Y 0(0). Clearly, Y 0(0) =ϕ(0,λ)Y 0(0). It follows fromU (Y 0) = 0

that Y 0′(0) = hY 0(0) = ϕ(0,λ)Y 0(0). Thus, Y 0(x) and ϕ(x,λ0)Y 0(0) are the solutions for the

same initial problem for the equation (1). Consequently, they are equal.

(2) Let us have exactly k linearly independent eigenfunctions Y 1,Y 2, . . . ,Y k corresponding

to the eigenvalue λ0. Choose the invertible m ×m matrix C such that the first k columns

of ϕ(x,λ0)C coincide with the eigenfunctions. Consider Y (x,λ) := ϕ(x,λ)C , Y (x,λ) = [Yq (x,

λ)]q=1,m , Yq (x,λ0) = Y q (x), q = 1,k. Clearly, that the zeros of ∆1(λ) := detV (Y ) = detV (ϕ) ·
detC coincide with the zeros of ∆(λ) counting with their multiplicities. Note that λ = λ0 is

a zero of each of the columns V (Y1), . . . , V (Yk ). Hence, if λ0 is the zero of the determinants

∆1(λ) and ∆(λ) with the multiplicity p , than p ≥ k .

(3) Suppose that p > k . Rewrite ∆1(λ) in the form

∆1(λ) = (λ−λ0)k
∆2(λ),

∆2(λ) = det

[

V (Y1)

λ−λ0
, . . . ,

V (Yk )

λ−λ0
,V (Yk+1), . . . ,V (Ym)

]

.
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In view our supposition, we have ∆2(λ0) = 0, i. e. there exist not all zero coefficients αq , q =
1,m zero exist such that

k
∑

q=1

αq

dV (Yq (x,λ0))

dλ
+

m
∑

q=k+1

αq V (Yq (x,λ0)) = 0. (6)

If αq = 0 for q = 1,k, then the function

Y +(x,λ) :=
m
∑

q=k+1

αq Yq (x,λ)

for λ = λ0 is an eigenfunction corresponding to λ0 that is linearly independent with Y q ,

q = 1,k. Since the eigenvalue λ0 has exactly k corresponding eigenfunctions, we arrive at

a contradiction.

Otherwise we consider the function

Y +(x,λ) :=
k
∑

q=1

αq Yq (x,λ)+ (λ−λ0)
m
∑

q=k+1

αq Yq (x,λ).

It is easy to check that

ℓ(Y +(x,λ)) = λY +(x,λ), ℓ

(

d

dλ
Y +(x,λ)

)

=λ
d

dλ
Y +(x,λ)+Y +(x,λ),

U (Y +) = U

(

d

dλ
Y +

)

= 0, V (Y +(x,λ0)) = 0.

Relation (6) is equivalent to the following one

V

(

d

dλ
Y +(x,λ0)

)

= 0.

Thus, we obtain that Y +(x,λ0) is an eigenfunction, and d
dλ

Y +(x,λ0) is a so-called associated

function (see [10]) corresponding to λ0. If we show that the considered Sturm-Liouville oper-

ator does not have associated functions, we will also arrive at a contradiction with ∆2(λ0) 6= 0,

and finally, prove that k = p .

(4) Let us prove that the self-adjoint operator given by (1), (2) does not have associated func-

tions. Let λ0 be an eigenvalue of L, and let Y 0 and Y 1 be a corresponding eigenfunction and

an associated function respectively, i.e. both Y 0 and Y 1 satisfy (2) and

(ℓ−λ0)Y 0 = 0, (ℓ−λ0)Y 1 = Y 0.

This yields

((ℓ−λ0)2Y 1,Y 1)= 0,
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for the scalar product defined by

(Y , Z ) :=
∫π

0
Y ∗(x)Z (x)d x.

In case of the self-adjoint operator, we have (ℓY , Z ) = (Y ,ℓZ ) for any Y and Z satisfying (2),

and the eigenvalue λ0 is real. Therefore,

((ℓ−λ0)Y 1, (ℓ−λ0)Y 1) = (Y 0,Y 0) = 0,

and Y 0 = 0. Recall that Y 0 is the eigenfunction, and get a contradiction. ���

Lemma 4. All poles of the Weyl matrix M (λ) are simple, and the ranks of the residue-matrices

coincide with the multiplicities of the corresponding eigenvalues of L.

Proof. Let λ0 be an eigenvalue of L with a multiplicity k , and let Y1, Y2, . . . , Yk be linearly inde-

pendent vector eigenfunctions corresponding to λ0. Following the proof of Lemma 3, we in-

troduce the invertible matrix C = [C1, . . . ,Cm] such that Yq (x) =ϕ(x,λ0)Cq , q = 1,k. Consider

the vector-function Y (x,λ) = ϕ(x,λ)C . Clearly, that (V (ϕ))−1 = C (V (Y ))−1. Write V (Y (x,λ))

in the form

V (Y (x,λ)) = [(λ−λ0)W1(λ), . . . , (λ−λ0)Wk (λ),Wk+1(λ), . . . ,Wm(λ)],

where

Wq (λ) =
V (Yq (x,λ))

λ−λ0
, q = 1,k,

Wq (λ) = V (Yq (λ)), q = k +1,m.

Clearly, Wq (λ) are entire functions, and

detW (λ) = det[W1(λ), . . . ,Wm(λ)] 6= 0

for λ from a sufficiently small neighborhood of λ0 (otherwise the multiplicity of the eigen-

value λ0 is greater than k). It is easy to show that

detV (Y (x,λ)) = (λ−λ0)k detW (λ),

(V (Y (x,λ)))−1 =
[

X1(λ)

λ−λ0
, . . . ,

Xk (λ)

λ−λ0
, Xk+1(λ), . . . , Xm(λ)

]t

,

where Xq (λ) are analytic in a sufficiently small neighborhood of λ0 (the superscript t stands

for transposition). Using (4) we get

α0 = Res
λ=λ0

M (λ)=− Res
λ=λ0

(V (ϕ(x,λ)))−1V (S(x,λ))
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= − Res
λ=λ0

C

[

X1(λ)

λ−λ0
, . . . ,

Xk (λ)

λ−λ0
, Xk+1(λ), . . . , Xm(λ)

]t

V (S(x,λ))

= −C [X1(λ0), . . . , Xk (λ0),0, . . . ,0]t V (S(x,λ0)) =−X V (S(x,λ0)).

