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SOME COMMON FIXED POINT THEOREMS FOR

ĆIRIĆ TYPE CONTRACTION MAPPINGS

SUMIT CHANDOK

Abstract. Some common fixed point theorems for Ćirić type contraction mappings have

been obtained in convex metric spaces. As applications, invariant approximation results

for these type of mappings are obtained. The proved results generalize, unify and extend

some of the results of the literature.

1. Introduction and preliminaries

In 1986, Fisher and Sessa [8] obtained the following generalization of a theorem of Gregus

[10].

Theorem 1.1. Let T, I : K → K be two weakly commuting mappings on a closed convex subset

K of a Banach space X satisfying

‖T x −T y‖≤ a ‖I x − I y‖+ (1−a) max{‖I x −T x‖,‖I y −T y‖} (1.1)

for all x, y ∈ K , where 0 < a < 1. If I is linear, nonexpansive in K such that T (K ) ⊆ I (K ), then T

and I have a unique common fixed point in K .

If I is an identity map, we have an immediate generalization of the Gregus fixed point

theorem. Mukherjee and Verma [17] generalized Theorem 1.1 by replacing the linearity of

I with a more general condition that I is affine, while Jungck [14] generalised it further by

replacing commutativity and nonexpansiveness assumptions with compatibility and conti-

nuity respectively. Later, many results which are closely related to Gregus’s Theorem have

appeared in literature (see e.g. [3], [4], [5], [6], [7], [8], [13], [14], [17]). The purpose of this pa-

per is to prove similar type of results for Ćirić type contraction mappings when the underlying

spaces are convex metric spaces. Our technique, which is originally due to Gregus [10], has

been used by many authors. As applications, common fixed points and invariant approxima-

tion results for compatible and Cq -commuting mappings are obtained. Our results extend
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and generalize some of the results of Al-Thagafi [1], Al-Thagafi and Shahzad [2], Babu and

Prasad [3], Chandok and Narang [4], Ćirić [5], [6], Diviccaro, Fisher and Sessa [7], Fisher and

Sessa [8], Gregus [10], Habiniak [12], Hussain, Rhoades and Jungck [13], Jungck [14], Jungck

and Sessa [16], Mukherjee and Verma [17], Narang and Chandok [18], [19], [20], Sahab, Khan

and Sessa [21], Shahzad [22], [23], Singh [24], Smoluk [25], Subrahmanyam [26] and of few

others.

To begin with, we recall some definitions and known facts to be used in the sequel.

For a metric space (X ,d ), a continuous mapping W : X ×X ×[0,1] → X is said to be (s.t.b.)

a convex structure on X if for all x, y ∈ X and λ ∈ [0,1],

d (u,W (x, y,λ))≤λd (u, x)+ (1−λ)d (u, y)

holds for all u ∈ X . The metric space (X ,d ) together with a convex structure is called a convex

metric space [27].

A subset M of a convex metric space (X ,d ) is said to be a convex set [27] if W (x, y,λ) ∈ M

for all x, y ∈ M and λ ∈ [0,1]. A set M is said to be p-starshaped [9] where p ∈ M , provided

W (x, p,λ) ∈ M for all x ∈ M and λ ∈ [0,1] i.e. if the segment [p, x] = {W (x, p,λ) : 0 ≤ λ ≤ 1}

joining p to x is contained in M for all x ∈ M . M is said to be starshaped if it is p-starshaped

for some p ∈ M .

Clearly, each convex set M is starshaped but converse is not true.

A convex metric space (X ,d ) is said to satisfy Property (I) [9] if for all x, y, q ∈ X and λ ∈

[0,1],

d (W (x, q,λ),W (y, q,λ)) ≤λd (x, y).

A normed linear space and each of its convex subsets are simple examples of convex

metric spaces with W given by W (x, y,λ) = λx + (1−λ)y for x, y ∈ X and 0 ≤ λ≤ 1. There are

many convex metric spaces which are not normed linear spaces (see [9], [27]). Property (I) is

always satisfied in a normed linear space.

For a non-empty subset M of a metric space (X ,d ) and x ∈ X , an element y ∈ M is s.t.b. a

best approximant to x or a best M-approximant to x if d (x, y)= d (x, M ) ≡ inf{d (x, y) : y ∈ M }.

The set of all such y ∈ M is denoted by PM (x).

For a convex subset M of a convex metric space (X ,d ), a mapping g : M → X is s.t.b.

affine if for all x, y ∈ M , g (W (x, y,λ)) = W (g x, g y,λ) for all λ ∈ [0,1]. g is s.t.b. affine with

respect to p ∈ M if g (W (x, p,λ)) =W (g x, g p,λ) for all x ∈ M and λ∈ [0,1].

Suppose (X ,d ) is a metric space, M a nonempty subset of X , and S,T be self mappings

of M . T is s.t.b.

(i) S-contraction if there exists a k ∈ [0,1) such that d (T x,T y)≤ kd (Sx,Sy),
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(ii) S-nonexpansive if d (T x,T y)≤ d (Sx,Sy) for all x, y ∈ M .

