Available online at http://journals.math.tku.edu.tw/

ON THE MULTIPLICITY OF THE EIGENVALUES OF THE VECTORIAL STURM-LIOUVILLE EQUATION

CHIEN-WEN LIN

Abstract. Let Q(x) be a continuous $m \times m$ real symmetric matrix-valued function defined on [0, 1], and denote the Sturm-Liouville operator $-\frac{d^2}{dx^2} + Q(x)$ as L_Q with Q(x) as its potential function. In this paper we prove that for each Dirichlet eigenvalue λ_* of L_Q , the geometric multiplicity of λ_* is equal to its algebraic multiplicity. Applying this result, we get a necessary and sufficiently condition such that each Dirichlet eigenvalue of L_Q is of multiplicity m.

1. Introduction

In this paper we shall study some problems related to the multiplicity of the eigenvalue of the following vectorial Sturm-Liouville equation:

$$\begin{cases} y''(x) + (\lambda I_m - Q(x)) y(x) = 0, \\ y(0) = y(1) = 0, \end{cases}$$
(1)

where I_m is the identity operator on \mathbb{R}^m , Q(x) is an $m \times m$ real symmetric matrix-valued continuous function, and y(x) is an \mathbb{R}^m -valued function. Denote $L_Q = -\frac{d^2}{dx^2} + Q(x)$ and call it the Sturm-Liouville operator with the *potential function* Q(x). We say that a number λ_* is a Dirichlet eigenvalue of L_Q if and only if the equation (1) has a nontrivial solution. Such a solution is called a *Dirichlet eigenfunction* of L_Q correponding to the eigenvalue λ_* . Let $m_g(\lambda_*)$ denote the *geometric multiplicity* of the eigenvalue λ_* , which is the dimension of the subspace of eigenfunctions corresponding to λ_* . The collection of all Dirichlet eigenvalues of L_Q is called the *Dirichlet spectrum* of L_Q , and denoted by $\sigma_D(L_Q)$. According to the selfadjointness of Q(x), we know that all Dirichlet eigenvalues are real. Counting the geometric multiplicity of the eigenvalues, we arrange the Dirichlet eigenvalues of L_Q in ascending order as:

$$\lambda_1 \leq \lambda_2 \leq \lambda_3 \leq \cdots \leq \lambda_k \leq \cdots$$

This research was supported in part by the National Science Council of the Republic of China, Taiwan.

CHIEN-WEN LIN

In order to study the Sturm-Liouville eigenvalue problem, we introduce the following initial value problem:

$$\begin{cases} Y''(x) + (\lambda I_m - Q(x)) Y(x) = 0_m, \\ Y(0) = 0_m, \quad Y'(0) = I_m, \end{cases}$$

and denote its solution by $Y(x;\lambda)$. Then λ_* is a Dirichlet eigenvalue of L_Q if and only if det $Y(1;\lambda_*) = 0$, and $m_g(\lambda_*) = \dim(\ker Y(1;\lambda_*))$. Let $m_a(\lambda_*)$ denote the algebraic multiplicity of the eigenvalue λ_* , which is determined by the following equality:

$$m_a(\lambda_*) = \max\{n \in \mathbb{Z}^+ \mid (\lambda - \lambda_*)^{-n} \det Y(1; \lambda) \text{ is analytic at } \lambda_* \}.$$

It is known that for each $\lambda_* \in \sigma_D(L_Q)$, $m_g(\lambda_*) \le m_a(\lambda_*)$. With the help of a homotopy method motivated by the approach of L. Bers in his paper [2], we prove the following theorem:

Theorem 2. Suppose that $Q(x) \in C([0,1]; \mathscr{L}(\mathbb{R}^m))$, and $Q(x) = Q(x)^*$ for all $x \in [0,1]$. Then $m_a(\lambda_*) = m_g(\lambda_*)$ for any $\lambda_* \in \sigma_D(L_O)$.

