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SOME NEW INTEGRAL REPRESENTATIONS OF GENERALIZED
MATHIEU SERIES AND ALTERNATING MATHIEU SERIES
ZIVORAD TOMOVSKI

Dedicated to Prof. Hari M. Srivastava on the occasion of his T0™ birthday

Abstract. The main purpose of this paper is to present a number of new integral
representations for the familiar Mathieu series Sﬂa’ﬁ)(r; {ax}721)(r € R, «, B, p,
{ar};2, € R") [12] as well as for its alternating version [8, 16] when ax = {kP}3°,,
ar = {(K)"}2Z1, ar = {(Ink)?}pZ, with p = v, y(pa —B) > 1 and p = £,
u—§>q717qu.

1. Introduction

The following familiar infinite series

S(r) = Z_:l (71217”7«2)2 (r € R) (1.1)

is named after Emile Leonard Mathieu (1835-1890), who investigated it in his 1890 work
[7] on elasticity of solid bodies. A remarkably useful integral representation for S(r) in

the elegant form
ﬂﬂ:lf “m@ut (1.2)
0

r et —

was given by Emersleben [5]. An alternating version of (1.1)

Sy = > (-1 2n (r € R) (1.3)

n2 + T2)2

was recently introduced by Pogany et al. in [8]. N
In [8] it was given the following relationship between S(r) and S(r):

S(r) = S(r) — is(g) (1.4)
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Let F' be a Laplace transform of f, i.e.

Fp) = Ly(f(2))- (1.5)
Using the relations (see [9]), p.651)

n=1 0
(ot = [ (17)

Pogany et al. [8] gave an integral representation for S (r):

S(r) = % /0 h tiri’“lt) dt. (1.8)

Choi and Srivastava (see [2], Theorem 1) presented a relationship between the Mathieu
series S(r) and certain series involving the Riemann Zeta function. Pogany et al. (see
[8], Proposition 1) gave a relationship between the alternating Mathieu series S(r) and
certain series involving the Dirichlet Eta function. By means of these relationships Choi
and Srivastava (see [2]) presented various integral representations of S(r) and S(r), in
terms of the Trigamma function ¢’(z) or (equivalently) the Hurwitz (or generalized) Zeta
function ((s, a).

Several interesting problems and solutions dealing with integral representations and
bounds for the following slight generalization of the Mathieu series with a fractional
power

S, (r) = Z:l (n‘iinﬂ)u (reRip>1) (1.9)

can be found in the works by Diananda [3], Tomovski and Trencevski [14], Cerone and
Lenard [1] and Choi and Srivastava [2]. Namely, Tomovski and Trencevski [14] presented

a relationship (integral representation) of (1.9) in terms of the Polygamma function
P (2), p=2,3,4,..

Spyi1(r) = Wi)HRe[ei#ﬂ'/Qw(#)(l + ir)]
s - K) (1) A . .
+Z (2r)2n— k+1k' (n— k+1)( p—k )Re[e Gt UT 2y (14ir)] (peN). (1.10)

1

Choi and Srivastava [2] presented two relationships (integral representations) for the
series S3(r) when 0 < |r| < 1 and Re(r) > 0:

85(r) = —oz [4/(1 + i) — (1 — ir)] +

5 (1 i) + (L= )]
[C (2, 14ir)—C'(2,1—ir)]—

83

s L3, 1) 4¢3, 1) (0<[r|<1), (L11)

2
sg(r):%i’jri:z)g + & /OOO (5 L - - % + %)te‘t[sin(rt) — rtcos(rt)] (Re(r) > 0).




GENERALIZED MATHIEU SERIES 305

Motivated essentially by the works of Cerone and Lenard [1] (and Qi [10]) the five-
parameter family of generalized Mathieu series

oo

S (r;a) = S5 (r; {ar}i2s) Z

k:l

2
ak (r€ R,a,B,u € RY) (1.12)

was defined in [12], where it is tacitly assumed that the positive sequence

a=A{an}re, ={ai,a2,as,...} ( lim aj = o)

k—o0

is so chosen that the infinite series in definition (1.12) converges, that is, that the following
auxiliary series

=1
>~
k:k

and S, (r) = 8(2 1)( {k}72,). Furthermore, the special cases S( ( {ar}2,), Su(r)

is convergent. Comparing the definitions (1.1), (1.9) and (1.12), We see that Sa(r) = S(r)
Sff’l)( k3 ), s<2 B (k7122 and S (r; {k}2°,) were investigated by Qi [10];

Diananda [3]; Tomovski [15] and Cerone-Lenard [1]. Let (see [8, 16])
~(a ~(a - 247
SEL 'ﬂ)(T;a) = S,S ’ﬁ)(ﬂ {ar}ezi) Z 17kg)u (reR,a,3,u € RY)
k=1

(1.13)
be an alternating variant of (1.12), where the positive sequence {aj}%2, satisfies the
same conditions of the definition (1.12). In [4, 8, 12, 16] several integral representations
for (1.12) and their alternating variants (1.13) were presented in terms of the generalized
hypergeometric functions, the Bessel function of first kind and the generalized Mittag-
Leffler functions.