If S =identity mapping, then T is s.t.b. a contraction (nonexpansive, respectively).

Let M a nonempty subset of a metric space (X ,d ), a point x ∈ M is a common fixed

(coincidence) point of S and T if x = Sx = T x(Sx = T x). The set of fixed points (respectively,

coincidence points) of S and T is denoted by F (S,T ) (respectively, C (S,T )). Then mappings

T,S : M → M are s.t.b.

(i) commuting on M if ST x = T Sx for all x ∈ M ;

(ii) R-weakly commuting on M if there exists R > 0 such that d (T Sx,ST x)≤ R d (T x,Sx) for

all x ∈ M .

If R = 1, then the maps are called weakly commuting.

(iii) compatible if lim d (T Sxn,ST xn) = 0 whenever {xn} is a sequence such that lim T xn =

lim Sxn = t for some t in M .

(iv) weakly compatible if they commute at their coincidence points,i.e., if ST x = T Sx when-

ever Sx = T x.

Suppose (X ,d ) is a convex metric space, M a q-starshaped subset with q ∈ F (S)∩M and

is both T - and S-invariant. Then T and S are called

(i) R-subweakly commuting on M if for all x ∈ M , there exists a real number R > 0 such that

d (T Sx,ST x)≤R di st (Sx,W (T x, q,k)), k ∈ [0,1];

(ii) Cq -commuting if ST x =T Sx for all x ∈Cq (S,T ), where Cq (S,T )=∪{C (S,Tk ) : 0 ≤ k ≤ 1}

and Tk x = {W (T x, q,k) : 0 ≤ k ≤ 1}.

Cq -commuting maps are weakly compatible. However, converse is not true.

Example 1.2 ([2]). Let X = R be endowed with the usual metric and M = [0,∞). Define T,S :

M → M by T x = x2 for all x 6= 2 and T 2= 1; and Sx = 2x for all x ∈ M . Then M is q-starshaped

with q = 0, C (T,S) = {0} and Cq (T,S) = {0}∪ [2,∞). Moreover, T and S are weakly compatible

but not Cq -commuting.

Commuting mappings are R-subweakly commuting, but the converse may not be true

(see [23]). It is well known that R-subweakly commuting maps are R-weakly commuting but

not conversely (see [22]). R-subweakly commuting maps are weakly compatible but the con-

verse does not hold (see [22], [23]).

R-subweakly commuting maps are Cq -commuting but converse does not hold.

Example 1.3 ([2]). Let X = R be endowed with the usual metric and M = [0,∞). Define T,S :

M → M by T x =
1
2 if 0 ≤ x < 1 and T x = x2 if x ≥ 1; and Sx =

x
2 if 0 ≤ x < 1 and Sx = x if
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x ≥ 1. Then M is q-starshaped with q = 1, and Cq (T,S) = [1,∞). Moreover S and T are Cq -

commuting but neither R-weakly commuting nor R-subweakly commuting for all R > 0.

2. Main results

We begin the section with the following result which extends and generalizes the corre-

sponding results of [3], [4], [5], [6], [7], [8], [13], [14] and [17].

Theorem 2.1. Let M be a nonempty closed convex subset of a complete convex metric space

(X ,d ). Let f , T : M → M self mappings, and cl T (M )⊆ f (M ). Suppose that f ,T satisfies

d (T x,T y)≤ a max{d ( f x, f y),c {d ( f x,T y)+d ( f y,T x)}}+b max{d ( f x,T x),d ( f y,T y)} (2.1)

for all x, y ∈ M, where 0 < a < 1, b ≥ 0, a +b = 1 and 0 ≤ c < η, η = min{ 2+a
5+a

, 2−a
4

, 4
9+a

} < 1
2

.

Further, if f and T are weakly compatible on M and f is affine, then F ( f )∩F (T ) is singleton.

Proof. Let x = x◦ be an arbitrary point of M . Let x1, x2, x3 be points in M such that f x1 = T x,

f x2 = T x1, f x3 = T x2, so that T xr−1 = f xr , for r = 1,2,3, as T (M )⊆ cl T (M )⊆ f (M ).

d (T xr , f xr ) = d (T xr ,T xr−1)

≤ a max{d ( f xr , f xr−1),c {d ( f xr ,T xr−1)+d ( f xr−1,T xr )}}

+b max{d ( f xr ,T xr ),d ( f xr−1,T xr−1)}

≤ a max{d (T xr−1, f xr−1),c {d ( f xr , f xr )+d ( f xr−1,T xr−1)+d (T xr−1,T xr )}}

+b max{d ( f xr ,T xr ),d ( f xr−1,T xr−1)}.

If d (T xr−1, f xr−1) < d (T xr , f xr ), then we have

d (T xr , f xr ) < a max{d (T xr , f xr ),2c d ( f xr ,T xr )}+b d ( f xr ,T xr )

= (a +b)d (T xr , f xr ),

a contradiction. Thus, we have

d (T xr , f xr ) ≤ d (T xr−1, f xr−1) ≤ d (T x0, f x0).

