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NOTE ON OSCILLATION THEOREMS FOR THIRD ORDER

NON-LINEAR DIFFERENCE EQUATIONS

I. MOHAMMED ALI JAFFER AND B. SELVARAJ

Abstract. In this paper some sufficient conditions for oscillation of all solutions of certain

difference equations are obtained. Examples are given to illustrate the results.

1. Introduction

We are concerned with the oscillatory properies of all solutions of third order linear and

non-linear difference equations of the form

∆
2(an∆xn)−pn∆xn +qn f (xn+1)= 0, n = 0,1,2. . . , (1.1)

∆
2(anφ(xn)∆xn)−pn∆xn +qn f (xn+1)= 0, n = 0,1,2. . . , (1.2)

∆
2(an∆xn)+qn f (xn+1)= 0, n = 0,1,2. . . , (1.3)

∆
2(anφ(xn)∆xn)+qn f (xn+1) = 0, n = 0,1,2. . . , (1.4)

where the following conditions are assumed to hold.

(H1) {an},{pn} and {qn} are real positive sequences where n ∈ N ={0,1,2,3., ...}.

(H2) f : R → R is continous and x f (x) > 0 for all x 6= 0.

(H3) there exixts a real valued function g such that f (u)− f (v) = g (u, v)(u − v) , for all u 6= 0

and v 6= 0 and g (u, v)≥ L > 0 ∈ R .

(H4) φ : R → R is continous for all x 6= 0,φ(x) > 0

(H5)
∞
∑

n=M

(n +1)p2
n <∞.

(H6)
∞
∑

n=0

a2
n <∞.

(H7)
∞
∑

n=0

(n +1)qn =∞.
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By a solution of equation (1.1), we mean a real sequecne {xn} satsifying (1.1) for n =

0,1, . . . . A solution {xn} of (1.1) is said to be oscillatory if it is neither eventually positve nor

eventually negative. Otherwise, it is called non-oscillatory. ∆ is the forward difference opera-

tor defined by ∆xn = xn+1 −xn .This definition holds for other equations.

In recent years, much research is going on the study of oscillatory behavior of solutions

of third order difference equations.

For more details on oscillatory behavior of difference equations, one may refer to [1-24].

2. Main results

In this section, we present some sufficient conditions for the oscillation of all solutions

of (1.1)-(1.4). We begin with the following lemma.

Lemma 1. Let P(n, s, x) be defined on N ×N ×R+, N = {0,1,2, . . .}, R+ = [0,∞), such that for

fixed n and s,the function P(n, s, x) is non-decreasing in x. Let {rn} be a given sequence and

the sequences {xn} and {zn} be defined on N satisfying, for all n ∈ N ,

xn ≥ rn +

n−1
∑

s=0

P(n, s, xs), (2.1)

and

zn = rn +

n−1
∑

s=0

P(n, s, zs) (2.2)

respectively. Then zn ≤ xn for all n ∈ N .

The proof can be found in [15].

Theorem 1. In addition to (H1), (H2) and (H3), assume that (H5), (H6) and (H7) hold.Then,every

solution of (1.1) is oscillatory.

Proof. Suppose the contrary.Then we may assume that{xn} be a non-oscillatory solution of

(1.1),such that xn > 0(or xn < 0) for all n ≥ M −1, M > 0 is an integer.

Equation (1.1) implies

∆(an+1∆xn+1)−∆(an∆xn)−pn∆xn +qn f (xn+1)= 0 (2.3)

Multiplying (2.3) by n+1
f (xn+1) and summing from M to (n −1), we obtain

n−1
∑

s=M

(

s +1

f (xs+1)

)

∆(as+1∆xs+1)−
n−1
∑

s=M

(

s +1

f (xs+1)

)

∆(as∆xs)−
n−1
∑

s=M

(

s +1

f (xs+1)

)

ps∆xs

+

n−1
∑

s=M

(s +1)qs = 0. (2.4)
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But

n−1
∑

s=M

(

s +1

f (xs+1)

)

∆(as+1∆xs+1)

=

((

s +1

f (xs+1)

)

(as+1∆xs+1)

)n

s=M

−

n−1
∑

s=M

∆

(

s +1

f (xs+1)

)

(as+2∆xs+2).