On the other hand, for the Dirichlet eigenvalues of L_Q , it is known that $m_g(\lambda_*) \leq m$ for each $\lambda_* \in \sigma_D(L_Q)$. In the works of C-L. Shen [7, 8] about the inverse eigenvalue problems related to equation (1), it was shown that if Q(x) is an even function, and $m_g(\lambda_*) = m$ for each $\lambda_* \in \sigma_D(L_Q)$, then Q(x) is a diagonal matrix-valued function. Note that $m_g(\lambda_*) = m$ if and only if $Y(1; \lambda_*) = 0_m$. Therefore it is interesting to find a spectral condition, only depending on the eigenvalues of equation (1), to tell whether all Dirichlet eigenvalues of L_Q are of multiplicity m. We use a homotopy method to study this problem. Denote $Y(x; \lambda; t)$ as the solution of the following initial value problem:

$$Y''(x) + (\lambda I - tQ(x))Y(x) = 0, \quad Y(0) = 0, \quad Y'(0) = I,$$

where $t \in [0, 1]$. Then for sufficiently large $l \in \mathbb{N}$ we know that $Y(1; (l + \frac{1}{2})^2 \pi^2; t)$ is an invertible matrix for all $t \in [0, 1]$. Thus the following contour integral makes sense:

$$M_{l}(t) = \frac{1}{2\pi i} \oint_{|\lambda| = (l+\frac{1}{2})^{2}\pi^{2}} \frac{\frac{\partial}{\partial \lambda} \det Y(1;\lambda;t)}{\det Y(1;\lambda;t)} d\lambda.$$

Since $M_l(t)$ is a continuous positive integer-valued function on [0,1], then $M_l(1) = M_l(0) = lm$. Thus there are lm Dirichlet eigenvalues (counting multiplicity) smaller than $(l + \frac{1}{2})^2 \pi^2$. According to these argument, we obtain a necessary and sufficiently condition which implies all Dirichlet eigenvalues of L_Q are of multiplicity m.

Theorem 4. Suppose that $Q(x) \in C([0,1]; \mathscr{L}(\mathbb{R}^m))$, and $Q(x) = Q(x)^*$ for all $x \in [0,1]$. Then all Dirichlet eigenvalues of L_Q are of multiplicity m if and only if

$$\sigma_D(L_Q) = \{n^2 \pi^2 + \tau_n \mid \{\tau_n\}_{n=1}^{\infty} \text{ is a bounded sequence}\}.$$

Furthermore, $\{\tau_n\}_{n=1}^{\infty}$ is a convergent sequence, and

$$\int_0^1 Q(t)dt = \{\lim_{n \to \infty} \tau_n\} I_m$$

2. Preliminary

In order to study the Sturm-Liouville eigenvalue problem with the selfadjoint $m \times m$ matrix-valued potential Q(x), we consider the following initial value problems:

$$\begin{cases} Y''(x;\lambda) + (\lambda I_m - Q(x))Y(x;\lambda) = 0_m, \\ Y(0;\lambda) = 0_m, \quad Y'(0;\lambda) = I_m, \end{cases}$$
(2)

where 0_m is the $m \times m$ zero matrix. We have that

$$Y(x;\lambda) = \frac{\sin\sqrt{\lambda}x}{\sqrt{\lambda}}I_m + \int_0^x \frac{\sin\sqrt{\lambda}(x-t)}{\sqrt{\lambda}}Q(t)Y(t;\lambda)dt,$$
(3)

furthermore,

$$Y(1;\lambda) = \frac{\sin\sqrt{\lambda}}{\sqrt{\lambda}} I_m - \frac{\cos\sqrt{\lambda}}{2\lambda} \int_0^1 Q(x) dt + O(\frac{\exp(\|Q\|_{\infty} |\Im\sqrt{\lambda}|)}{|\lambda|^{\frac{3}{2}}}), \tag{4}$$

where $||Q||_{\infty} = \sup\{||Q(x)||_{L(\mathbb{R}^m)} | x \in [0;1]\}$, and we have that as a function of λ , $Y(x;\lambda)$ is a matrix-valued entire function. It is well known that $\lambda_* \in \sigma_D(L_Q)$, if and only if $Y(1;\lambda_*)$ has a nontrivial kernel, thus det $Y(1;\lambda_*) = 0$.