So, it follows that

d (T x2, f x1) = d (T x2,T x0)

≤ a max{d ( f x2, f x0),c {d ( f x2,T x0)+d ( f x0,T x2)}}

+b max{d ( f x2,T x2),d ( f x0,T x0)}

≤ a max{d ( f x2, f x1)+d ( f x1, f x0),c {d ( f x2,T x0)+d ( f x0, f x1)
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+d ( f x1,T x1)+d (T x1,T x2)}}+b max{d ( f x2,T x2),d ( f x0,T x0)}

= a max{d (T x1, f x1)+d (T x0, f x0),c {d (T x1, f x1)+d ( f x0,T x0)

+d ( f x1,T x1)+d ( f x2,T x2)}}+b max{d ( f x2,T x2),d ( f x0,T x0)}

≤ a max{d (T x0, f x0)+d (T x0, f x0),c {d (T x0, f x0)+d ( f x0,T x0)

+d ( f x0,T x0)+d ( f x0,T x0)}}+b max{d ( f x0,T x0),d ( f x0,T x0)}

= a max{2d (T x0, f x0),4c d (T x0, f x0)}+b d ( f x0,T x0)

= (2a +b) d (T x0, f x0)

= (1+a) d (T x0, f x0).

Hence

d (T x2, f x1) = d (T x2,T x0) ≤ (1+a)d (T x0, f x0).

Let z =W (x2, x3, 1
2 ). Since C is convex and f is affine, f z = f W (x2, x3, 1

2 ) =W ( f x2, f x3, 1
2 ) =

W (T x1,T x2, 1
2

). Therefore,

d ( f z, f x1) = d (W (T x1,T x2,
1

2
),T x0)

≤
1

2
d (T x1,T x0)+

1

2
d (T x2,T x0)

≤
1

2
[d (T x1, f x1)+ (1+a)d (T x0, f x0)]

≤
1

2
[d (T x0, f x0)+ (1+a)d (T x0, f x0)]

= (1+
a

2
)d (T x0, f x0),

d ( f z, f x2) = d (W (T x1,T x2,
1

2
),T x1)

≤
1

2
d (T x1,T x1)+

1

2
d (T x2,T x1)

≤
1

2
d (T x0, f x0).

d ( f z, f x3) = d (W (T x1,T x2,
1

2
),T x2)

≤
1

2
d (T x1,T x2)+

1

2
d (T x2,T x2)

≤
1

2
d (T x0, f x0).

Assume that M = max{d ( f z,Tz),d (T x0, f x0)}. Consider

d (Tz, f z) = d (Tz,W (T x1,T x2,
1

2
))
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≤
1

2
d (Tz,T x1)+

1

2
d (Tz,T x2)

≤
1

2
[a max{d ( f z, f x1),c {d ( f z,T x1)+d ( f x1,Tz)}}

+b max{d ( f z,Tz),d ( f x1,T x1)}]+
1

2
[a max{d ( f z, f x2),c {d ( f z,T x2)+d ( f x2,Tz)}}

+b max{d ( f z,Tz),d ( f x2,T x2)}]

≤
1

2
[a max{d ( f z, f x1),c {d ( f z,T x1)+d ( f x1, f z)+d ( f z,Tz)}}+b M ]

+
1

2
[a max{d ( f z, f x2),c {d ( f z,T x2)+d ( f x2, f z)+d ( f z,Tz)}}+b M ]

≤
1

2
[a max{d ( f z, f x1),c {d ( f z, f x2)+d ( f x1, f z)+d ( f z,Tz)}}+b M ]

+
1

2
[a max{d ( f z, f x2),c {d ( f z,T x2)+d ( f x2, f z)+d ( f z,Tz)}}+b M ]

≤
1

2
[a max{(1+

a

2
)d (T x0, f x0),c {

1

2
d (T x0, f x0)+ (1+

a

2
)d (T x0, f x0)+d ( f z,Tz)}}+b M ]

+
1

2
[a max{

1

2
d (T x0, f x0),c {

1

2
d (T x0, f x0)+

1

2
d (T x0, f x0)+d ( f z,Tz)}}+b M ]

≤
1

2
[a max{(1+

a

2
)M ,c {

5+a

2
M }}+b M ]+

1

2
[a max{

1

2
M ,2c M }+b M ]

=
1

2
[a max{(1+

a

2
)M ,c {

5+a

2
M }}]+

1

2
[a max{

1

2
M ,2c M }]+b M

Now the following four possible cases may arise.

Case 1. If max{(1+ a
2 )M , 5+a

2 cM }= (1+ a
2 )M and max{ 1

2 M ,2c M } = 1
2 M , we have

d (Tz, f z) ≤
1

2
[a (1+

a

2
)M ]+

1

2
[a

1

2
M ]+b M

= [
1

4
{a(a +2)+a}+ (1−a)]M

= λ1M ,

where λ1 =
a2−a+4

4 < 1.