Therefore, the poles of the Weyl matrix are simple, and rank α0 ≤ k .

Let us prove the reverse inequality. Note that

Res
λ=λ0

(V (ϕ(x,λ)))−1V (ϕ(x,λ)) = 0m = X V (ϕ(x,λ0)).

Let ψ(x,λ0) be a solution of equation (1) for λ = λ0 under the initial condition V (ψ) = X ∗.

Since columns of the matrices ϕ(x,λ0) and S(x,λ0) form a fundamental system of solutions

of equation (1), we have

ψ(x,λ0) = ϕ(x,λ0)A+S(x,λ0)B ,

X X ∗ = X V (ψ(x,λ0)) = X V (ϕ(x,λ0))A+X V (S(x,λ0))B =−α0B.

On the one hand, since detW 6= 0, the vectors Xq (λ0) are linearly independent, therefore,

rank X X ∗ = k . On the other hand, rankα0B ≤ rankα0. Thus, we conclude that rankα0 ≥ k . ���

Lemma 5. Let λ0, λ1 be eigenvalues of L, λ0 6= λ1, and αi = Res
λ=λi

M (λ), i = 0,1. The following

relations hold

α∗
0

∫π

0
ϕ∗(x,λ0)ϕ(x,λ0)d xα0 = α∗

0 ,

α∗
0

∫π

0
ϕ∗(x,λ0)ϕ(x,λ1)d xα1 = 0m .

In particular, according to the first relation,

α0 =α∗
0 ≥ 0.

Proof. Denote

ℓ∗Z :=−Z ′′+ZQ(x), V ∗(Z ) := Z ′(π)+Z (π)H , 〈Z ,Y 〉 := Z ′Y −Z Y ′,

where Z = [Zk]t

k=1,m
is a row vector (t is the sign for the transposition). Then

〈Z ,Y 〉x=π =V ∗(Z )Y (π)−Z (π)V (Y ).

If Y (x,λ) and Z (x,µ) satisfy the equations ℓY (x,λ) = λY (x,λ) and ℓ∗Z (x,µ) = µZ (x,µ),

respectively, then d
dx

〈Z ,Y 〉 = (λ−µ)Z Y . In particular, if λ = µ, then 〈Z ,Y 〉 does not depend

on x.
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Since λ0 is real, ϕ∗(x,λ0) satisfies the equation ℓ∗Z =λ0 Z . Hence,

∫π

0
ϕ∗(x,λ0)ϕ(x,λ0)d x = lim

λ→λ0

〈ϕ∗(x,λ0),ϕ(x,λ)〉|π0
λ−λ0

= lim
λ→λ0

V ∗(ϕ∗(x,λ0))ϕ(x,λ)−ϕ∗(x,λ0)V (ϕ(x,λ))

λ−λ0
.

It follows from (4) and Lemma 4 that

V (ϕ(x,λ0))α0 =− lim
λ→λ0

(λ−λ0)V (ϕ(x,λ))(V (ϕ(x,λ)))−1V (S(x,λ))= 0m .

Analogously α∗
0 V ∗(ϕ∗(x,λ0)) = 0m . Consequently, we calculate

α∗
0

∫π

0
ϕ∗(x,λ0)ϕ(x,λ0)d xα0 = α∗

0ϕ
∗(π,λ0) lim

λ→λ0

V (ϕ(x,λ))

λ−λ0

× lim
λ→λ0

(λ−λ0)(V (ϕ(x,λ)))−1V (S(x,λ)) = α∗
0ϕ

∗(π,λ0)V (S(x,λ0))

= −α∗
0 〈ϕ

∗(x,λ0),S(x,λ0)〉x=π

= −α∗
0 〈ϕ

∗(x,λ0),S(x,λ0)〉x=0 =α∗
0 .

Similarly one can derive the second relation of the lemma. ���

2.2. In this subsection we obtain asymptotics for the spectral data.

Denote ρ :=
p
λ, Reρ ≥ 0, τ := Imρ, Gδ = {ρ : |ρ − k | ≥ δ,k = 0,1,2, . . . }, δ > 0. By the

standard way (see [3, Sec. 1.1]) one can obtain the estimate

∆(λ) = (−ρ sinρπ)m +O(|ρ|m−1 exp(m|τ|π)) = (−ρ sinρπ)m + (−ρ sinρπ)m−1O(exp(|τ|π))

+ . . .+ (−ρ sinρπ)O(exp((m −1)|τ|π))+O(exp(m|τ|π)), |ρ|→∞. (7)

Proof of Lemma 1. 1) Consider the contour ΓN = {λ : |λ| = (N +1/2)2}. By virtue of (7)

∆(λ)= f (λ)+ g (λ), f (λ) = (−ρ sinρπ)m, |g (λ)| ≤C |ρ|m−1 exp(m|τ|π).

If λ ∈ ΓN for sufficiently large N , we have | f (λ)| > |g (λ)|. Then by Rouche’s theorem the num-

ber of zeros of ∆(λ) inside ΓN coincide with the number of zeros of f (λ) (counting with their

multiplicities), i. e. it equals (N + 1)m. Thus, in the circle |λ| < (N + 1/2)2 there are exactly

(N +1)m eigenvalues of L: {λnq }n=0,N ,q=1,m .

Applying Rouche’s theorem to the circle γn(δ) = {ρ : |ρ −n| ≤ δ}, we conclude that for

sufficiently large n there are exactly m zeros of ∆(ρ2) lying inside γn(δ), namely {ρnq }q=1,m .

Since δ> 0 is arbitrary, it follows that

ρnq = n +εnq , εnq = o(1), n →∞. (8)
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Using (7) for ρ = ρnq , we get

(−ρnq sinρnqπ)m + (−ρnq sinρnqπ)m−1O(1)+ . . .+ (−ρnq sinρnqπ)O(1)+O(1) = 0, n →∞.

Denote snq := |ρnq sinρnqπ|, and rewrite the obtained estimate in the form

sm
nq ≤C0 +C1snq + . . .+Cm−1sm−1

nq . (9)

It follows from (9) that snq ≤ max{1,
∑m−1

k=0
Ck }. Otherwise we arrive at a contradiction:

sm
nq >

m−1
∑

k=0

Ck sm−1
nq ≥

m−1
∑

k=0

Ck sk
nq .

