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ON THE MULTIPLICITY OF THE EIGENVALUES OF THE

VECTORIAL STURM-LIOUVILLE EQUATION

CHIEN-WEN LIN

Abstract. Let Q(x) be a continuous m×m real symmetric matrix-valued function defined

on [0,1], and denote the Sturm-Liouville operator − d 2

d x2 +Q(x) as LQ with Q(x) as its po-

tential function. In this paper we prove that for each Dirichlet eigenvalue λ∗ of LQ , the

geometric multiplicity of λ∗ is equal to its algebraic multiplicity. Applying this result, we

get a necessary and sufficiently condition such that each Dirichlet eigenvalue of LQ is of

multiplicity m.

1. Introduction

In this paper we shall study some problems related to the multiplicity of the eigenvalue

of the following vectorial Sturm-Liouville equation:

{

y ′′(x)+ (λIm −Q(x))y(x) = 0,

y(0) = y(1) = 0,
(1)

where Im is the identity operator on R
m , Q(x) is an m×m real symmetric matrix-valued con-

tinuous function, and y(x) is an R
m-valued function. Denote LQ = − d2

dx2 +Q(x) and call it

the Sturm-Liouville operator with the potential function Q(x). We say that a number λ∗ is

a Dirichlet eigenvalue of LQ if and only if the equation (1) has a nontrivial solution. Such

a solution is called a Dirichlet eigenfunction of LQ correponding to the eigenvalue λ∗. Let

mg (λ∗) denote the geometric multiplicity of the eigenvalue λ∗, which is the dimension of the

subspace of eigenfunctions corresponding to λ∗. The collection of all Dirichlet eigenvalues

of LQ is called the Dirichlet spectrum of LQ , and denoted by σD (LQ). According to the self-

adjointness of Q(x), we know that all Dirichlet eigenvalues are real. Counting the geometric

multiplicity of the eigenvalues, we arrange the Dirichlet eigenvalues of LQ in ascending order

as:

λ1 Éλ2 Éλ3 É ·· · Éλk É ·· · .
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In order to study the Sturm-Liouville eigenvalue problem, we introduce the following

initial value problem:
{

Y ′′(x)+ (λIm −Q(x))Y (x) = 0m ,

Y (0) = 0m , Y ′(0) = Im ,

and denote its solution by Y (x;λ). Then λ∗ is a Dirichlet eigenvalue of LQ if and only if

det Y (1;λ∗)= 0, and mg (λ∗)= dim(ker Y (1;λ∗)). Let ma(λ∗) denote the algebraic multiplicity

of the eigenvalue λ∗, which is determined by the following equality:

ma(λ∗) = max{n ∈Z
+ | (λ−λ∗)−ndetY (1;λ) is analytic at λ∗ }.

It is known that for each λ∗ ∈σD (LQ ), mg (λ∗) Éma (λ∗). With the help of a homotopy method

motivated by the approach of L. Bers in his paper [2], we prove the following theorem:

Theorem 2. Suppose that Q(x) ∈ C ([0,1];L (Rm)), and Q(x) = Q(x)∗ for all x ∈ [0,1]. Then

ma (λ∗) =mg (λ∗) for any λ∗ ∈σD (LQ ).

On the other hand, for the Dirichlet eigenvalues of LQ , it is known that mg (λ∗) É m for

each λ∗ ∈σD (LQ ). In the works of C-L. Shen [7, 8] about the inverse eigenvalue problems re-

lated to equation (1), it was shown that if Q(x) is an even function, and mg (λ∗) = m for each

λ∗ ∈ σD (LQ ), then Q(x) is a diagonal matrix-valued function. Note that mg (λ∗) = m if and

only if Y (1;λ∗) = 0m . Therefore it is interesting to find a spectral condition, only depending

on the eigenvalues of equation (1), to tell whether all Dirichlet eigenvalues of LQ are of multi-

plicity m. We use a homotopy method to study this problem. Denote Y (x;λ; t ) as the solution

of the following initial value problem:

Y ′′(x)+ (λI − tQ(x))Y (x) = 0, Y (0) = 0, Y ′(0) = I ,

where t ∈ [0,1]. Then for sufficiently large l ∈N we know that Y (1; (l + 1
2

)2π2; t ) is an invertible

matrix for all t ∈ [0,1]. Thus the following contour integral makes sense:

Ml (t ) =
1

2πi

∮

|λ|=(l+ 1
2

)2π2

∂
∂λdetY (1;λ; t )

detY (1;λ; t )
dλ.