Case 2. If max{(1+ a
2

)M , 5+a
2

cM }= (1+ a
2

)M and max{ 1
2

M ,2c M }= 2cM , we have

d (Tz, f z) ≤
1

2
[a (1+

a

2
)M ]+

1

2
[a2cM ]+b M

= [
1

4
{a(a +2)+4ac}+ (1−a)]M

= λ2M ,

where λ2 =
a2−2a+4ac+4

4
< 1.

Case 3. If max{(1+ a
2 )M , 5+a

2 cM }= 5+a
2 cM and max{ 1

2 M ,2c M } = 2cM , we have

d (Tz, f z) ≤
1

2
[a

5+a

2
cM ]+

1

2
[a2cM ]+b M
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= [
1

4
{a(a +5)c +4ac}+ (1−a)]M

= λ3M ,

where λ3 =
a2c−4a+9ac+4

4
< 1.

Case 4. If max{(1+ a
2 )M , 5+a

2 cM } = 5+a
2 cM and max{ 1

2 M ,2cM } = 1
2 M , it follows that 2+a

5+a ≤ c ≤

1
4 , and since c ≤ η≤

2+a
5+a . So this case does not arise, and so from the above cases we have

d (Tz, f z) ≤λM

where λ= max{λ1,λ2,λ3} < 1.

Thus it follows that

d (Tz, f z) ≤ λmax{d ( f z,Tz),d (T x0, f x0)}

≤ λd (T x0, f x0)

We therefore have inf{d (Tz, f z) : z = W (x2, x3, 1
2 } ≤ λ inf{d (T x, f x) : x ∈ C } and since

inf{d (Tz, f z) : z =W (x2, x3, 1
2 } ≥ inf{d (T x, f x) : x ∈C }, it follows that inf{d (T x, f x) : x ∈C } = 0.

Then the sets defined by Kn = {x ∈ C : d (T x, f x) ≤ 1
n

}, for n = 1,2, . . . must be nonempty and

K1 ⊇ K2 ⊇ . . . ⊇ Kn ⊇ . . .. Thus cl (T Kn) is nonempty for n = 1,2. . . and cl (T K1) ⊇ cl (T K2) ⊇

. . . ⊇ cl (T Kn)⊇ . . .. Further, for all x, y ∈ Kn ,

d (T x,T y) ≤ a max{d ( f x, f y),c {d ( f x,T y)+d ( f y,T x)}}+b max{d ( f x,T x),d ( f y,T y)}

≤ a max{d ( f x,T x)+d (T x,T y)+d (T y, f y),c {d ( f x,T x)+d (T x,T y)

+d ( f y,T y)+d (T y,T x)}}+b max{d ( f x,T x),d ( f y,T y)}

≤ a max{
1

n
+d (T x,T y)+

1

n
,c {

1

n
+d (T x,T y)+

1

n
+d (T y,T x)}}+b max{

1

n
,

1

n
}

≤ a max{
2

n
+d (T x,T y),c {

2

n
+2d (T x,T y)}}+b

1

n
.

Case 1. If max{ 2
n +d (T x,T y),c { 2

n +2d (T x,T y)}} = 2
n +d (T x,T y), we have

d (T x,T y) ≤ a{
2

n
+d (T x,T y)}+b

1

n

=
2a +b

n
+ad (T x,T y),

which implies that d (T x,T y)≤ a+1
(1−a)n

.

Case 2. If max{ 2
n +d (T x,T y),c { 2

n +2d (T x,T y)}} = c { 2
n +2d (T x,T y)}, we have

d (T x,T y) ≤ ac {
2

n
+2d (T x,T y)}+b

1

n
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= 2ac{
1

n
+d (T x,T y)}+b

1

n

< a {
1

n
+d (T x,T y)}+b

1

n

=
1

n
+ad (T x,T y),

which implies that d (T x,T y)< 1
(1−a)n

≤
a+1

(1−a)n
.

Thus lim di am(T Kn) = lim di am(cl (T Kn)) = 0, i.e. cl (T Kn) is a decreasing sequence of

nonempty closed subsets of M whose sequence {di am(cl (T Kn))} of the diameters converges

to zero and by Cantor’s Intersection Theorem, A = ∩∞
n=1{cl (T Kn) : n ∈ N} is singleton and

hence nonempty. If v ∈ A for each n, then there is a yn ∈ T Kn such that d (v, yn) < 1
n

. Hence

for each n, there is an xn ∈ Kn such that yn = T xn and d (v,T xn) < 1
n for all n and so T xn → v .