Hence, |ρnq sinρnqπ| ≤C . Using (8) we get

sinρnqπ= sinεnqπcos nπ=O(n−1), εnq =O(n−1), n →∞.

Together with (8) this yields

ρnq = n +O(n−1), n →∞.

2) Let us derive the more precise asymptotic formula. One can easily show that

V (ϕ) =−ρ sinρπ · Im +ωcosρπ+κ(ρ),

where

κ(ρ)=
1

2

∫π

0
Q(t )cosρ(π−2t )d t +O

(

1

ρ
exp(|τ|π)

)

.

Consider the linear mappings zn(ρ) that map the circles {ρ : |ρ−n| ≤C /n} (note that ρnq

lie in these circles for a fixed sufficiently large C ) to the circle {z : |z| ≤ R}:

ρ = n +
zn(ρ)

πn
.

For |z| ≤ R we have

V (ϕ) = (−1)n(ω− zn (ρ)Im +κn(zn(ρ))). (10)

Using the representation for κ(ρ) we get κn(z) = o(1), n →∞, uniformly with respect to z in

the circle {z : |z| ≤ R}. Moreover, for each sequence {z0
n }n≥0 ⊂ {z : |z| ≤ R} we have {‖κn(z0

n)‖}n≥0 ∈
l2 and

∑

n≥0
‖κn(z0

n)‖2 <C , where C is some constant. Consequently,

∆(ρ2) =± f (zn(ρ))+ gn(zn(ρ)),

where f (z) = det(ω− zIm), gn(z) = o(1), n → ∞ (uniformly with respect to z ∈ {z : |z| ≤ R}),

and the choice of sign ± depends only on n. Fix 0 < δ < 1/2 min
q,l : ωq 6=ωl

|ωq −ωl | and introduce
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the contours γq = {z : |z −ωq | = δ}. Clearly, the inequality | f (z)| > |gn(z)| holds on γq for all

sufficiently large n, and by Rouche’s theorem two analytic functions ∆(ρ2
n(z)) and f (z) have

an equal number of zeros inside γq (here ρn is the inverse mapping to zn). Thus, we have

ρnq =n +
ωq

πn
+
κnq

n
, κnq = o(1), n →∞, q = 1,m.

Substituting this formula into (10) we get

V (ϕ) = (−1)n (ω−ωq Im −πκnq Im +κn(zn(ρnq ))).

Since {‖κn(zn(ρnq ))‖} ∈ l2, one can easily prove that {κnq } ∈ l2. ���

Proof of Lemma 2. 1) Let M̃ (λ) be the Weyl matrix for the problem L̃(Q̃ , h̃, H̃), such that Q̃(x) =
2
π
ω, h̃ = H̃ = 0m . Then α̃(s) = 2

π
I (s), s = 1, p .

Consider the contours γ(s)
n = {λ : |λ−(n2+ 2

πω
(s))| =R}, R = 1

π min
q,l : ωq 6=ωl

|ωq −ωl |. Using the

residue theorem and taking Lemma 1 into account, we deduce

1

2πi

∫

γ(s)
n

(M (λ)− M̃ (λ))dλ=
ms+1−1

∑

q=ms

α′
nq −

ms+1−1
∑

q=ms

α̃′
nq =α(s)

n −
2

π
I (s),n ≥n∗, s = 1, p .

One can easily show that M j k(λ) =−∆ j k (λ)

∆(λ) , where

∆ j k (λ) = det[V (ϕ1), . . . ,V (ϕ j−1),V (Sk ),V (ϕ j+1), . . . ,V (ϕm)].

Using this representation, we arrive at

M j k(λ)− M̃ j k (λ) =
∆(λ)∆̃ j k (λ)−∆ j k (λ)∆̃(λ)

∆(λ)∆̃(λ)
, j ,k = 1,m. (11)

Let us use the mappings zn introduced in the proof of Lemma 1:

ρ =n +
zn(ρ)

πn
.

If λ ∈ γ(s)
n , then 0 < δ1 ≤ |zn(ρ)−ωq | for all q = 1,m, and |zn(ρ)−ω(s)| ≤ δ2. Hence, the estimate

for ∆(λ) obtained in the proof of Lemma 1 is valid: ∆(λ) = ± f (zn(ρ))+o(1), λ ∈ γ(s)
n , n →∞

(uniformly with respect to λ).

Similarly, we estimate

∆ j k (λ) = ±
f (zn(ρ))

zn(ρ)−ω j
+o(1) f or j = k ,

∆ j k (λ) = o(1) f or j 6= k ,λ∈ γ(s)
n , n →∞, j ,k = 1,m.
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Convergence of the remainders is uniform with respect to λ, the choice of sign ± depends

only on n. Analogous relations hold for ∆̃(λ) and ∆̃ j k (λ).

Substituting these estimates into (11) and taking into account that C1 ≤ | f (zn(ρ))| ≤ C2

for λ ∈ γ(s)
n , we arrive at

M j k (λ)− M̃ j k (λ) = o(1), j ,k = 1,m, λ ∈ γ(s)
n ,

1

2πi

∫

γ(s)
n

(M (λ)− M̃ (λ))dλ = o(1), α(s)
n =

2

π
I (s) +η(s)

n , η(s)
n = o(1), n →∞.

(2) Below one and the same symbol {κn} denotes various matrix sequences such that

{‖κn‖} ∈ l2. Using the standard asymptotics

ϕ(x,λ) = cosρx · Im +Q1(x)
sinρx

ρ
+

∫x

0

sinρ(x −2t )

2ρ
Q(t )d t +O

(

exp |τ|x
ρ

)

,

|ρ|→∞, x ∈ [0,π],

where Q1(x) = h +
∫x

0 Q(t )d t , one can easily show that

∫π

0
ϕ∗(x,λnq )ϕ(x,λnl )d x =

π

2
Im +

κn

n
, λnq −λnl =

κn

n
.

Applying Lemma 5, we get

αnq

(π

2
Im +

κn

n

)

αnq =αnq , n ≥ 0, q = 1,m.

Clearly, ‖αnq‖ ≤ C , n ≥ 0, q = 1,m. Consequently, π
2α

2
nq = αnq + κn

n . Similarly we derive

αnqαnl = κn

n , ms ≤ q, l ≤ ms+1 −1, q 6= l , s = 1, p . Thus,

π

2
(α(s)

n )2 =
π

2

(

ms+1−1
∑

q=ms

α′
nq

)2

=
π

2

ms+1−1
∑

q=ms

(α′
nq )2 +

κn

n
=

ms+1−1
∑

q=ms

α′
nq +

κn

n
=α(s)

n +
κn

n
.