=
(n +1)an+1∆xn+1

f (xn+1)
−

(M +1)aM+1∆xM+1

f (xM+1)

−

n−1
∑

s=M

as+2∆xs+2

f (xs+2)
+

n−1
∑

s=M

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)
. (2.5)

Also,

n−1
∑

s=M

(

s +1

f (xs+1)

)

∆(as∆xs ) =

((

s +1

f (xs+1)

)

(as∆xs )

)n

s=M

−

n−1
∑

s=M

∆

(

s +1

f (xs+1)

)

(as+1∆xs+1)

=
(n +1)an∆xn

f (xn+1)
−

(M +1)aM∆xM

f (xM+1)

−

n−1
∑

s=M

as+1∆xs+1

f (xs+2)
+

n−1
∑

s=M

(s +1)as+1g (xs+2, xs+1)(∆xs+1)2

f (xs+1) f (xs+2)
. (2.6)

Subsituting (2.5) and (2.6) in (2.4), we have

(

(n +1)an+1∆xn+1

f (xn+1)
−

(n +1)an∆xn

f (xn+1)

)

−

(

n−1
∑

s=M

as+2∆xs+2

f (xs+2)
−

n−1
∑

s=M

as+1∆xs+1

f (xs+2)

)

+

(

n−1
∑

s=M

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)
−

n−1
∑

s=M

(s +1)as+1g (xs+2, xs+1)(∆xs+1)2

f (xs+1) f (xs+2)

)

−

n−1
∑

s=M

(

s +1

f (xs+1)

)

ps∆xs +

n−1
∑

s=M

(s +1)qs

=

(

(M +1)aM+1∆xM+1

f (xM+1)
−

(M +1)aM∆xM

f (xM+1)

)

. (2.7)

Using Schwarz’s inequality,we have

n−1
∑

s=M

(

as+2∆xs+2

f (xs+2)

)

≤

(

n−1
∑

s=M

a2
s+2

)
1
2

·

(

n−1
∑

s=M

(∆xs+2)2

f 2(xs+2)

)
1
2

. (2.8)

n−1
∑

s=M

(

as+1∆xs+1

f (xs+2)

)

≤

(

n−1
∑

s=M

a2
s+1

)
1
2

·

(

n−1
∑

s=M

(∆xs+1)2

f 2(xs+2)

)
1
2

. (2.9)

n−1
∑

s=M

(

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)

)

≤

(

n−1
∑

s=M

a2
s+2

)
1
2

·

(

n−1
∑

s=M

(s +1)2g 2(xs+2, xs+1)(∆xs+1)2(∆xs+2)2

f 2(xs+1) f 2(xs+2)

)
1
2

. (2.10)
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n−1
∑

s=M

(

(s +1)as+1g (xs+2, xs+1)(∆xs+1)2

f (xs+1) f (xs+2)

)

≤

(

n−1
∑

s=M

a2
s+1

)
1
2

·

(

n−1
∑

s=M

(s +1)2g 2(xs+2, xs+1)(∆xs+1)4

f 2(xs+1) f 2(xs+2)

)
1
2

. (2.11)

n−1
∑

s=M

(

(s +1)ps∆xs

f (xs+1)

)

≤

(

n−1
∑

s=M

(s +1)p2
s

)
1
2

·

(

n−1
∑

s=M

(s +1)(∆xs)2

f 2(xs+1)

)
1
2

. (2.12)

In view of (2.8), (2.9), (2.10), (2.11) and (2.12),the summation in (2.7) is bounded, we have

(

(n +1)an+1∆xn+1

f (xn+1)
−

(n +1)an∆xn

f (xn+1)

)

−

(

n−1
∑

s=M

a2
s+2

)
1
2
(

n−1
∑

s=M

(∆xs+2)2

f 2(xs+2)

)
1
2

+

(

n−1
∑

s=M

a2
s+1

)
1
2
(

n−1
∑

s=M

(∆xs+1)2

f 2(xs+2)