Since xn ∈ Kn , we have d ( f xn ,T xn) ≤ 1
n . Thus lim f xn = lim T xn = v ∈ cl T (M )⊆ f (M ) which

implies that there exists some q ∈ M such that v = f q . Now,

d (v,T q) ≤ d (v,T xn)+d (T xn ,T q)

≤ d (v,T xn)+a max{d ( f xn , f q),c {d ( f q,T xn)+d ( f xn ,T q)}}

+b max{d ( f q,T q),d ( f xn ,T xn)}

≤ d (v,T xn)+a max{d ( f xn , v),c {d (v,T xn)+d ( f xn ,T q)}}

+b max{d (v,T q),d ( f xn ,T xn)}.

Taking the limit as n →∞, we get

d (v,T q) ≤ a c d (v,T q)+b d (v,T q)

= (ac +b) d (v,T q)

= [1−a(1−c)]d ( f w,T w ).

This implies that T q = v = f q . Since f and T are weakly compatible on M , f T q = T f q . Thus

f v = T v . Now,

d (v,T v) = d (T q,T v)

≤ a max{d ( f q, f v),c {d ( f q,T v)+d ( f v,T q)}}

+b max{d ( f q,T q),d ( f v,T v)}

= a max{d (v,T v),2c d (v,T v)}

≤ ad (v,T v)

< d (v,T v)

This implies that T v = v = f v .
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Now we prove the uniqueness. Suppose that v and w are common fixed points of T and

f i.e., there exists w ∈ M such that T w = w = f w . Then

d (w, v) = d (T w,T v)

≤ a max{d ( f w, f v),c {d ( f w,T v)+d ( f v,T w )}}

+b max{d ( f w,T w ),d ( f v,T v)}

= a max{d (v, w ),2c d (v, w )}

≤ ad (v,T v)

< d (v,T v).

This gives that v = w . ���

The first part of the above proof gives the following result.

Corollary 2.2. Let T and f be self maps of a closed convex subset M of a complete convex metric

space (X ,d ). Suppose f is affine and cl T (M )⊆ f (M ). If T and f satisfy (2.1), then T and f have

a coincidence point in M.

Example 2.3. Let X = R with the usual metric d (x, y) = |x − y |. Define self maps T, f : X → X

by T x =
2+x

3 and f x =
3x−1

2 , x ∈ X . Clearly, f is affine and T and f are weakly compatible

mappings on X . Now for any x, y ∈ X , d (T x,T y)= |
x−y

3 | =
2
9 d ( f x, f y), so that T and f satisfy

the inequality (2.1) with a =
2
9 , b =

7
9 and c ≤

20
47 . Thus, all the hypotheses of Theorem 2.1 are

satisfied and {1} is a unique common fixed point of T and f .

Theorem 2.4. Let M be a closed convex subset of a convex metric space (X ,d ) with Property (I),

f ,T are self mappings of M. Suppose that cl T (M )⊆ f (M ), f is affine w.r.t. q ∈ F ( f ). If cl T (M )

is compact, T is continuous, ( f ,T ) is Cq -commuting, and satisfies for some q ∈ F ( f ),

d (T x,T y) ≤ max{d ( f x, f y),c[di st ( f x, [q,T y])+di st ( f y, [q,T x])]}+

1−k
k

max{di st ( f x, [q,T x]),di st ( f y, [q,T y])},

for all x, y ∈ M, 0 ≤ c <
1
2 , k ∈ (0,1), then T and f have a common fixed point.

Proof. Define Tn : M → M as Tn x = W [T x, q,kn] for all x ∈ M , for each n ≥ 1, where {kn} is a

sequence of real numbers in (0,1) such that kn → 1. As M is convex, q ∈ F ( f ) and cl T (M ) ⊆

f (M ), Tn is a self mapping of M and cl [Tn(M )] ⊆ f (M ) for each n. Since T and f are Cq -

commuting, f is affine with respect to q ∈ F ( f ), it follows for each x ∈ Cq ( f ,T ), f Tn x =

f (W [T x, q,kn]) = W [ f T x, f q,kn] = W [T f x, f q,kn] = Tn f x. Thus f Tn x = Tn f x for each

x ∈ C ( f ,Tn) ⊆ Cq ( f ,T ). Hence the pair f and Tn are weakly compatible for all n. Further,

we have

d (Tn x,Tn y) = d (W [T x, q,kn],W [T y, q,kn])
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≤ knd (T x,T y)

≤ kn{max{d ( f x, f y),c[di st ( f x, [q,T y])+di st ( f y, [q,T x])]}

+
1−k

k max{di st ( f x, [q,T x]),di st ( f y, [q,T y])}}

≤ kn max{d ( f x, f y),c[d ( f x,Tn y)+d ( f y,Tn x)]}

+(1−kn ) max{d ( f x,Tn x),d ( f y,Tn y)}

for all x, y ∈ M and 0 < kn < 1. By Theorem 2.1, for each n ≥ 1, there exists an xn ∈ M such that

xn = f xn = Tn xn . The compactness of cl T (M ) implies that there exists a subsequence T xni

of T xn such that T xni
→ z ∈ cl T (M ). xni

= Tni
xni

= W (T xni
, q,kni

) → z. As T is continuous,

T xni
→ Tz. Thus z = Tz. As cl T (M ) ⊂ f (M ), it follows that f u = z = Tz for some u ∈ M and

further

d (T xni
,Tu) ≤ max{d ( f xni

, f u),c[di st ( f xni
, [q,Tu])+di st ( f u, [q,T xni

])]}

+
1−k

k max{di st ( f xni
, [q,T xni

]),di st ( f u, [q,Tu])}}

≤ max{d ( f xni
, z),c[d ( f xni

,Tni
u])+d (z,Tni

xni
)]}

+
1−kni

kni

max{d ( f xni
,Tni

xni
),d (z,Tni

u)}}.