Since Ml (t ) is a continuous positive integer-valued function on [0,1], then Ml (1) = Ml (0) =
l m. Thus there are l m Dirichlet eigenvalues (counting multiplicity) smaller than (l + 1

2 )2π2.

According to these argument, we obtain a necessary and sufficiently condition which implies

all Dirichlet eigenvalues of LQ are of multiplicity m.

Theorem 4. Suppose that Q(x) ∈C ([0,1];L (Rm)), and Q(x) =Q(x)∗ for all x ∈ [0,1]. Then all

Dirichlet eigenvalues of LQ are of multiplicity m if and only if

σD (LQ ) = {n2π2 +τn | {τn }∞n=1 is a bounded sequence }.
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Furthermore, {τn }∞n=1 is a convergent sequence, and

∫1

0
Q(t )d t = { lim

n→∞
τn}Im .

2. Preliminary

In order to study the Sturm-Liouville eigenvalue problem with the selfadjoint m × m

matrix-valued potential Q(x), we consider the following initial value problems:
{

Y ′′(x;λ)+ (λIm −Q(x))Y (x;λ) = 0m ,

Y (0;λ) = 0m , Y ′(0;λ) = Im,
(2)

where 0m is the m ×m zero matrix. We have that

Y (x;λ) =
sin

p
λx

p
λ

Im +
∫x

0

sin
p
λ(x − t )
p
λ

Q(t )Y (t ;λ)d t , (3)

furthermore,

Y (1;λ) =
sin

p
λ

p
λ

Im −
cos

p
λ

2λ

∫1

0
Q(x)d t +O(

exp(‖Q‖∞|ℑ
p
λ|)

|λ|
3
2

), (4)

where ‖Q‖∞ = sup{‖Q(x)‖L(Rm) | x ∈ [0;1]}, and we have that as a function of λ, Y (x;λ) is a

matrix-valued entire function. It is well known that λ∗ ∈ σD (LQ ), if and only if Y (1;λ∗) has a

nontrivial kernel, thus det Y (1;λ∗) = 0.

To analyze the distribution of the zeros of det Y (1;λ) is helpful for our study of the struc-

ture of σD (LQ ). Now we introduce a Rouché’s theorem for analytic matrix valued-functions

(see [G2, Ch.XI Thm. 9.2]). Let Φ(λ) be an analytic matrix-valued function defined on an open

connected region Ω⊂C. Define

mg (λ0;Φ) = dim kerΦ(λ0),

ma(λ0;Φ) =max{n ∈Z
+ | (λ−λ0)−ndetΦ(λ) is analytic at λ0},

where mg (λ0;Φ) and ma (λ0;Φ) are geometric and algebraic multiplicity of λ0 corresponding

to Φ(λ), respectively. Let Γ be a Cauchy contour in Ω with inner domain ∆ ⊂Ω. We say that

Φ(λ) is normal with respect to Γ if Φ(λ) is invertible for all λ ∈ Γ. Applying the analyticity of

Φ(λ), we have that det Φ(λ) is also analytic on Ω, thus there are only finitely many λ∗ ∈ ∆,

such that Φ(λ∗) is noninvertible. Then we may define the following quantities:

mg (Γ;Φ) =
∑

λ∈∆
mg (λ;Φ), ma (Γ;Φ) =

∑

λ∈∆
ma (λ;Φ).

If Φ(λ∗) is selfadjoint, then we know ma (λ∗;Φ) = mg (λ∗;Φ). But for nonselfadjoint Φ(λ)

we only have that ma (λ∗;Φ) Ê mg (λ∗;Φ). Gohberg and his coworkers proved the following

Rouché’s theorem for analytic matrix valued-functions (see [G2, Ch.XI Thm. 9.2]).
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Theorem 1. Let Φ(λ), Ψ(λ) : Ω ∈C →L (Rn) be analytic matrix valued-functions, and assume

that Φ is normal with respect to the Cauchy contour Γ∈Ω. If

‖Φ(λ)−1
Ψ(λ)‖L (Rn ) < 1, for all λ∈Γ,

then the function V (λ) =Φ(λ)+Ψ(λ) is also normal with respect toΓ, and ma (Γ;Φ) = ma (Γ;V ).