Substitute the result of point 1 into this equality:

π

2

(

2

π
I (s)+η(s)

n

)2

=
2

π
I (s) +η(s)

n +
κn

n
,

(Im −2I (s))η(s)
n =

π

2
(η(s)

n )2 +
κn

n
.

Consequently, η(s)
n = κn

n . ���

2.3. Proof of Theorem 1 (necessity). The first two conditions are fulfilled by Lemmas 1, 2, 4,

5.

Let γ(λ) be a function described in condition 3. Recall that

V (ϕ(x,λnq ))αnq = 0m .
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Since

rank V (ϕ(x,λnq ))+ rank αnq = m

and γ(λnq )αnq = 0, we get γ(λnq ) =Cnq V (ϕ(x,λnq )), i. e. the row γ(λnq ) is a linear combina-

tion of the rows of the matrix V (ϕ(x,λnq ) (here Cnq is a row of coefficients). Consider

f (λ) = γ(λ)(V (ϕ(x,λ)))−1.

The matrix-function (V (ϕ(x,λ)))−1 has simple poles in λ=λnq , therefore, we calculate

Res
λ=λnq

f (λ) = γ(λnq ) Res
λ=λnq

(V (ϕ(x,λ)))−1

= Cnq lim
λ→λnq

V (ϕ(x,λ)) lim
λ→λnq

(λ−λnq )(V (ϕ(x,λ)))−1 = 0.

Hence, f (λ) is entire. It is easy to show that

‖(V (ϕ(x,λ)))−1‖ ≤Cδ|ρ|−1 exp(−|τ|π), ρ ∈Gδ,

where Gδ = {ρ : |ρ − k | ≥ δ,k = 0,1,2, . . . }, δ > 0. From this we conclude that ‖ f (λ)‖ ≤ C
|ρ| in

Gδ. By the maximum principle this estimate is valid in the whole λ-plane. Using Liouville‘s

theorem, we obtain f (λ) ≡ 0. Consequently, γ(λ) ≡ 0. ���

Note that in the scalar case condition 3 follows from the first two conditions of Theorem 1.

Indeed, in the scalar case, we have γ(λn)αn = 0, n ≥ 0, where αn are positive real numbers.

Hence, γ(λn) = 0. Having the spectrum {λn}n≥0 we can construct the characteristic function

(see [3, Theorem 1.1.4]):

∆(λ)=π(λ−λ0)
∞
∏

n=1

λn −λ

n2
,

and using asymptotics (3) for the eigenvalues we get the estimate

‖∆(λ)‖ ≥Cδ|ρ|exp(|τ|π), ρ ∈Gδ.

Then we introduce f (λ) = γ(λ)
∆(λ) and follow the proof of necessity in Theorem 1.

In the general case, condition 3 is essential and cannot be omitted, that is shown by the

following example.

Example 1. Let m = 2, λ01 6=λ02, λn1 =λn2 = n2, n ≥ 1,

α01 =α02 =
[

1
π 0

0 0

]

, αn1 =αn2 =
[

2
π 0

0 2
π

]

, n ≥ 1.

The data {λnq ,αnq } satisfy conditions 1-2 of Theorem 1. Let us show that they do not satisfy

condition 3, and consequently, they cannot be spectral data of L. The relations γ(λnq )αnq = 0,
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n ≥ 0, q = 1,m for this example can be rewritten in the form γ(λ) = [γ1(λ),γ2(λ)], γ1(λ01) =
γ1(λ02) = γ1(n2) = 0, γ2(n2) = 0, n ≥ 1. Clearly, if we put γ1(λ) = 0, γ2(λ) = sinρπ

ρ
, we arrive at a

contradiction with condition 3.

Below we investigate condition 3 in some special cases.

Example 2 (full multiplicities). Let λn1 = λn2 = . . . =λnm =: λn for all n ≥ 0. Then rank αnq =
m, and each of the linear systems γ(λnq )αnq = 0 has the unique solution γ(λn) = 0. We get the

situation similar to the scalar case, because in view of asymptotics (3), {λn }n≥0 can be treated

as eigenvalues of some scalar problem. Therefore, condition 3 holds automatically.

We will say that the relations γ(λnq )αnq = 0, q = 1,m are separated for some fixed n, if

they yield γq (λnq ) = 0 for all q = 1,m. For example, they are separated in the case of full

multiplicities, or when the matrices αnq have a proper diagonal form.

Example 3. Let the relations γ(λnq )αnq = 0 be separated for all n > n0. Then each component

γq (λ) has zeros {λnq }n>n0
. If γ(λ) is the function from condition 3, each γq (λ) cannot have

more than n0 additional zeros (counting with their multiplicities). Otherwise we consider its

zeros as the eigenvalues of a scalar problem and prove that γq (λ) ≡ 0.

If γ(λ) is entire, and γ(λ) =O(exp(|Im
p
λ|π)), |λ| →∞, its order is not greater than 1/2.

Therefore, by Hadamard‘s factorization theorem γq (λ) can be presented in the form

γq (λ) = (Cq0 +Cq1λ+Cq2λ
2 + . . .+Cq,n0

λn0 )Pq (λ), Pq (λ) =
∏

n>n0

(

1−
λ

λnq

)

.

We substitute this factorization into γ(λnq )αnq = 0, n ≤ n0, q = 1,m, and obtain the system of

linear equations with respect to Cq0, Cq1, . . . , Cqn0
, q = 1,m.