On letting n → ∞, we have d (z,Tu) → 0, Tu = z = Tz = f u. As f and T are also weakly

compatible, we have f z = f Tu = T f u = Tz = z. Hence the result. ���

Remark 2.1. Theorem 2.4 extends and generalizes Theorem 2.2 of [1] and [2], Theorem 2.3 of

[13], Lemma 2.2 of [22] and Theorem 2.1 of [23] to maps satisfying a more general inequality

and without linearity, and also when the underlying spaces are convex metric spaces.

The following result will be used in the sequel.

Proposition 2.5. If M is a subset of a convex metric space (X ,d ), u ∈ X and y ∈ PM (u), then the

line segment {W (y,u,λ) : 0 <λ< 1} and the set M are disjoint.

Proof. Since y ∈ PM (u), consider

d (u,W (y,u,λ)) ≤ λ d (u, y)

< d (u, M ), for every 0 <λ< 1.

This implies that W (y,u,λ) ∉ M for any λ, 0 < λ< 1. Therefore the line segment {W (y,u,λ) :

0 <λ< 1} and the set M are disjoint. ���

Theorem 2.6. Let M be a subset of a convex metric space (X ,d ) with Property (I) and T,S are

self mappings of M such that u ∈ F (S)∩F (T ) for some u ∈ M and T (∂M ∩M ) ⊆ M. Suppose

that PM (u) is nonempty, closed and convex, S is affine with respect to q ∈ F (S), T is continuous
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on PM (u) and cl T (PM (u)) ⊆ S(PM (u)) = PM (u). If cl T (PM (u))) is compact and (T,S) is Cq -

commuting and satisfies

d (T x,T y) ≤







d (Sx,Sy), if y = u

Q(x, y), if y ∈ PM (u),
(2.2)

where

Q(x, y) = max{d (Sx,Sy),c[di st (Sx, [q,T y])+di st(Sy, [q,T x])]}+

1−k
k max{di st (Sx, [q,T x]),di st (Sy, [q,T y])},

for 0 ≤ c <
1
2 , k ∈ (0,1), then PM (u)∩F (S)∩F (T ) 6= ;.

Proof. Let x ∈ PM (u). For any λ ∈ (0,1), we have

d (W (u, x,λ),u) ≤λd (u,u)+ (1−λ)d (x,u)= (1−λ)d (x,u) < di st (u, M ).

It follows from Proposition 2.5 that the open line segment {W (u, x,λ) : 0 < λ < 1} and the set

M are disjoint. Thus x is not in the interior of M and so x ∈ ∂M ∩M . Since T (∂M ∩M ) ⊂ M ,

T x must be in M . Also Sx ∈ PM (u), u ∈ F (T )∩F (S), and (T,S) satisfy (2.2), we have

d (T x,u)= d (T x,Tu)≤ d (Sx,Su)= d (Sx,u)≤ di st (u,C ).

This implies that T x ∈ PM (u). Moreover, cl T (PM (u)) ⊆ S(PM (u)) = PM (u). Hence the result

follows from Theorem 2.4. ���

Remark 2.2. Theorem 2.6 extends and generalizes the corresponding results of [2], [4], [13],

[16], [20], [21], [24], [25] and [26].

Let G◦ denote the class of closed convex subsets containing a point x◦ of a convex metric

space (X ,d ) with property (I). For M ∈G◦ and p ∈ X , let Mp = {x ∈ M : d (x, x◦) ≤ 2d (p, x◦)}, let

PM (p) = {x ∈ M : d (p, x) = d (p, M )} be the set of best approximants to p in M , C S
M (p) = {x ∈

M : Sx ∈ PM (p)}.