The generalized hypergeometric function ,F, with p numerator and ¢ denominator
parameters is defined by

e,
pFal(an)1p; (b)1gi2] = > S—— (1.14)

m=

)
::1“°
—
>
.
>
3

where (8), is the Pochhammer symbol, defined by

I'(6+m)

B)o=1, (6m) =000 +1)---(F+m—1) = 5
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The Fox-Wright generalization ,V, of the hypergeometric ,F, function is defined by

ok
p¥q(®) = pWq[(ar, au),p; (bj, Bj)1,q; @ Z lzl T

(al,bj,ozl,ﬁjGR;lzl,Z,...,p,jzl ...,q,l—l—ZﬂJ Zal>0) (1.15)
7j=1

so that, obviously

pPal(ar, D)1y (05, D1g5 2] = S L Fyl(a)1p (0j)1g32] (a0 > 0,b; & Zg).  (1.16)

2. Integral Representations for S o )( a)

In this section we present some new integral representations for generalized alternating
Mathieu series (1.13) by using some recent investigated integral representations for (1.12).

Theorem 2.1. For the alternating Mathieu series §(7°) and its generalizations §,(f"ﬁ) (r;
{E7}), S,Sa’ﬁ)(r; {k/2}) the following integral representations hold:

§(r) = 82V {k}) = /Ooo L [sin(er) — gsin()de (re R),(21)

~ Y(pa—p)—1
S s ) = s [ {23 [0, (00 = 917120

IN(D) et —1
~(3)" . e - 90— (5) ] L
(re R,a,B,v€ R, y(ua — B) > 1), (2.2)

~ oo yq(p—p/a)— q
S{P (r; (kYY) = F(q(,u2— g))/o ! e {lF [ ,A(q;q(u—g));—rr"(é) }
_(%)q(u—ﬁ/(a)) R [u,A(q;q(,u— g));—TQ(%)q] }dt

(TGR,Q,6,7€R+,M—§>q_1, q belong to N), (2.3)

where A(g; \) is the q-tuple (%, %, o %).
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Proof. Using the relation (1.4) and integral representation (1.2) we get

~ 1 /7 1 [ tsin(tr) 1 [ tsin(Y)
= —28(=)== dt — — dt
S(r) = 5(r) 48(2) r /0 et —1 2r Jo et —1

1 /> ¢ 1 t
= ;/0 et—l[Sin(tT>_§Sin (%)}dt

In [12] the following two integral representations were proved:

2 o0 y(pa—p)—1
SO D= | W1 1), (1 — ), 7e0); —r%a7
0

(1) et —1
(r € R,a,B,v € R* y(pa = B) > 1) (2.4)
N N 2 00 pqlp—2]-1 T\ a
S0 /ey = | R dlasala- el =2 (2) s
o) q
(rER,a,6€R+,u—§>q_1;q€N). (2.5)
Substituting the last two integral representations in the following two relationships
> 1 r
a,B) (. — q(a,B) (. a,B .
B0 () = S0 0 - S (S ) 20
~ 1 r
() (o L0/ V) — G(.B) (pn fa/aNy (.B) [ L. pa/e
s (/) = S0 (0D - oS (S ), (2)
we obtain (2.2) and (2.3) respectively. O

3. Integral representations for S\ (r;a) and S (r;a) with a; = {(k)P}5,
and ap = {(Ink!)P}2,

The positive sequences {(k!)5, } and {(Ink!)3°, } tends to infinity and the auxiliary
series > o, ﬁ and > 2, m are convergent for any p > 1. Hence we can con-
sider the following special cases of (1.12): S5 (s {(k1)7}22,), S (ry {(k1) 7/ }52 ),
S’ff"ﬁ)(r; {(InkN)7}22,), Sﬁa’ﬁ)(r; {(In k17> ), as well as their alternating variants as
special cases of (1.13). To express their integral representations we need the following
Lemmas.

Lemma 3.1. The following two integral representations are valid

S F0) = [ w)Dutdy (3.1)
k=1 0
S (D) TR(RY) = / " () Day)dy (3.2)

k=1

where Dii(y) = > pey =i and Diyii(y) = Yooy (_ely# are Dirichlet series.
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Proof. It is sufficient to proof the first equality since the second can be proved analo-
gously.