In the remaining part of this section we shall analyze the distribution of Dirichlet eigen-

values of LQ . Applying the selfadjointness of Q(x), we have that there exist an m ×m unitary

matrix P , such that

P∗(

∫1

0
Q(t )d t )P =















q1 0 · · · 0

0 q2 · · · 0
...

...
. . .

...

0 0 · · · qm















,

where {q j }m
1 are eigenvalues of the constant matrix

∫1
0 Q(t )d t , and q1 É q2 É ·· · É qm . Apply-

ing (4), we have that

P∗Y (1;λ)P =
sin

p
λ

p
λ

Im −
cos

p
λ

2λ















q1 0 · · · 0

0 q2 · · · 0
...

...
. . .

...

0 0 · · · qm















+O(
exp(‖Q‖∞|ℑ

p
λ|)

|λ|
3
2

).

Denote

Φ(λ) =
sin

p
λ

p
λ

Im −
cos

p
λ

2λ















q1 0 · · · 0

0 q2 · · · 0
...

...
. . .

...

0 0 · · · qm















,

Ψ(λ) =PY (1;λ)P −Φ(λ).

Since

detΦ(λ) =
m
∏

i=1

(
sin

p
λ

p
λ

−
cos

p
λ

2λ
qi ),

Let µlm+i be the (l m + i )-th zero of detΦ(λ). Applying the Rouché’s theorem, we find that

µlm+i satisfies

µlm+i − (l +1)2π2 = qi +O(
1

l
).
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On the other hand, for sufficient large l , denote

γi
l = {λ ∈C | |λ−µlm+i | = εi

l },

where εi
l is a suitable number, such that detΦ(λ) 6= 0 for all λ inside γi

l except µlm+i , and

lim
l→∞

εi
l = 0,

and ‖Φ(λ)−1
Ψ(λ)‖L (Rn ) < 1 for any λ∈ γi

l . According to Theorem 1, we know that

ma (γi
l ;Φ) = ma(γi

l ;Φ+Ψ) = ma(γi
l ;Y (1;λ)) =ma (µlm+i ;Φ). (5)

This shows that the eigenvalues of the equation (1) appear near (l +1)2π2 + qi for sufficient

large l .

3. On the analysis of the structure of σD (LQ )

The purpose in this section is to prove that ma (λ∗;Y (1;λ)) = mg (λ∗;Y (1;λ)) for all λ∗ ∈
σD (LQ ), where Q(x)∈L (Rn). Before we begin to prove our assertion, we need some notation.

Consider the following auxiliary eigenvalue problem:

{

y ′′(x)+ (λIm − tQ(x))y(x) = 0,

y(0) = y(1) = 0,
(6)

and the following initial value problem:

Y ′′(x)+ (λIm − tQ(x))Y (x) = 0, Y (0) = 0, Y ′(0) = Im, (7)

where t ∈ [0,1]. Denote Y (x;λ; t ) the solution of the equation (7), and let λ
g
n(t ) denote the n-th

eigenvalue (counting geometric multiplicity) of (6). Then detY (1;λ
g
n (t ); t )= 0 for all n ∈N. Let

λa
n(t ) be the n-th zero (counting algebraic multiplicity) of detY (1;λ; t ). Then kerY (1;λa

n(t )) 6=
{0}. Thus for any λ

g
n(t ), there exists kn , such that λa

kn
(t )=λ

g
n(t ), and for any λa

n(t ), there exists

jn , such that λ
g
jn

(t ) =λa
n(t ).

Theorem 2. Suppose that Q(x) ∈ C ([0,1];L (Rm )), and Q(x) = Q(x)∗ for all x ∈ [0,1]. Then

ma(λ∗) = mg (λ∗) for any λ∗ ∈σD (LQ ).