To analyze the distribution of the zeros of det $Y(1; \lambda)$ is helpful for our study of the structure of $\sigma_D(L_Q)$. Now we introduce a Rouché's theorem for analytic matrix valued-functions (see [G2, Ch.XI Thm. 9.2]). Let $\Phi(\lambda)$ be an analytic matrix-valued function defined on an open connected region $\Omega \subset \mathbb{C}$. Define

$$\begin{split} m_{g}(\lambda_{0}; \Phi) &= \dim \ker \Phi(\lambda_{0}), \\ m_{a}(\lambda_{0}; \Phi) &= \max\{n \in \mathbb{Z}^{+} \mid (\lambda - \lambda_{0})^{-n} \det \Phi(\lambda) \text{ is analytic at } \lambda_{0}\}, \end{split}$$

where $m_g(\lambda_0; \Phi)$ and $m_a(\lambda_0; \Phi)$ are geometric and algebraic multiplicity of λ_0 corresponding to $\Phi(\lambda)$, respectively. Let Γ be a Cauchy contour in Ω with inner domain $\Delta \subset \Omega$. We say that $\Phi(\lambda)$ is *normal* with respect to Γ if $\Phi(\lambda)$ is invertible for all $\lambda \in \Gamma$. Applying the analyticity of $\Phi(\lambda)$, we have that det $\Phi(\lambda)$ is also analytic on Ω , thus there are only finitely many $\lambda_* \in \Delta$, such that $\Phi(\lambda_*)$ is noninvertible. Then we may define the following quantities:

$$m_g(\Gamma;\Phi) = \sum_{\lambda \in \Delta} m_g(\lambda;\Phi), \quad m_a(\Gamma;\Phi) = \sum_{\lambda \in \Delta} m_a(\lambda;\Phi).$$

If $\Phi(\lambda_*)$ is selfadjoint, then we know $m_a(\lambda_*; \Phi) = m_g(\lambda_*; \Phi)$. But for nonselfadjoint $\Phi(\lambda)$ we only have that $m_a(\lambda_*; \Phi) \ge m_g(\lambda_*; \Phi)$. Gohberg and his coworkers proved the following Rouché's theorem for analytic matrix valued-functions (see [G2, Ch.XI Thm. 9.2]).

Theorem 1. Let $\Phi(\lambda)$, $\Psi(\lambda) : \Omega \in \mathscr{C} \to \mathscr{L}(\mathbb{R}^n)$ be analytic matrix valued-functions, and assume that Φ is normal with respect to the Cauchy contour $\Gamma \in \Omega$. If

$$\|\Phi(\lambda)^{-1}\Psi(\lambda)\|_{\mathscr{L}(\mathbb{R}^n)} < 1, \quad for \ all \ \lambda \in \Gamma,$$

then the function $V(\lambda) = \Phi(\lambda) + \Psi(\lambda)$ is also normal with respect to Γ , and $m_a(\Gamma; \Phi) = m_a(\Gamma; V)$.

In the remaining part of this section we shall analyze the distribution of Dirichlet eigenvalues of L_Q . Applying the selfadjointness of Q(x), we have that there exist an $m \times m$ unitary matrix P, such that

$$P^*(\int_0^1 Q(t)dt)P = \begin{pmatrix} q_1 & 0 & \cdots & 0 \\ 0 & q_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & q_m \end{pmatrix},$$

where $\{q_j\}_1^m$ are eigenvalues of the constant matrix $\int_0^1 Q(t) dt$, and $q_1 \le q_2 \le \cdots \le q_m$. Applying (4), we have that

$$P^* Y(1;\lambda) P = \frac{\sin\sqrt{\lambda}}{\sqrt{\lambda}} I_m - \frac{\cos\sqrt{\lambda}}{2\lambda} \begin{pmatrix} q_1 & 0 & \cdots & 0\\ 0 & q_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & q_m \end{pmatrix} + O(\frac{\exp(\|Q\|_{\infty} |\Im\sqrt{\lambda}|)}{|\lambda|^{\frac{3}{2}}}).$$

Denote

$$\Phi(\lambda) = \frac{\sin\sqrt{\lambda}}{\sqrt{\lambda}} I_m - \frac{\cos\sqrt{\lambda}}{2\lambda} \begin{pmatrix} q_1 & 0 & \cdots & 0\\ 0 & q_2 & \cdots & 0\\ \vdots & \vdots & \ddots & \vdots\\ 0 & 0 & \cdots & q_m \end{pmatrix},$$
$$\Psi(\lambda) = PY(1;\lambda)P - \Phi(\lambda).$$

Since

$$\det \Phi(\lambda) = \prod_{i=1}^{m} \left(\frac{\sin \sqrt{\lambda}}{\sqrt{\lambda}} - \frac{\cos \sqrt{\lambda}}{2\lambda} q_i\right),$$