)
1
2

+

(

n−1
∑

s=M

a2
s+2

)
1
2
(

n−1
∑

s=M

(s +1)2g 2(xs+2, xs+1)(∆xs+1)2(∆xs+2)2

f 2(xs+1) f 2(xs+2)

)
1
2

−

(

n−1
∑

s=M

a2
s+1

)
1
2
(

n−1
∑

s=M

(s +1)2g 2(xs+2, xs+1)(∆xs+1)4

f 2(xs+1) f 2(xs+2)

)
1
2

−

(

n−1
∑

s=M

(s +1)p2
s

)
1
2
(

n−1
∑

s=M

(s +1)(∆xs )2

f 2(xs+1)

)
1
2

≤

(

(M +1)aM+1∆xM+1

f (xM+1)
−

(M +1)aM∆xM

f (xM+1)

)

−

n−1
∑

s=M

(s +1)qs (2.13)

In view of (H5), (H6) and (H8),we get from (2.13) that

(n +1)(an+1∆xn+1 −an∆xn)

f (xn+1)
→ −∞ as n →∞

(n +1)∆(an∆xn)

f (xn+1)
→ −∞ as n →∞.

Hence there exists M1 ≥ M such that ∆(an∆xn) < 0 for n ≥ M

which implies ∆(an∆xn) <−k ,k > 0

Summing the last inequality from m to (n −1),we obtain

n−1
∑

s=m

∆(as∆xs ) <
n−1
∑

s=m

(−k)

(as∆xs )n
s=m < (−k)(n −m)

(i.e) an ∆xn <−k(n −m)+ am ∆xm

Therefore an∆xn →−∞ as n →∞

Hence there exists

M2 ≥ M1 such that ∆xn < 0 for n ≥ M2

Rewriting (2.7),we have

(n +1)an+1∆xn+1

f (xn+1)
+

n−1
∑

s=M2

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)
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=
(n +1)an∆xn

f (xn+1)
+

(M +1)aM+1∆xM+1

f (xM+1)
−

(M +1)aM∆xM

f (xM+1)

−

n−1
∑

s=M

(s +1)qs +

n−1
∑

s=M2

(s +1)as+1g (xs+2, xs+1)(∆xs+1)2

f (xs+1) f (xs+2)

−

M2−1
∑

s=M

(

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)

)

+

M2−1
∑

s=M

(

(s +1)as+1g (xs+2, xs+1)(∆xs+1)2

f (xs+1) f (xs+2)

)

+

M2−1
∑

s=M

(

as+2∆xs+2

f (xs+2)
−

as+1∆xs+1

f (xs+2)

)

+

n−1
∑

s=M2

(

as+2∆xs+2

f (xs+2)
−

as+1∆xs+1

f (xs+2)

)

+

n−1
∑

s=M2

(

(s +1)ps∆xs

f (xs+1)

)

+

M2−1
∑

s=M

(

(s +1)ps∆xs

f (xs+1)

)

(2.14)

From (H1), (H8), (??) and (2.14), there exists an integer M3 ≥ M2, such that

(n +1)an+1∆xn+1

f (xn+1)
+

n−1
∑

s=M2

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)
≤−k ,k ≥ M3

where k is a positive constant.

−(n +1)an+1∆xn+1

f (xn+1)
−

n−1
∑

s=M2

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)
≥ k (2.15)

let un+1 =−(n +1)∆xn+1, (2.15) becomes

un+1an+1

f (xn+1)
≥ k +

n−1
∑

s=M3

(s +1)as+2g (xs+2, xs+1)∆xs+1∆xs+2

f (xs+1) f (xs+2)
; n ≥ M3

⇒ un+1 ≥ k
f (xn+1)

an+1
+

n−1
∑

s=M3

as+2 f (xn+1)g (xs+2, xs+1)(−∆xs+2)us+1

an+1 f (xs+1) f (xs+2)
(2.16)

Also,

Let vn+1 = k
f (xn+1)

an+1
+

n−1
∑

s=M3

as+2 f (xn+1)g (xs+2, xs+1)(−∆xs+2)vs+1

an+1 f (xs+1) f (xs+2)
(2.17)