More precisely, let λ1, . . . , λN be the first N = (n0+1)m eigenvalues, and let α1, . . . , αN be

the corresponding residue-matrices. For each j = 1, N , we choose a non-zero column v j of

α j . In case of a group of multiple values among λ j , j = 1, N , they have a common matrix α j ,

and its rank equals their multiplicity, and we choose linearly independent columns. Consider

N ×N matrix P with the columns

[v j 1P1(λ j ), v j 1λ j P1(λ j ), . . . , v j 1λ
n0

j
P1(λ j ), . . . , v j mPm(λ j ), v j mλ j Pm(λ j ), . . . , v j mλ

n0

j
Pm(λ j )],

j = 1, N . Clearly, that the condition γ(λnq )αnq = 0, n ≤ n0, q = 1,m is equivalent to the lin-

ear system with the matrix P . Each solution of this system corresponds to γ(λ), satisfying

condition 3 of Theorem 1. Thus, the condition 3 is fulfilled iff the determinant of P is not zero.
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3. Solution of Inverse Problem 1

3.1. Let the spectral data Λ of the boundary value problem L ∈ A(ω), ω ∈ D, be given.

Denote

D(x,λ,µ) =
〈ϕ∗(x, µ̄),ϕ(x,λ)〉

λ−µ
=

∫x

0
ϕ∗(t , µ̄)ϕ(x,λ)d t . (12)

We choose an arbitrary model boundary value problem L̃ = L(Q̃(x), h̃, H̃) ∈ A(ω) (for ex-

ample, one can take Q̃(x) = 2
πω, h̃ = 0m , H̃ = 0m). We agree that if a certain symbol γ denotes

an object related to L, then the corresponding symbol γ̃ with tilde denotes the analogous ob-

ject related to L̃. Put

ξn =
m
∑

q=1

|ρnq − ρ̃nq |+
p
∑

s=1

ms+1−1
∑

q=ms

|ρnq −ρnms
|+

p
∑

s=1

ms+1−1
∑

q=ms

|ρ̃nq − ρ̃nms
|+

p
∑

s=1

‖α(s)
n − α̃(s)

n ‖.

According to Lemmas 1 and 2,

Ω :=
( ∞
∑

n=0

((n +1)ξn )2

)1/2

<∞,
∞
∑

n=0

ξn <∞.

Denote

λnq0 =λnq , λnq1 = λ̃nq , ρnq0 =ρnq , ρnq1 = ρ̃nq , α′
nq0 =α′

nq , α′
nq1 = α̃′

nq ,

ϕnqi (x) =ϕ(x,λnqi ), ϕ̃nqi (x) = ϕ̃(x,λnqi ),

Fkl j ,nqi (x) =α′
kl j D(x,λnqi ,λkl j ), F̃kl j ,nqi (x) =α′

kl j D̃(x,λnqi ,λkl j ),

n,k ≥ 0, q, l = 1,m, i , j = 0,1.

By the standard way (see [3, Lemma 1.6.2]), using Schwarz’s lemma, we get

Lemma 6. The following estimates are valid for x ∈ [0,π], n,k ≥ 0, r, s = 1,m, mr < q < mr+1,

ms < l < ms+1, i , j = 0,1:

‖ϕnqi (x)‖≤C , ‖ϕnmr 0(x)−ϕnmr 1(x)‖ ≤Cξn ,

‖ϕnqi (x)−ϕnmr i (x)‖ ≤Cξn , ‖Fkl j ,nqi (x)‖ ≤
C

|n −k |+1
,

∥

∥

∥

∥

∥

ms+1−1
∑

l=ms

(Fkl0,nmr 1(x)−Fkl1,nmr 1(x))

∥

∥

∥

∥

∥

≤
Cξk

|n −k |+1
,

‖Fkl j ,nqi (x)−Fkl j ,nmr i (x)‖, ‖Fkl j ,nmr 0(x)−Fkl j ,nmr 1(x)‖≤
Cξn

|n −k |+1
,

∥

∥

∥

∥

ms+1−1
∑

l=ms

(Fkl0,nqi (x)−Fkl0,nmr i (x)−Fkl1,nqi (x)+Fkl1,nmr i (x))

∥

∥

∥

∥

≤
Cξnξk

|n −k |+1
,

∥

∥

∥

∥

ms+1−1
∑

l=ms

(Fkl0,nmr 0(x)−Fkl0,nmr 1(x)−Fkl1,nmr 0(x)+Fkl1,nmr 1(x))

∥

∥

∥

∥

≤
Cξnξk

|n −k |+1
.

The analogous estimates are also valid for ϕ̃nqi (x), F̃kl j ,nqi (x).
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The lemma similar to the following one has been proved in [7] by the contour integral

method.

Lemma 7. The following relations hold

ϕ̃(x,λ) =ϕ(x,λ)+
∞
∑

k=0

m
∑

l=1

(ϕkl0(x)α′
kl0D̃(x,λ,λkl0)−ϕkl1(x)α′

kl1D̃(x,λ,λkl1)) (13)

D̃(x,λ,µ)−D(x,λ,µ) =
∞
∑

k=0

m
∑

l=1

(D(x,λkl0,µ)D̃(x,λ,λkl0)−D(x,λkl1,µ)D̃(x,λ,λkl1).

Both series converge absolutely and uniformly with respect to x ∈ [0,π] and λ, µ on compact

sets.

Analogously one can obtain the following relation

Φ̃(x,λ) =Φ(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) jϕkl j (x)α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉

λ−λkl j

. (14)

It follows from Lemma 7 that

ϕ̃nqi (x) = ϕnqi (x)+
∞
∑

k=0

m
∑

l=1

(ϕkl0F̃kl0,nqi (x)−ϕkl1F̃kl1,nqi (x)), (15)

F̃ηpω,nqi (x)−Fηpω,nqi (x) =
∞
∑

k=0

m
∑

l=1

(Fηpω,kl0(x)F̃kl0,nqi (x)−Fηpω,kl1(x)F̃kl1,nqi (x)) (16)

for n,η≥ 0, q, p = 1,m, i ,ω= 0,1.

Denote

ε0(x) =
∑

(k ,l , j )∈V

(−1) jϕkl j (x)α′
kl j ϕ̃

∗
kl j (x), ε(x) =−2ε′0(x). (17)

Using (5) and Lemma 6 one can easily check that the series in (17) converges absolutely and

uniformly on [0,π], and the function ε0(x) is absolutely continuous, and the components of

ε(x) belong to L2(0,π).

Lemma 8. The following relations hold

Q(x)= Q̃(x)+ε(x), h = h̃ −ε0(0), H = H̃ +ε0(π), (18)

Proof. Differentiating (13) twice with respect to x and using (12) and (17) we get

ϕ̃′(x,λ)−ε0(x)ϕ̃(x,λ) = ϕ′(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) jϕ′
kl j (x)α′

kl j D̃(x,λ,λkl j ),

ϕ̃′′(x,λ) = ϕ′′(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j [ϕ′′
kl j (x)α′

kl j D̃(x,λ,λkl j )
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+2ϕ′
kl j (x)α′

kl j ϕ̃
∗
kl j (x)ϕ̃(x,λ)+ϕkl j (x)α′

kl j (ϕ̃∗
kl j (x)ϕ̃(x,λ))′].