Let μ_{lm+i} be the (lm+i)-th zero of det $\Phi(\lambda)$. Applying the Rouché's theorem, we find that μ_{lm+i} satisfies

$$\mu_{lm+i} - (l+1)^2 \pi^2 = q_i + O(\frac{1}{l}).$$

On the other hand, for sufficient large *l*, denote

$$\gamma_I^i = \{\lambda \in \mathbb{C} \mid |\lambda - \mu_{lm+i}| = \varepsilon_I^i\},\$$

where ε_{l}^{i} is a suitable number, such that det $\Phi(\lambda) \neq 0$ for all λ inside γ_{l}^{i} except μ_{lm+i} , and

$$\lim_{l\to\infty}\varepsilon_l^i=0,$$

and $\|\Phi(\lambda)^{-1}\Psi(\lambda)\|_{\mathscr{L}(\mathbb{R}^n)} < 1$ for any $\lambda \in \gamma_l^i$. According to Theorem 1, we know that

$$m_a(\gamma_l^i;\Phi) = m_a(\gamma_l^i;\Phi+\Psi) = m_a(\gamma_l^i;Y(1;\lambda)) = m_a(\mu_{lm+i};\Phi).$$
(5)

This shows that the eigenvalues of the equation (1) appear near $(l+1)^2\pi^2 + q_i$ for sufficient large *l*.

3. On the analysis of the structure of $\sigma_D(L_O)$

The purpose in this section is to prove that $m_a(\lambda_*; Y(1; \lambda)) = m_g(\lambda_*; Y(1; \lambda))$ for all $\lambda_* \in \sigma_D(L_Q)$, where $Q(x) \in \mathcal{L}(\mathbb{R}^n)$. Before we begin to prove our assertion, we need some notation. Consider the following auxiliary eigenvalue problem:

$$\begin{cases} y''(x) + (\lambda I_m - tQ(x))y(x) = 0, \\ y(0) = y(1) = 0, \end{cases}$$
(6)

and the following initial value problem:

$$Y''(x) + (\lambda I_m - tQ(x))Y(x) = 0, \quad Y(0) = 0, \quad Y'(0) = I_m,$$
(7)

where $t \in [0, 1]$. Denote $Y(x; \lambda; t)$ the solution of the equation (7), and let $\lambda_n^g(t)$ denote the *n*-th eigenvalue (counting geometric multiplicity) of (6). Then det $Y(1; \lambda_n^g(t); t) = 0$ for all $n \in \mathbb{N}$. Let $\lambda_n^a(t)$ be the *n*-th zero (counting algebraic multiplicity) of det $Y(1; \lambda; t)$. Then ker $Y(1; \lambda_n^a(t)) \neq \{0\}$. Thus for any $\lambda_n^g(t)$, there exists k_n , such that $\lambda_{k_n}^a(t) = \lambda_n^g(t)$, and for any $\lambda_n^a(t)$, there exists j_n , such that $\lambda_{i_n}^g(t) = \lambda_n^a(t)$.

Theorem 2. Suppose that $Q(x) \in C([0,1]; \mathcal{L}(\mathbb{R}^m))$, and $Q(x) = Q(x)^*$ for all $x \in [0,1]$. Then $m_a(\lambda_*) = m_g(\lambda_*)$ for any $\lambda_* \in \sigma_D(L_Q)$.

Proof. To prove our theorem, we have to prove that $m_g(\lambda_*; Y(1; \lambda)) = m_a(\lambda_*; Y(1; \lambda))$, where $\lambda_* \in \sigma_D(L_Q)$. If we can prove that $\lambda_n^g(t) = \lambda_n^a(t)$ for all $t \in [0, 1]$, and $n \in \mathbb{N}$, then $m_g(\lambda_n^a(t); Y(1; \lambda; t)) = m_a(\lambda_n^g(t); Y(1; \lambda; t))$. Since $Y(1; \lambda) = Y(1; \lambda; 1)$, then our assertion holds. According to the definition of $\lambda_n^a(t)$, $\lambda_n^g(t)$ and the continuity of $Y(1; \lambda; t)$ corresponding to *t*-parameter, we know that $\{\lambda_n^a(t)\}_{n=1}^{\infty}$ and $\{\lambda_n^g(t)\}_{n=1}^{\infty}$ are two increasing sequences of continuous functions, and $\lambda_n^a(t) \leq \lambda_n^g(t)$ for all $t \in [0, 1]$, $n \in \mathbb{N}$.