Proceeding as in Theorem 2.6 [4], we prove the following:

Theorem 2.7. Let S and T be self maps of a convex metric space (X ,d ) with Property (I), u ∈

F (S)∩F (T ) and M ∈ G◦ such that T (Mu) ⊆ S(M ) ⊆ M. Suppose that cl (S(Mu)) is compact,

S is affine, T is continuous on Mu and satisfies d (T x,u) ≤ d (Sx,u), d (Sx,u) ≤ d (x,u) for all

x ∈ Mu . Then

(i) PM (u) is nonempty, closed and convex,
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(ii) T (PM (u)) ⊆ S(PM (u))⊆ PM (u), provided that d (Sx,Su)= d (x,u) for all x ∈C S
M (u), and

(iii) PM (u)∩F (S)∩F (T ) 6= ; provided that d (Sx,Su)= d (x,u) for all x ∈C S
M

(u), S satisfies for

some q ∈ F (S),

d (Sx,Sy)≤ max{d (x, y),c[di st (x, [q,Sy])+di st(y, [q,Sx])]}+

1−k
k max{di st (x, [q,Sx]),di st (y, [q, y])}, (2.3)

for all x, y ∈ PM (u), 0 ≤ c <
1
2 , k ∈ (0,1), cl T (PM (u)) ⊆ S(PM (u)), S and T are Cq -

commuting on PM (u), and T satisfies for all q ∈ F (S)

d (T x,T y)≤ max{d (Sx,Sy),c[di st (Sx, [q,T y])+di st (Sy, [q,T x])]}

+
1−k

k max{di st (Sx, [q,T x]),di st (Sy, [q,T y])},

for all x, y ∈ PM (u), 0 ≤ c <
1
2 , k ∈ (0,1).

Proof. If u ∈ M then all the arguments are obvious. So assume that u ∉ M . If x ∈ M\Mu ,

then d (x, x◦) > 2d (u, x◦) and so d (u, x) ≥ d (x, x◦)−d (u, x◦) > d (u, x◦) ≥ di st (u, M ). Thus α=

di st (u, M ) ≤ d (u, x◦). Since cl (S(Mu)) is compact, and the distance function is continuous,

there exists z ∈ cl (S(Mu)) such that β= di st (u,cl (S(Mu))) = d (u, z). Hence

α= di st (u, M ) ≤ di st (u,cl (S(Mu)))

= β

≤ di st (p,S(Mu))

≤ d (u,Sx)

≤ d (u, x)

for all x ∈ Mu . Therefore α= β = di st (u, M ) i.e. di st (u, M )= di st (u,cl (S(Mu))) = d (u, z) i.e.

z ∈ PM (u) and so PM (u) is nonempty. The closedness and convexity of PM (u) follows from

that of M . This proves (i).

To prove (ii) let z ∈ PM (u). Then d (Sz,u)= d (Sz,Su)≤ d (z,u) = di st (u, M ). This implies that

Sz ∈ PM (u) and so S(PM (u)) ⊆ PM (u). Let y ∈ T (PM (u)). Since T (Mu) ⊆ S(M ) and PM (u) ⊆

Mu , there exists z ∈ PM (u) and x1 ∈ M such that y = Tz = Sx1. Further, we have d (Sx1,u) =

d (Tz,u)≤ d (Sz,u)≤ d (z,u)= di st (u, M ). Thus Sx1 ∈ PM (u) and x1 ∈C S
M

(u). Also, as Sx1 ∈ M

and di st (u, M ) ≤ d (Sx1,u), it follws that di st (u, M ) = d (Sx1,u). Since d (x1,u) = d (Sx1,u) =

di st (u, M ), x1 ∈ PM (u) and y = Sx1 ∈ S(PM (u)). Hence T (PM (u))⊆ S(PM (u)) and so (ii) holds.

The compactness of cl (S(Mu)) implies that cl (S(PM (u))) is compact and hence complete.

This, together with inequality (2.3) imply, by Theorem 2.4, that PM (u)∩F (S) 6= ;. It follows

that there exists a q ∈ PM (u) such that q ∈ F (S). By (ii), the compactness of cl (S(Mu)) implies

that cl T (PM (u)) is compact. Hence the conclusion (iii) follows from Theorem 2.4 applied to

PM (u). ���
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Theorem 2.8. Let S and T be self maps of a convex metric space (X ,d ) with Property (I), u ∈

F (S)∩F (T ) and M ∈ G◦ such that T (Mu) ⊆ S(M ) ⊆ M. Suppose that cl (T (Mu)) is compact,

S is affine, T is continuous on Mu , T , S satisfies d (T x,u) ≤ d (Sx,u), d (Sx,u) ≤ d (x,u) for all

x ∈ Mu . Then

(i) PM (u) is nonempty, closed and convex,

(ii) T (PM (u)) ⊆ S(PM (u)) ⊆ PM (u), provided that d (Sx,Su)= d (x,u) for all x ∈C S
M

(u), and

(iii) PM (u)∩F (S)∩F (T ) 6= ;provided that d (Sx,Su)= d (x,u) for all x ∈C S
M

(u), cl T (PM (u))⊆

S(PM (u)), S and T are Cq -commuting on PM (u), and T satisfies for some q ∈ F (S)

d (T x,T y)≤ max{d (Sx,Sy),c[di st (Sx, [q,T y])+di st(Sy, [q,T x])]}

+1−k
k

max{di st (Sx, [q,T x]),di st (Sy, [q,T y])},

for all x, y ∈ PM (u), 0 ≤ c <
1
2 , k ∈ (0,1).