Proof. To prove our theorem, we have to prove that mg (λ∗;Y (1;λ)) = ma(λ∗;Y (1;λ)), where

λ∗ ∈ σD (LQ ). If we can prove that λ
g
n(t ) = λa

n(t ) for all t ∈ [0,1], and n ∈ N, then mg (λa
n(t );

Y (1;λ; t )) = ma (λ
g
n(t );Y (1;λ; t )). Since Y (1;λ) = Y (1;λ;1), then our assertion holds. Accord-

ing to the definition of λa
n(t ), λ

g
n(t ) and the continuity of Y (1;λ; t ) corresponding to t -para-

meter, we know that {λa
n (t )}∞n=1 and {λ

g
n (t )}∞n=1 are two increasing sequences of continuous

functions, and λa
n(t ) Éλ

g
n(t ) for all t ∈ [0,1], n ∈N.



270 CHIEN-WEN LIN

Suppose that there exists j ∈N, t0 ∈ [0,1], such that λa
j (t0) <λ

g
j (t0). Denote

N = {t ∈ [0,1] | There exist jt , such that λa
jt

(t )<λ
g
jt

(t )}.

Since t0 ∈ N , then N is a nonempty subset of [0,1]. On the other hand, for any t∗ ∈ N ,

according to the continuity of λa
jt∗

(t ) and λ
g
jt∗

(t ), there exists an open neighborhood It∗ of t∗,

such that for all t ∈It∗ , we have that λa
jt∗

(t )<λ
g
jt∗

(t ). This implies that It∗ ⊂N , thus N is an

relatively open subset of [0,1]. Furthermore, for any t ∈N , applying (5) we have that

limsup
n→∞

λ
g
n(t )−λa

n(t )

2nπ
Ê 1. (8)

Let t∗ be an accumulation point of N , but t∗ ∉N . Then there exist {tn}∞n=1 ⊂N , such that tn

converges to t∗ as n tends to infinite. In the previous argument we know that

λa
lm+i (tn)−λa

lm+i (t∗) = (tn − t∗)qi +O(
1

l
). (9)

Denote yn(x; t ) the n-th eigenfunction of (6), such that
∫1

0 ‖yn(x; t )‖2d t = 1. Then applying

the variational principle (see [4]), we have that

λ
g
n(t )É

∫1

0
‖y ′

n(x; t∗)‖2d x +
∫1

0
〈tQ(x)yn(x; t∗), yn(x; t∗)〉d t

=
∫1

0
‖y ′

n(x; t∗)‖2d x +
∫1

0
〈t∗Q(x)yn(x; t∗), yn(x; t∗)〉d t

+ (t − t∗)

∫1

0
〈Q(x)yn(x; t∗), yn(x; t∗)〉d t

=λ
g
n(t∗)+ (t − t∗)

∫1

0
〈Q(x)yn(x; t∗), yn(x; t∗)〉d t ,

and

λ
g
n(t∗) É

∫1

0
‖y ′

n(x; t )‖2d x +
∫1

0
〈t∗Q(x)yn(x; t ), yn(x; t )〉d t

=
∫1

0
‖y ′

n(x; t )‖2d x +
∫1

0
〈tQ(x)yn(x; t ), yn(x; t )〉d t

+ (t∗− t )

∫1

0
〈Q(x)yn(x; t ), yn(x; t )〉d t

=λ
g
n(t )+ (t∗− t )

∫1

0
〈Q(x)yn(x; t ), yn(x; t )〉d t .

Following the previous two inequalities and applying Hölder inequality, we find that

|λg
n(t )−λ

g
n (t∗) |É| t − t∗| · ‖Q‖∞. (10)
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Since t∗ ∉N , then λa
n(t∗) =λ

g
n(t∗) for all n ∈N. According to (9) and (10), we have that

λ
g
n(tl )−λa

n(tl ) É|λg
n(tl )−λ

g
n (t∗) | + |λa

n(tl )−λa
n(t∗) |

É| tl − t∗|{ max
i=1,··· ,m

qi }+O(| tl − t∗|)+O(
1

[ n
m ]

).