CHIEN-WEN LIN

Suppose that there exists $j \in \mathbb{N}$, $t_0 \in [0, 1]$, such that $\lambda_j^a(t_0) < \lambda_j^g(t_0)$. Denote

$$\mathcal{N} = \{t \in [0,1] \mid \text{There exist } j_t, \text{ such that } \lambda^a_{j_t}(t) < \lambda^g_{j_t}(t) \}.$$

Since $t_0 \in \mathcal{N}$, then \mathcal{N} is a nonempty subset of [0,1]. On the other hand, for any $t_* \in \mathcal{N}$, according to the continuity of $\lambda_{j_{t_*}}^a(t)$ and $\lambda_{j_{t_*}}^g(t)$, there exists an open neighborhood \mathcal{I}_{t_*} of t_* , such that for all $t \in \mathcal{I}_{t_*}$, we have that $\lambda_{j_{t_*}}^a(t) < \lambda_{j_{t_*}}^g(t)$. This implies that $\mathcal{I}_{t_*} \subset \mathcal{N}$, thus \mathcal{N} is an relatively open subset of [0, 1]. Furthermore, for any $t \in \mathcal{N}$, applying (5) we have that

$$\limsup_{n \to \infty} \frac{\lambda_n^g(t) - \lambda_n^a(t)}{2n\pi} \ge 1.$$
(8)

Let t_* be an accumulation point of \mathcal{N} , but $t_* \notin \mathcal{N}$. Then there exist $\{t_n\}_{n=1}^{\infty} \subset \mathcal{N}$, such that t_n converges to t_* as n tends to infinite. In the previous argument we know that

$$\lambda_{lm+i}^{a}(t_{n}) - \lambda_{lm+i}^{a}(t_{*}) = (t_{n} - t_{*})q_{i} + O(\frac{1}{l}).$$
(9)

Denote $y_n(x; t)$ the *n*-th eigenfunction of (6), such that $\int_0^1 ||y_n(x; t)||^2 dt = 1$. Then applying the variational principle (see [4]), we have that

$$\begin{split} \lambda_n^g(t) &\leq \int_0^1 \|y_n'(x;t_*)\|^2 dx + \int_0^1 \langle tQ(x)y_n(x;t_*), y_n(x;t_*) \rangle dt \\ &= \int_0^1 \|y_n'(x;t_*)\|^2 dx + \int_0^1 \langle t_*Q(x)y_n(x;t_*), y_n(x;t_*) \rangle dt \\ &+ (t-t_*)\int_0^1 \langle Q(x)y_n(x;t_*), y_n(x;t_*) \rangle dt \\ &= \lambda_n^g(t_*) + (t-t_*)\int_0^1 \langle Q(x)y_n(x;t_*), y_n(x;t_*) \rangle dt, \end{split}$$

and

$$\begin{split} \lambda_n^g(t_*) &\leq \int_0^1 \|y_n'(x;t)\|^2 dx + \int_0^1 \langle t_*Q(x)y_n(x;t), y_n(x;t) \rangle dt \\ &= \int_0^1 \|y_n'(x;t)\|^2 dx + \int_0^1 \langle tQ(x)y_n(x;t), y_n(x;t) \rangle dt \\ &+ (t_* - t) \int_0^1 \langle Q(x)y_n(x;t), y_n(x;t) \rangle dt \\ &= \lambda_n^g(t) + (t_* - t) \int_0^1 \langle Q(x)y_n(x;t), y_n(x;t) \rangle dt. \end{split}$$

Following the previous two inequalities and applying Hölder inequality, we find that

$$|\lambda_n^g(t) - \lambda_n^g(t_*)| \le |t - t_*| \cdot ||Q||_{\infty}.$$
(10)

270

Since $t_* \notin \mathcal{N}$, then $\lambda_n^a(t_*) = \lambda_n^g(t_*)$ for all $n \in \mathbb{N}$. According to (9) and (10), we have that

$$\begin{split} \lambda_n^g(t_l) - \lambda_n^a(t_l) &\leq |\lambda_n^g(t_l) - \lambda_n^g(t_*)| + |\lambda_n^a(t_l) - \lambda_n^a(t_*)| \\ &\leq |t_l - t_*| \{\max_{i=1,\cdots,m} q_i\} + O(|t_l - t_*|) + O(\frac{1}{[\frac{n}{m}]}). \end{split}$$