Proof. The proof is similar to that of Theorem 2.7. ���

Remark 2.3. Theorems 2.7 and 2.8 extend and generalize the corresponding results of [1], [2],

[4], [12], [13], [18], [19], [20] and [22].

The following general common fixed point result will be needed in our next results.

Lemma 2.9 ([11]). Let X be a Hausdorff topological space and T and I be continuous and

nontrivially weakly compatible self maps of X . Then there exists a point z in X such that Tz =

I z = z, provided T satisfies the following condition:

A∩F (T ) 6= ; for any T -invariant closed set A ⊂ X . (C)

It is known (see[15]) that if X is a Hausdorff topological space, T a continuous self map

of X and if T has relatively compact proper orbits, then T satisfies condition (C).

Lemma 2.10. Let M be a nonempty closed convex subset of a complete convex metric space

(X ,d ) with Property (I) and T, f : M → M are continuous and compatible. Suppose T satisfies

condition (C), f is affine, f (q) = q and cl T (M ) ⊆ f (M ). If cl T (M ) is compact and the pair

(T, f ) satisfies

d (T x,T y)≤ max{d ( f x, f y),c[di st ( f x, [q,T y])+di st ( f y, [q,T x])]}

+
1−k

k max{di st ( f x, [q,T x]),di st ( f y, [q,T y])},

for all x, y ∈ M, 0 ≤ c <
1
2 , k ∈ (0,1), then T and f have a common fixed point.
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Proof. Define Tn as in Theorem 2.4. Proceeding as in Theorem 2.4, Corollary 2.2 guarantees

that there exists an xn ∈ M such that f xn = Tn xn .

The compactness of cl T (M ) implies that there exists a subsequence {T xni
} of {T xn}

such that T xni
→ y . As xni

= Tni
xni

=W (T xni
, q,kni

) → y . The continuity of f and T imply

that T f xni
→ T y and f T xni

→ f y . By the compatibility of f and T , we obtain T y = f y . Hence

the pair (T, f ) is nontrivially compatible. Therefore, Lemma 2.9 implies that M∩F ( f )∩F (T ) 6=

;. ���

Proceeding as in Theorem 2.10 [4], we prove the following:

Theorem 2.11. Let S and T be self maps of a convex metric space (X ,d ) with Property (I),

u ∈ F (S)∩F (T ) and M ∈G◦ such that T (Mu) ⊆ S(M )⊆ M. Suppose that S is affine, continuous,

T is continuous on Mu , T , S satisfies d (T x,u)≤ d (Sx,u), d (Sx,u)≤ d (x,u) for all x ∈ Mu , and

one of the following two conditions is satisfied:

(a) cl (S(Mu)) is compact,

(b) cl (T (Mu)) is compact.

Then

(i) PM (u) is nonempty, closed and convex,

(ii) T (PM (u)) ⊆ S(PM (u))⊆ PM (u), provided that d (Sx,Su)= d (x,u) for all x ∈C S
M

(u), and

(iii) PM (u)∩F (S)∩F (T ) 6= ; provided that d (Sx,Su)= d (x,u) for all x ∈ C S
M

(u), S(PM (u)) is

closed, S and T satisfy condition (C) on PM (u), S and T are compatible on PM (u) and T

satisfies for some q ∈ F (S)

d (T x,T y)≤ max{d (Sx,Sy),c[di st (Sx, [q,T y])+di st (Sy, [q,T x])]}

+
1−k

k max{di st (Sx, [q,T x]),di st (Sy, [q,T y])},

for all x, y ∈ PM (u), 0 ≤ c <
1
2 , k ∈ (0,1).

Proof. The proof (i)-(ii) is similar to that of Theorem 2.7.

(iii) (a) By (i), PM (u) is closed, and by (ii), PM (u) is S-invariant, so by condition (C),

PM (u)∩F (S) 6= ;. It follows that there exists a q ∈ PM (u) such that q ∈ F (S). By (ii), the com-

pactness of cl S(Mu) implies that of cl T (PM (u)). The conclusion now follows from Lemma

2.10 applied to PM (u).

(iii) b) By (i), PM (u) is closed, and by (ii), PM (u) is S-invariant, so by condition (C), PM (u)∩

F (S) 6= ;. It follows that there exists a q ∈ PM (u) such that q ∈ F (S). As the compactness of

cl T (Mu) implies that cl T (PM (u)) is compact. So, the conclusion follows from Lemma 2.10

applied to PM (u). ���
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Remark 2.4. (a) Theorem 2.11 extends the corresponding results of [1], [2], [4], [12], [13], [18],

[19] and [22] to a compatible pair that is not necessarily nonexpansive and linear.

(b) Let X = R be endowed with usual metric and M = [1,∞). Let Sx = 2x −1 and T x = x2, for

all x ∈ M . Let q = 1. Then M is convex, q-starshaped with Sq = q and Cq (S,T )= [1,∞). Here S

and T are weakly compatible maps, T satisfies condition (C), but they are not Cq -commuting.
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