Using Lemma 1, we have, from (2.16) and (2.17)

⇒ un+1 ≥ vn+1 (2.18)

(2.16) implies

vn+1 =
f (xn+1)

an+1

(

k +

n−1
∑

s=M3

as+2g (xs+2, xs+1)(−∆xs+2)vs+1

f (xs+1) f (xs+2)

)

This implies

vn+1 ≥
k f (xM3

)

an+1
for n ≥ M3 (2.19)
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From (2.19) and (2.20),we have

− (n +1)∆xn+1 ≥
k f (xM3

)

an+1

⇒ ∆xn+1 ≤
−k f (xM3

)

(n +1)an+1
(2.20)

Summing (2.20) from M3 to (n −1)

n−1
∑

s=M3

∆xs+1 ≤ −k f (xM3
)

n−1
∑

s=M3

1

(s +1)as+1

(xs+1)n
s=M3

≤ −k f (xM3
)

n−1
∑

s=M3

1

(s +1)as+1

⇒ xn+1 ≤ xM3+1 −k f (xM3
)

n−1
∑

s=M3

1

(s +1)as+1

⇒ xn ≤ 0 for sufficiently large n,

which yields a contradiction to the fact that xn is eventually positive.The proof is similar for

the case when xn is eventually negative. Hence the theorem is completely proved. ���

Example 1. Consider the difference equation

∆
2

(

1

n
∆xn

)

−
9n2 +18n +5

2n(n +1)(n +2)
∆xn +

n2 +2n +1

n(n +1)(n +2)
xn+1 = 0 (2.21)

All the conditions of theorem 1 are satisfied .Hence every solution of equation(E1) is oscilla-

tory.

One such solution of (2.21) is xn = (−1)n .

Example 2. Consider the difference equation

∆
2

(

1

n +1
∆xn

)

−
n4 +7n3 +35n2 +92n +45

(n +1)(n +2)(n +3)
2n+1

∆xn + (n +1)8n+1x3
n+1 = 0 (2.22)

All the conditions of Theorem 1 are satisfied .Hence every solution of equation (2.22) is oscil-

latory.

One such solution of (2.22) is xn =
(−1)n

2n .

Corollary 1. In addition to (H1), (H2), (H3) and (H4), assume that (H5), (H6) and (H7) hold.

Then, every solution of (1.2) is oscillatory.

Example 3. Consider the difference equation

∆
2

(

1

2n
(x4

n)∆xn

)

−
3n4 +9n3 +14n2 +16n +4

4n(n +1)(n +2)
∆xn +n(x3

n+1 +
x5

n+1

2
) = 0 (2.23)

All the conditions of Corollary 1 are satisfied .Hence every solution of equation (2.23) is oscil-

latory.

One such solution of (2.23) is xn = (−1)n+1.
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Remark 1. In Corollary 1, assume φ(xn)= c > 0, a constant, in (1.2) yields (1.1).

Corollary 2. In addition to (H1), (H2) and (H3), assume that (H6) and (H7) hold. Then, every

solution of (1.3) is oscillatory.

Example 4. Consider the difference equation

∆
2

(

1

n
∆xn

)

+
2(3n +2)

n(n +1)(n +2)
x5

n+1 = 0 (2.24)

All the conditions of Corollary 2 are satisfied. Hence every solution of equation (2.24) is oscil-

latory.

One such solution of (2.24) is xn = (−1)n+1.

Corollary 3. In addition to (H1), (H2), (H4) and (H4), assume that (H6) and (H7) hold. Then,

every solution of (1.4) is oscillatory.

Example 5. Consider the difference equation

∆
2

(

1

2n +1
(x2

n)∆xn

)

+
8(n +1)

(n +1)3(n2 +2n +3)
(x3

n+1 +
x5

n+1

2
) = 0 (2.25)

All the conditions of Corollary 3 are satisfied .Hence every solution of equation (2.25) is oscil-

latory.

One such solution of (2.25) is xn =n(−1)n .

Proofs of Corollary 1, Corollary 2 and Corollary 3 are simillar to the proof of Theorem 1

and hence the details are omitted.
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