This is a contradiction to the inequality (8). Thus $t_* \in \mathcal{N}$, and we find that \mathcal{N} is a relatively closed subset of [0, 1]. By the connectedness of [0, 1], and the assumption of \mathcal{N} being nonempty, we conclude that $\mathcal{N} = [0, 1]$. But $Y(1; \lambda; 0) = \frac{\sin \sqrt{\lambda}}{\sqrt{\lambda}} I_m$, this shows that $\lambda_n^a(0) = \lambda_n^g(0)$ for all $n \in \mathbb{N}$, $0 \notin \mathcal{N}$, which is absurd. Thus \mathcal{N} is empty. Hence $\lambda_n^g(t) = \lambda_n^a(t)$ for all $n \in \mathbb{N}$.

Remark. If we consider the Neumann eigenvalue problem of L_Q as follows:

$$\begin{cases} z''(x) + (\lambda I_m - Q(x))z(x) = 0, \\ z'(0) = z'(1) = 0, \end{cases}$$

and denote $Z(x; \lambda)$ the solution of the following initial value problem:

$$\begin{cases} Z''(x;\lambda) + (\lambda I_m - Q(x))Z(x;\lambda) = 0_m, \\ Z(0;\lambda) = I_m, \quad Z'(0;\lambda) = 0_m. \end{cases}$$

Then we know that μ_* is in the Neumann spectrum $\sigma_N(L_Q)$ of L_Q or a Neumann eigenvalue of L_Q , if and only if det $Z'(1; \mu_*) = 0$. Applying the similar argument in the proof of Theorem 2, we get that $m_g(\mu) = m_a(\mu)$ for all $\mu \in \sigma_N(L_Q)$. Thus for any Neumann eigenvalue of L_Q its geometric multiplicity are equal to its algebraic multiplicity.

Denote $\gamma_l = \{\lambda \in \mathbb{C} : |\lambda - l^2 \pi^2| = (l - \frac{1}{4})\pi^2\}, l \in \mathbb{N}$. According to the identity (5), there exists a positive integer M_Q , such that

$$\frac{1}{2\pi i} \oint_{\gamma_l} \frac{\frac{\partial}{\partial \lambda} \det Y(1;\lambda)}{\det Y(1;\lambda)} d\lambda = m,$$
(11)

for any $l \ge M_Q$, $l \in \mathbb{N}$. Applying Theorem 2, we have that there are *m* Dirichlet eigenvalues of L_Q which are contained inside γ_l . On the other hand, according to (4), we have that

$$Y(1; (l+\frac{1}{2})^2 \pi^2; t) = \frac{(-1)^l}{(l+\frac{1}{2})\pi} I_m + tO(\frac{1}{(l+\frac{1}{2})^3 \pi^3}),$$

where $t \in [0,1]$. Thus for sufficiently large l we know that $Y(1; (l + \frac{1}{2})^2 \pi^2; t)$ is invertible for any $t \in [0,1]$, then det $Y(1; (l + \frac{1}{2})^2 \pi^2; t) \neq 0$ for all $t \in [0,1]$. Thus we can define the following integral

$$M_{l}(t) = \frac{1}{2\pi i} \oint_{|\lambda| = (l + \frac{1}{2})^{2}\pi^{2}} \frac{\frac{\partial}{\partial \lambda} \det Y(1; \lambda; t)}{\det Y(1; \lambda; t)} d\lambda.$$

According to (4), we have that

$$Y(1;\lambda;t) = \frac{\sin\sqrt{\lambda}}{\sqrt{\lambda}} I_m - \frac{t\cos\sqrt{\lambda}}{2\lambda} \int_0^1 Q(t)dt + tO(\frac{\exp\|Q\|_{\infty}|\Im\sqrt{\lambda}|}{|\sqrt{\lambda}|^{\frac{3}{2}}}).$$