This is a contradiction to the inequality (8). Thus t∗ ∈ N , and we find that N is a rela-

tively closed subset of [0,1]. By the connectedness of [0,1], and the assumption of N being

nonempty, we conclude that N = [0,1]. But Y (1;λ;0) = sin
p
λp

λ
Im , this shows that λa

n(0) =λ
g
n(0)

for all n ∈N, 0 ∉N , which is absurd. Thus N is empty. Hence λ
g
n(t )=λa

n(t ) for all n ∈N. ���

Remark. If we consider the Neumann eigenvalue problem of LQ as follows:

{

z ′′(x)+ (λIm −Q(x))z(x) = 0,

z ′(0) = z ′(1) = 0,

and denote Z (x;λ) the solution of the following initial value problem:

{

Z ′′(x;λ)+ (λIm −Q(x))Z (x;λ) = 0m ,

Z (0;λ) = Im , Z ′(0;λ) = 0m .

Then we know that µ∗ is in the Neumann spectrum σN (LQ ) of LQ or a Neumann eigenvalue

of LQ , if and only if det Z ′(1;µ∗) = 0. Applying the similar argument in the proof of Theorem

2, we get that mg (µ) = ma(µ) for all µ ∈ σN (LQ ). Thus for any Neumann eigenvalue of LQ its

geometric multiplicity are equal to its algebraic multiplicity.

Denote γl = {λ ∈C :|λ− l 2π2| = (l − 1
4 )π2}, l ∈N. According to the identity (5), there exists

a positive integer MQ , such that

1

2πi

∮

γl

∂
∂λ

detY (1;λ)

detY (1;λ)
dλ= m, (11)

for any l Ê MQ , l ∈N. Applying Theorem 2, we have that there are m Dirichlet eigenvalues of

LQ which are contained inside γl . On the other hand, according to (4), we have that

Y (1; (l +
1

2
)2π2; t )=

(−1)l

(l + 1
2

)π
Im + tO(

1

(l + 1
2

)3π3
),

where t ∈ [0,1]. Thus for sufficiently large l we know that Y (1; (l + 1
2

)2π2; t ) is invertible for

any t ∈ [0,1], then detY (1; (l + 1
2 )2π2; t ) 6= 0 for all t ∈ [0,1]. Thus we can define the following

integral

Ml (t )=
1

2πi

∮

|λ|=(l+ 1
2

)2π2

∂
∂λdetY (1;λ; t )

detY (1;λ; t )
dλ.



272 CHIEN-WEN LIN

According to (4), we have that

Y (1;λ; t )=
sin

p
λ

p
λ

Im −
t cos

p
λ

2λ

∫1

0
Q(t )d t + tO(

exp‖Q‖∞|ℑ
p
λ|

|
p
λ|

3
2

).

Then the family {detY (1;λ; t )}t∈[0,1] is a continuous family with parameter t . On the other

hand, we know that ∂
∂λdetY (1;λ; t ) are sum of terms with multiplication of entries of Y (1;λ; t )

and ∂
∂λY (1;λ; t ). Denote Yλ(x;λ; t ) = ∂

∂λY (x;λ; t ). Then Yλ(1;λ; t ) satisfies the following equa-

tion:
{

Y ′′
λ

(x;λ; t )+ (λIm − tQ(x))Yλ(x;λ; t )=Q(x)Y (x;λ; t ),

Yλ(0;λ; t ) = Y ′
λ

(0;λ; t ) = 0m .

According to the continuity of Y (x;λ; t ) on t variable, we know that {Yλ(1;λ; t )}t∈[0,1] is a con-

tinuous family with parameter t . Then { ∂
∂λdetY (1;λ; t )}t∈[0,1] is also a continuous family with

parameter t . Thus Ml (t ) is a continuous function on [0,1] with positive integer value, this

shows that Ml (t ) is a constant function, Ml (t ) ≡ Ml (0) = l m. From our argument of the dis-

tribution of the zeros of Y (1;λ), we find that LQ has exactly l m Dirichlet eigenvalues inside

{|λ| = (l + 1
2 )2π2}. The above argument implies the following corollary:

Corollary 3. For Q(x) ∈ C ([0,1];L (Rm )), Q(x) = Q(x)∗ for all x ∈ [0,1]. Let λn be the n-th

Dirichlet eigenvalue of LQ , then

lim
l→∞

m
∑

i=1

(λlm+i − (l +1)2π2) = trace{

∫1

0
Q(t )d t }.

Proof. In the previous argument we find that there are l m Dirichlet eigenvalues of LQ which

are contained in {λ ∈C : |λ| É (l + 1
2 )2π2}. According to the identities (5) and (11), we find that

λlm+i = (l +1)2π2 +qi +O(
1

l
),

for i = 1,2, · · · ,m. Thus
m
∑

i=1

(λlm+i − (l +1)2π2)=
m
∑

i=1

qi +O(
1

l
).