We replace here the second derivatives, using equation (1), and then replace ϕ(x,λ), using

(13). This yields

Q̃(x)ϕ(x,λ) = Q(x)ϕ̃(x,λ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j [ϕkl j (x)α′
kl j 〈ϕ̃

∗
kl j (x),ϕ̃(x,λ)〉

+2ϕ′
kl j (x)α′

kl j ϕ̃
∗
kl j (x)ϕ̃(x,λ)+ϕkl j (x)α′

kl j (ϕ̃∗
kl j (x)ϕ̃(x,λ))′].

Cancelling terms with ϕ̃′(x,λ) we arrive at Q(x) = Q̃(x)+ε(x).

Further,

ϕ̃′(0,λ)− (h +ε0(0))ϕ̃(0) =U (ϕ)+
∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j U (ϕkl j )α′
kl j D(0,λ,λkl j ) = 0m .

Since ϕ̃(0,λ) = Im, ϕ̃′(0,λ) = h̃, we obtain h = h̃ −ε0(0).

Similarly, using (14) one can get

Φ̃
′(π,λ)+ (H −ε0(π))Φ(π,λ) =V (Φ)+

∞
∑

k=0

m
∑

l=1

1
∑

j=0

(−1) j V (ϕkl j )α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉|x=π
λ−λkl j

.

For j = 0 we have V (ϕkl0)α′
kl0

= 0m . For j = 1

〈ϕ̃∗
kl1(x),Φ̃(x,λ)〉|x=π = Ṽ ∗(ϕ̃∗

kl1)Φ̃(π,λ)− ϕ̃∗
kl1(π)Ṽ (Φ̃).

Recall that V (Φ) = 0m , Ṽ (Φ̃) = 0m andα′
kl1

Ṽ ∗(ϕ̃∗
kl1

)= 0m . Consequently, we arrive at Φ̃′(π,λ)+
(H −ε0(π))Φ(π,λ) = 0m . Together with Ṽ (Φ̃) = 0m this yields H = H̃ +ε(π). ���

For each fixed x ∈ [0,π], the relation (15) can be considered as a system of linear equa-

tions with respect to ϕnqi (x), n ≥ 0, q = 1,m, i = 0,1. But the series in (15) converges only

“with brackets”. Therefore, it is not convenient to use (15) as a main equation of the inverse

problem. Below we will transfer (15) to a linear equation in a corresponding Banach space of

sequences.

3.2. Denote χn := ξ−1
n for ξn 6= 0 and χn = 0 for ξn = 0. Let V be a set of indices u = (n, q, i ),

n ≥ 0, q = 1,m, i = 0,1. For each fixed x ∈ [0,π], we define the row-vector ψ(x) = [ψu(x)]u∈V
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and the matrix R(x)= [Rv,u(x)]v,u∈V , v = (k , l , j ), u = (n, q, i ), by the formulae

ψnms 0(x) = χn(ϕnms 0(x)−ϕnms 1(x)), ψnms 1(x) =ϕnms 1(x),

ψnqi (x) =χn (ϕnqi (x)−ϕnms i (x)),

Rkms 0,nmr 0(x)= χnξk

ms+1−1
∑

l=ms

(Fkl0,nmr 0(x)−Fkl0,nmr 1(x)),

Rkms0,nmr 1(x) = ξk

ms+1−1
∑

l=ms

Fkl0,nmr 1(x),

Rkms0,nqi (x)= χnξk

ms+1−1
∑

l=ms

(Fkl0,nqi (x)−Fkl0,nmr i (x)),

Rkl j ,nmr 0(x) = (−1) jχnξk (Fkl j ,nmr 0(x)−Fkl j ,nmr 1(x)),

Rkl j ,nmr 1(x) = (−1) j ξk Fkl j ,mr 1(x),

Rkl j ,nqi (x) = (−1) jχnξk (Fkl j ,nqi (x)−Fkl j ,nmr i (x)),

Rkms 1,nmr 0(x)= χn

ms+1−1
∑

l=ms

(Fkl0,nmr 0(x)−Fkl0,nmr 1(x)

−Fkl1,nmr 0(x)+Fkl1,nmr 1(x)),

Rkms1,nqi (x) = χn

ms+1−1
∑

l=ms

(Fkl0,nqi (x)−Fkl0,nmr i (x)−Fkl1,nqi (x)+Fkl1,nmr i (x)),

Rkms1,nmr 1(x) =
ms+1−1

∑

l=ms

(Fkl0,nmr 1(x)−Fkl1,nmr 1(x)),

n,k ≥ 0, r, s = 1, p , ms < l < ms+1, mr < q <mr+1.




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(19)

Analogously we define ψ̃(x), R̃(x) by replacing in the previous definitions ϕnqi (x) by ϕ̃nqi (x)

and Fkl j ,nqi (x) by F̃kl j ,nqi (x).

We will also use a shorter notation. Consider the row vectors with matrix components

ϕn(x) = [ϕn10(x),ϕn11(x),ϕn20(x),ϕn21(x), . . . ,ϕnm0(x),ϕnm1(x)],

ψn(x) = [ψn10(x),ψn11(x),ψn20(x),ψn21(x), . . . ,ψnm0(x),ψnm1(x)], n ≥ 0,

and defined analogously 2m×2m matrices F−
k ,n

(x), Rk ,n(x), n,k ≥ 0, F−
kl j ,nqi

(x) = (−1) j Fkl j ,nqi (x).

Then definitions (19) of ψnqi (x) and Rkl j ,nqi (x) can be rewritten in the form

ψn =ϕn Xn , Rk ,n = X −1
k F−

k ,n Xn , n,k ≥ 0. (20)

where Xn is a 2m×2m matrix with components determined from (19). Analogously we define

ϕ̃n(x), ψ̃n(x) and F̃−
k ,n

(x), R̃k ,n(x). Now we can rewrite (15) and (16) in the form

ϕ̃n = ϕn +
∞
∑

k=0

ϕk F̃−
k ,n , n ≥ 0, (21)

F̃−
η,n −F−

η,n =
∞
∑

k=0

F−
η,k F̃−

k ,n (22)
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By virtue of Lemma 6

‖ψnqi (x)‖, ‖ψ̃nqi (x)‖ ≤ C ,

‖Rkl j ,nqi (x)‖, ‖R̃kl j ,nqi (x)‖ ≤
Cξk

|n −k |+1
, (23)

where C does not depend on x,n, q, i ,k , l , j

Let au , u ∈ V , be m ×m matrices. Consider the Banach space B of bounded sequences

a = [au]u∈V with the norm ‖a‖B = sup
u∈V

‖au‖. It follows from (23) that for each fixed x ∈ [0,π],

the operators I + R̃(x) and I −R (here I is the identity operator), acting from B to B , are linear

bounded operators.