Then the family $\{\det Y(1;\lambda;t)\}_{t\in[0,1]}$ is a continuous family with parameter *t*. On the other hand, we know that $\frac{\partial}{\partial\lambda} \det Y(1;\lambda;t)$ are sum of terms with multiplication of entries of $Y(1;\lambda;t)$ and $\frac{\partial}{\partial\lambda}Y(1;\lambda;t)$. Denote $Y_{\lambda}(x;\lambda;t) = \frac{\partial}{\partial\lambda}Y(x;\lambda;t)$. Then $Y_{\lambda}(1;\lambda;t)$ satisfies the following equation:

$$\begin{cases} Y_{\lambda}^{\prime\prime}(x;\lambda;t) + (\lambda I_m - tQ(x))Y_{\lambda}(x;\lambda;t) = Q(x)Y(x;\lambda;t), \\ Y_{\lambda}(0;\lambda;t) = Y_{\lambda}^{\prime}(0;\lambda;t) = 0_m. \end{cases}$$

According to the continuity of $Y(x; \lambda; t)$ on t variable, we know that $\{Y_{\lambda}(1; \lambda; t)\}_{t \in [0,1]}$ is a continuous family with parameter t. Then $\{\frac{\partial}{\partial \lambda} \det Y(1; \lambda; t)\}_{t \in [0,1]}$ is also a continuous family with parameter t. Thus $M_l(t)$ is a continuous function on [0, 1] with positive integer value, this shows that $M_l(t)$ is a constant function, $M_l(t) \equiv M_l(0) = lm$. From our argument of the distribution of the zeros of $Y(1; \lambda)$, we find that L_Q has exactly lm Dirichlet eigenvalues inside $\{|\lambda| = (l + \frac{1}{2})^2 \pi^2\}$. The above argument implies the following corollary:

Corollary 3. For $Q(x) \in C([0,1]; \mathcal{L}(\mathbb{R}^m))$, $Q(x) = Q(x)^*$ for all $x \in [0,1]$. Let λ_n be the *n*-th Dirichlet eigenvalue of L_Q , then

$$\lim_{l \to \infty} \sum_{i=1}^{m} (\lambda_{lm+i} - (l+1)^2 \pi^2) = trace \{ \int_0^1 Q(t) dt \}.$$

Proof. In the previous argument we find that there are lm Dirichlet eigenvalues of L_Q which are contained in $\{\lambda \in \mathbb{C} : |\lambda| \le (l + \frac{1}{2})^2 \pi^2\}$. According to the identities (5) and (11), we find that

$$\lambda_{lm+i} = (l+1)^2 \pi^2 + q_i + O(\frac{1}{l}),$$

for $i = 1, 2, \cdots, m$. Thus

$$\sum_{i=1}^{m} (\lambda_{lm+i} - (l+1)^2 \pi^2) = \sum_{i=1}^{m} q_i + O(\frac{1}{l})$$

Then our assertion holds.

From the previous argument for the multiplicity and the distribution of the Dirichlet eigenvalues of L_O , we obtain the following theorem.

Theorem 4. Suppose that $Q(x) \in C([0,1]; \mathscr{L}(\mathbb{R}^m))$, and $Q(x) = Q(x)^*$ for all $x \in [0,1]$. Then all Dirichlet eigenvalues of L_Q are of multiplicity m, if and only if there exists a bounded sequence $\{\tau_n\}_{n=1}^{\infty}$, such that

$$\sigma_D(L_Q) = \{n^2 \pi^2 + \tau_n \mid n \in \mathbb{N}\}.$$

Furthermore, $\{\tau_n\}_{n=1}^{\infty}$ is a convergent sequence, and

$$\int_0^1 Q(t)dt = \{\lim_{n\to\infty}\tau_n\}I_m.$$

272

Proof. Suppose that $m_g(\lambda_*; Y(1; \lambda)) = m$ for all $\lambda_* \in \sigma_D(L_Q)$. According to the identities (5) and (11), we find that

$$\lambda_{lm+1} = \lambda_{lm+2} = \dots = \lambda_{lm+m}.$$

But $\lambda_{lm+i} = (l+1)^2 \pi^2 + q_i + O(\frac{1}{l})$, thus $q_1 = q_2 = \cdots = q_m$ and $\tau_l = q_1 + O(\frac{1}{l})$. This implies that $\{\tau_n\}_{n=1}^{\infty}$ is a convergent sequence which converges to q_1 , and

$$\int_0^1 Q(t)dt = q_1 I_m.$$

Conversely, assume that there exists a bounded sequence $\{\tau_n\}_{n=1}^{\infty}$, such that