Then our assertion holds. ���

From the previous argument for the multiplicity and the distribution of the Dirichlet

eigenvalues of LQ , we obtain the following theorem.

Theorem 4. Suppose that Q(x) ∈C ([0,1];L (Rm)), and Q(x) =Q(x)∗ for all x ∈ [0,1]. Then all

Dirichlet eigenvalues of LQ are of multiplicity m, if and only if there exists a bounded sequence

{τn }∞n=1, such that

σD (LQ )= {n2π2 +τn | n ∈N}.

Furthermore, {τn}∞n=1 is a convergent sequence, and
∫1

0
Q(t )d t = { lim

n→∞
τn}Im .
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Proof. Suppose that mg (λ∗;Y (1;λ)) = m for all λ∗ ∈ σD (LQ ). According to the identities (5)

and (11), we find that

λlm+1 =λlm+2 = ·· · =λlm+m .

But λlm+i = (l +1)2π2+qi +O( 1
l ), thus q1 = q2 = ·· · = qm and τl = q1+O( 1

l ). This implies that

{τn}∞n=1 is a convergent sequence which converges to q1, and

∫1

0
Q(t )d t = q1Im .

Conversely, assume that there exists a bounded sequence {τn }∞n=1, such that

σD (LQ ) = {n2π2 +τn | n ∈N}.

In the identity (24) we find that if n Ê MQ , then mg (n2π2 +τn ;Y (1;λ)) = m. Denote Γl = {λ ∈
C : |λ| = (l + 1

2 )2π2}, the previous argument implies that ma (Γl ;Y (1;λ)) = l m = mg (Γl ;Y (1;λ))

for sufficient large l . From the distribution of σD (LQ ), we find that there only l eigenvalues

inside Γl . Thus each eigenvalue inside Γl is of multiplicity m. This implies that all Dirichlet

eigenvalues of LQ are of multiplicity m. ���

Remark. Denote the n-th Neumann eigenvalue of LQ as µn , then applying the argument

similar to those argument in the proof of Corollary 3. and Theorem 4, we have that

µlm+i = l 2π2 +qi +o(
1

l
).

Furthermore, we also get that all Neumann eigenvalue of LQ are of multiplicity m, if and only

if

σN (LQ ) = {n2π2 +ǫn | n ∈Z+},

where {ǫn}∞n=0 is a bounded sequence. Applying these result, we can simplify the vectorial V.A.

Ambarzumyan theorem (see [3]) as the followings:

Corollary 5. Let Q(x) be a continuous m×m selfadjoint matrix-valued function, thenσN (LQ )=
{n2π2 | n ∈Z}, if and only if Q(x) = 0m for all x ∈ [0,1].

From [Sh2] we know that if Q(x) ∈C ([0,1];L (Rm )), and Q(x) =Q(x)∗, Q(x) =Q(1−x) for

all x ∈ [0,1], and all eigenvalues of the equation (1) are of multiplicity m, then Q(x) = q(x)Im,

where q(x) is a scalar continuous function defined in [0,1], and q(x) = q(1−x) for all x ∈ [0,1].

According to Theorem 4, we obtain the following result which is an extension of the previous

inverse spectral theorem that we just mentioned.
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Corollary 6. Suppose that Q(x) ∈ C ([0,1];L (Rm)), and Q(x) = Q(x)∗, Q(x) = Q(1− x) for all

x ∈ [0,1]. Then the Dirichlet spectrum σD (LQ ) of LQ is of the form

σD (LQ )= {n2π2 +τn | n ∈N},

where {τn }∞n=1 is a bounded sequence, if and only if Q(x) = q(x)Im where q(x) is a scalar con-

tinuous function defined in [0,1], and q(x) = q(1−x) for all x ∈ [0,1].
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