Theorem 2. For each fixed x ∈ [0,π], the vector ψ(x) ∈ B satisfies the equation

ψ̃(x) =ψ(x)(I + R̃(x)) (24)

in Banach space B. Moreover, the operator I + R̃(x) has a bounded inverse operator, i. e. equa-

tion (24) is uniquely solvable.

Proof. Using (20) we get

ϕn =ψn X −1
n , F−

k ,n = Xk Rk ,n X −1
n ,

Substituting these relations into (21), we derive

ψ̃n X −1
n =ψn X −1

n +
∞
∑

k=0

ψk X −1
k Xk R̃k ,n X −1

n =ψn X −1
n +

∞
∑

k=0

ψk R̃k ,n X −1
n n ≥ 0.

Multiplying the result by Xn , we arrive at (24).

Similarly we get from (22) that

R̃η,n −Rη,n =
∞
∑

k=0

Rη,kR̃k ,n.

This yields R̃(x)−R(x)−R(x)R̃(x) = 0, i. e. (I −R(x))(I + R̃(x)) = I . Symmetrically, one gets

(I + R̃(x))(I − R(x)) = I . Hence the operator (I + R̃(x))−1 exists, and it is a linear bounded

operator. ���

Equation (24) is called the main equation of the inverse problem. Solving (24) we find the

vector ψ(x), and consequently, the functions ϕnqi (x) by formulae

ϕnms 1(x) =ψnms 1(x), ϕnms 0(x)=ϕnms 1(x)+ξnψnms 0(x),

ϕnqi (x) =ϕnms i (x)+ξnψnqi (x),

n ≥ 0, s = 1, p , ms < q < ms+1, i = 0,1.

(25)
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Then we construct the potential Q(x) and the coefficients of the boundary conditions h and

H via (18). Thus, we obtain the following algorithm for the solution of Inverse Problem 1.

Algorithm 1. Given the data Λ.

(1) Choose L̃ ∈ A(ω), and calculate ψ̃(x) and R̃(x).

(2) Find ψ(x) by solving equation (24), and calculate ϕnqi (x).

(3) Construct Q(x), h and H by (18).

4. Sufficiency

4.1. Let data {λnq ,αnq }n≥0,q=1,m ∈ Sp satisfying the conditions of Theorem 1 be given. Choose

L̃ ∈ A(ω), construct ψ̃(x), R̃(x), and consider the equation (24).

Lemma 9. For each fixed x ∈ [0,π], the operator I + R̃(x), acting from B to B, has a bounded

inverse operator, and the main equation (24) has a unique solution ψ(x) ∈ B.

Proof. It is sufficient to prove that the homogeneous equation

β(x)(I + R̃(x)) = 0, (26)

where β(x) = [βu(x)]u∈V , βu(x) are m ×m matrices, has only the zero solution. Let β(x) ∈ B

be a solution of (26), i. e.

βnqi (x)+
∑

(k ,l , j )∈V

βkl j (x)R̃kl j ,nqi (x) = 0m .

Denote

γnms 1(x) = βnms 1(x), γnms 0(x) = γnms 1(x)+ξnβnms 0(x),

γnqi (x) = γnms i (x)+ξnβnqi (x),

n ≥ 0, s = 1, p , ms < q < ms+1, i = 0,1.

Then γnqi (x) satisfy the relations

γnqi (x)+
∞
∑

k=0

m
∑

l=1

(γkl0(x)F̃kl0,nqi (x)−γkl1(x)F̃kl1,nqi (x)) = 0m , n ≥ 0, (27)

and the following estimates are valid

‖γnqi (x)‖≤C (x), n ≥ 0, q = 1,m,

‖γnms 0(x)−γnms 1(x)‖,‖γnqi (x)−γnms i (x)‖ ≤C (x)ξn ,

s = 1, p , ms < q <ms+1.

(28)
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Construct the matrix-functions γ(x,λ), Γ(x,λ) and B (x,λ) by the formulas

γ(x,λ) = −
∞
∑

k=0

m
∑

l=1

[

γkl0(x)α′
kl0

〈ϕ̃∗
kl0

(x),ϕ̃(x,λ)〉
λ−λkl0

−γkl1(x)α′
kl1

〈ϕ̃∗
kl1

(x),ϕ̃(x,λ)〉
λ−λkl1

]

, (29)

Γ(x,λ) = −
∞
∑

k=0

m
∑

l=1

[

γkl0(x)α′
kl0

〈ϕ̃∗
kl0

(x),Φ̃(x,λ)〉
λ−λkl0

−γkl1(x)α′
kl1

〈ϕ̃∗
kl1

(x),Φ̃(x,λ)〉
λ−λkl1

]

, (30)

B (x,λ) = γ∗(x, λ̄)Γ(x,λ).

In view of (12), the matrix-function γ(x,λ) is entire in λ for each fixed x. The func-

tions Γ(x,λ) and B (x,λ) are meromorphic in λ with simple poles λnqi . According to (29),

γ(x,λnqi ) = γnqi (x). We calculate residues of B (x,λ) (for simplicity we assume that {λnq0}∩
{λnq1} =;):

Res
λ=λnq0

B (x,λ) = γ∗(x,λnq0)γ(x,λnq0)αnq0, Res
λ=λnq1

B (x,λ) = 0m .

Consider the integral

IN (x) =
1

2πi

∫

ΓN

B (x,λ)dλ,

where ΓN = {λ : |λ| = (N +1/2)2}. Let us show that for each fixed x ∈ [0,π]

lim
N→∞

IN (x) = 0m .