$$\sigma_D(L_Q) = \{ n^2 \pi^2 + \tau_n \mid n \in \mathbb{N} \}.$$

In the identity (24) we find that if $n \ge M_Q$, then $m_g(n^2\pi^2 + \tau_n; Y(1;\lambda)) = m$. Denote $\Gamma_l = \{\lambda \in \mathbb{C} : |\lambda| = (l + \frac{1}{2})^2\pi^2\}$, the previous argument implies that $m_a(\Gamma_l; Y(1;\lambda)) = lm = m_g(\Gamma_l; Y(1;\lambda))$ for sufficient large l. From the distribution of $\sigma_D(L_Q)$, we find that there only l eigenvalues inside Γ_l . Thus each eigenvalue inside Γ_l is of multiplicity m. This implies that all Dirichlet eigenvalues of L_Q are of multiplicity m.

Remark. Denote the *n*-th Neumann eigenvalue of L_Q as μ_n , then applying the argument similar to those argument in the proof of Corollary 3. and Theorem 4, we have that

$$\mu_{lm+i} = l^2 \pi^2 + q_i + o(\frac{1}{l}).$$

Furthermore, we also get that all Neumann eigenvalue of L_Q are of multiplicity m, if and only if

$$\sigma_N(L_Q) = \{ n^2 \pi^2 + \epsilon_n \mid n \in \mathbb{Z}_+ \},\$$

where $\{\epsilon_n\}_{n=0}^{\infty}$ is a bounded sequence. Applying these result, we can simplify the vectorial V.A. Ambarzumyan theorem (see [3]) as the followings:

Corollary 5. Let Q(x) be a continuous $m \times m$ selfadjoint matrix-valued function, then $\sigma_N(L_Q) = \{n^2\pi^2 \mid n \in \mathbb{Z}\}$, if and only if $Q(x) = 0_m$ for all $x \in [0, 1]$.

From [Sh2] we know that if $Q(x) \in C([0,1]; \mathscr{L}(\mathbb{R}^m))$, and $Q(x) = Q(x)^*$, Q(x) = Q(1-x) for all $x \in [0,1]$, and all eigenvalues of the equation (1) are of multiplicity *m*, then $Q(x) = q(x)I_m$, where q(x) is a scalar continuous function defined in [0,1], and q(x) = q(1-x) for all $x \in [0,1]$. According to Theorem 4, we obtain the following result which is an extension of the previous inverse spectral theorem that we just mentioned.

Corollary 6. Suppose that $Q(x) \in C([0,1]; \mathcal{L}(\mathbb{R}^m))$, and $Q(x) = Q(x)^*$, Q(x) = Q(1-x) for all $x \in [0,1]$. Then the Dirichlet spectrum $\sigma_D(L_Q)$ of L_Q is of the form

$$\sigma_D(L_Q) = \{ n^2 \pi^2 + \tau_n \mid n \in \mathbb{N} \},\$$

where $\{\tau_n\}_{n=1}^{\infty}$ is a bounded sequence, if and only if $Q(x) = q(x)I_m$ where q(x) is a scalar continuous function defined in [0,1], and q(x) = q(1-x) for all $x \in [0,1]$.

References

- [1] V. A. Ambarzumyan, Über eine Frage der Eigenwerttheorie, Z. Phys. 53(1929), 690–695.
- [2] L. Bers, On Trace Formula, Lecture Notes in Mathematics Vol 925. The Riemann Problem, Springer-Verlag, 1980.
- [3] H.-H. Chern and C.-L. Shen, On the n-dimensional Ambarzumyan's theorem, Inverse Problems, 13(1997), 15–18.
- [4] I. Gohberg and S. Gohberg, Basic Operator Theory, (Basel: Birkhäuser), 1981.
- [5] I. Gohberg, S. Gohberg and M. A. Kaashoek, Classes of Linear Operator vol.1 Birkhäuser, Basel, 1990.
- [6] J. Pöschel and E. Trubowitz, Inverse Spectral Theory, Academic, New York, 1987.
- [7] C.-L. Shen and C.-T. Shieh, Two inverse eigenvalue problems for vectorial Sturm-Liouville equations, Inverse Problems, 14 (1998), 1331–1343
- [8] C-L. Shen, Some inverse spectral problems for vectorial Sturm-Liouville equations, Inverse Problems, 17(2001), 1253–1294

Department of Mathematics, National Tsing Hua University, Hsinchu, Taiwan, Republic of China.

E-mail: d907205@alumni.nthu.edu.tw