Indeed, it follows from (12) and (29) that

−γ(x,λ) =
∞
∑

k=0

p
∑

s=1

ms+1−1
∑

l=ms

[

γkl0(x)α′
kl0D̃(x,λ,λkl0)−γkl1(x)α′

kl1D̃(x,λ,λkl1)
]

=
∞
∑

k=0

p
∑

s=1

[

(γkms 0(x)−γkms 1(x))
ms+1−1

∑

l=ms

α′
kl0D̃(x,λ,λkl0)+γkms 1(x)α(s)

k
(D̃(x,λ,λkms 0)

−D̃(x,λ,λkms 1))+γkms 1(x)(α(s)
k

− α̃(s)
k

)D̃(x,λ,λkms 1)

+γkms 1(x)
ms+1−1

∑

l=ms

1
∑

j=0

α′
kl j (D̃(x,λ,λkl j )− D̃(x,λ,λkms j ))

+
ms+1−1

∑

l=ms

1
∑

j=0

(γkl j (x)−γkms j (x))α′
kl j D̃(x,λ,λkl j )

]

.

By virtue of Lemma 6, (5) and (28), we get

‖γ(x,λ)‖≤C (x)exp(|τ|x)
∞
∑

k=0

ξk

|ρ−k |+1
, Reρ ≥ 0.

Similarly, using (30) we obtain for sufficiently large ρ∗ > 0:

‖Γ(x,λ)‖≤
C (x)

|p|
exp(−|τ|x)

∞
∑

k=0

ξk

|ρ−k |+1
,Reρ ≥ 0, |ρ| ≥ρ∗, ρ ∈Gδ.
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Then

‖B (x,λ)‖≤
C (x)

|ρ|

(

∞
∑

k=0

ξk

|ρ−k |+1

)2

≤
C (x)

|ρ|3
, λ ∈ΓN .

This estimate yields lim
N→∞

IN (x) = 0m .

On the other hand, calculating the integral IN (x) by the residue theorem, we arrive at

∞
∑

k=0

m
∑

q=1

γ∗kl0(x)γkl0(x)α′
kl0 = 0m .

Since αkl0 =α∗
kl0

≥ 0, we get

γ∗kl0(x)γkl0(x)αkl0 = 0m ,

γ(x,λkl0)αkl0 = 0m , k ≥ 0, l = 1,m.

Since γ(x,λ) is entire in λ, and

γ(x,λ) =O(exp(|τ|x))

for each fixed x ∈ [0,π], according to condition 3 of Theorem 1, we get γ(x,λ) ≡ 0m . Therefore

γnqi (x) = 0m for all n ≥ 0, q = 1,m, i = 0,1, i. e. the homogeneous equation (26) has only the

zero solution. ���

4.2. Further, we provide the general strategy of the proof of sufficiency in Theorem 1. The

proofs of Lemmas 10−12 are similar to ones described in [3, Sec. 1.6.2].

Let ψ(x) = [ψu(x)]u∈V be the solution of the main equation (24).

Lemma 10. For n ≥ 0, q = 1,m, i = 0,1, the following relations hold

ψnqi (x) ∈C 1[0,π], ‖ψ(ν)
nqi

‖ ≤C (n +1)ν, ν= 0,1 x ∈ [0,π],

‖ψnqi (x)− ψ̃nqi (x)‖≤CΩηn , ‖ψ′
nqi

(x)− ψ̃′
nqi

(x)‖≤CΩ, x ∈ [0,π],

where

ηn :=
(

∞
∑

k=0

1

(k +1)2(|n −k |+1)2

)

.

Construct matrix-functions ϕnqi (x) by formulae (25). By virtue of Lemma 10, we have

‖ϕ(ν)
nqi

(x)‖ ≤C (n +1)ν, ν= 0,1,

‖ϕnqi (x)− ϕ̃nqi (x)‖ ≤CΩηn , ‖ϕ′
nqi

(x)− ϕ̃′
nqi

(x)‖ ≤CΩ, q = 1,m,

‖ϕnms 0(x)−ϕnms 1(x)‖, ‖ϕnqi (x)−ϕnms i (x)‖ ≤Cξn , s = 1, p , ms < q <ms+1.

(31)
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Further, we construct the matrix-functions ϕ(x,λ) and Φ(x,λ) by the formulas

ϕ(x,λ) = ϕ̃(x,λ)−
∑

(k ,l , j )∈V

(−1) jϕkl j (x)α′
kl j

〈ϕ̃∗
kl j

(x),ϕ̃(x,λ)〉

λ−λkl j

,

Φ(x,λ) = Φ̃(x,λ)−
∑

(k ,l , j )∈V

(−1) jϕkl j (x)α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉

λ−λkl j

,

and the boundary value problem L(Q(x),h, H ) via (18). Clearly, ϕ(x,λnqi ) =ϕnqi (x).

Using estimates (31) one can show that the components of ε0(x) are absolutely continu-

ous and the components of ε(x) belong to L2(0,π). Consequently, we get

Lemma 11. Q j k (x) ∈ L2(0,π), j ,k = 1,m.

Lemma 12. The following relations hold

ℓϕnqi (x) = λnqiϕnqi (x), ℓϕ(x,λ) =λϕ(x,λ), ℓΦ(x,λ) =λΦ(x,λ),

ϕ(0,λ) = Im, ϕ′(0,λ) = h, U (Φ) = Im, V (Φ) = 0m .

In order to finish the proof of Theorem 1 it remains to show that the given data {λnq ,αnq }

coincide with the spectral data of the constructed boundary value problem L(Q ,h, H ). In view

of Lemma 12, the matrix-function Φ(x,λ) is the Weyl solution of L. Let us get the representa-

tion for the Weyl matrix:

M (λ) = Φ(0,λ) = M̃(λ)−
∑

(k ,l , j )∈V

ϕkl j (0)α′
kl j

〈ϕ̃∗
kl j

(x),Φ̃(x,λ)〉x=0

λ−λkl j
M̃(λ)

+
∞
∑

k=0

m
∑

l=1

(

α′
kl0

λ−λkl1
−

α′
kl1

λ−λkl1

)

.

Using the equality (see [4])

M̃(λ) =
∞
∑

k=0

m
∑

l=1

α′
kl1

λ−λkl1
,

we arrive at

M (λ)=
∞
∑

k=0

m
∑

l=1

α′
kl0

λ−λkl0
.

Consequently, {λkl0} are simple poles of the Weyl matrix M (λ), and {αkl0} are residues

at the poles. Note that the multiplicities of the eigenvalues coincide with the numbers of

equal values among {λkl0}, because they both coincide with the ranks of {αkl0}. Theorem 1 is

proved. ���
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