;F(k!)_;/o e‘yk!f(y)dy:/o f(y)(kz_:l ﬁ)dy:/o fW)Dri(y)dy. O

Lemma 3.2. The following two integral representations are valid

> Fk) = [ ) Dnls)dy (3.3)
k=1 0
> (=D P(nk!) = F () D (y)dy (3.4)
k=1 0
where Din i (y) = Y 1oy (k})y and Dy, k() => 00, % are Dirichlet series.

Proof. It is sufficient to proof the first equality, since the second can be proved analo-
gously. Indeed we have

oo oo [e'e) - o0 oo 1 o)
> runk) =3 [ e swdn= [ 50X o= [ 16Dt

Throughout next Lemmas, we also find it to be useful to consider the function a, = a(z)
such that

a; = a(x) =a

reN

a and |a~!(z)] denotes the integer part of the inverse of the function a(z). O

Lemma 3.3. For Dirichlet series Dyi(y) and 5k|(y) the following integral representa-
tions hold:

Duy) =y [ e (o) - Ly (3.5)
0
Duly) = y/ e V! cos? (K[F_l(t)])dt (3.6)
O 2
where T =1(z) is the inverse function of Gamma function.

Proof. When a = {a,}5°; is monotone increasing to infinity then (see [8], [16])

Daly) =3 e =y /O T e At (3.7)

>
Il
—

M8

Daly) = 3_(-1 et =y [ e iar (3.5)

b
Il
—
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where the so-called countining functions A(t) and g(t) has been found easily in the
following manners:

A= 3 1=la0)] (39)
kap <t

N ()l ) .

Ay=Y (-1t = % = sin® (g[a_l(t)]). (3.10)
k:ap <t

Since
k1<t T(k+1)<t r='®-1

A= > 1=> 1= 1= Y 1= -1, (3.11)
k<t k=1 k=1 k=1

Aty= 3 (~1)F " = sin? (g[r’l(t)] - g) = cos? (g[r’l(t)]) (3.12)
kk!<t

applying the integral representations (3.7) and (3.8) with (3.11) and (3.12) respectively
to Dpi(y) and Dpi(y) we get (3.5) and (3.6). O

Lemma 3.4. For Dirichlet series Diyri(y) and ﬁ]nk!(y) the following integral represen-
tations hold:

D) =y [ T (0 ()] - Lt (3.13)

Dunsi(y) =y / T cos? (20 ) ) (3.14)

where T~Y(z) is the inverse function of Gamma function.

Proof. Since
In k!<t r='ehH)-1

A= Y 1= > 1= 1= -1 (3.15)
k=1

k:ln k1<t = k
Aty =Y (—)Ft=sin? (S0 = §) =cos? (FI7H)])  (3.16)
kiln k1<t

applying the integral representations (3.7) and (3.8) respectively to Dy, g1(y) and Dy g1 (y)
after substitution z = e* we get (3.13) and (3.14). O

Substituting (3.5) and (3.6) in (3.1) and (3.2) respectively, we obtain the following
Theorem.

Theorem 3.5. The following two integral representations are valid

= _ R e—yt -1 _
> F( = / / yf@)e v ([T (1)] - Ddedy, (3.17)

S (1R = /OOO /OOO yf(y)e ¥t cos? (g[F_l(t)])dtdy. (3.18)

k=1
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Comparing (1.6) and (1.7) with integral representations (2.4) and (2.5) and applying the
last two equations with

y e [, 1); (v(par = B, 7a)); =2y (3.19)

and
1= et Al 2 ()] o

Y
) :
we get the following results.

Theorem 3.6. For the generalized Mathieu series the following integral representations
hold:

S (s V) = g [ o e G s e = ) 7)) =70

x({rfl(:p)} - 1)d:cdy, (3.21)

S () = oy [ 00 e 1 (0 = B0~
X cos? (g{r— (:C)Dd:vd%

(reRa,ﬁyeRty pa— B) > 1); (3.22)

S0 (r L)) ) = - / [yt

- ) (2 ] )i 528

§£La=ﬁ) (r; {(k!)q/a}zil) — F(q [MQ_ QD /()Oo/ooqu[ug]eym

oo~ ) = (0] o (Gl
(reR,a,ﬁeRJr,u—g>q_1;q€N). (3.24)

Now substituting (3.13) and (3.14) in (3.1) and (3.2) respectively, we obtain the
following Theorem.

Theorem 3.7. The following two integral representations are valid

> rak = | [t e ) = Ddedy, (3.25)

oo

Z k 1F In k!) / / yf(y)z™ Y~ L cos? (2[F_1(:r)])d:1:dy. (3.26)

k=1
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Comparing (1.6) and (1.7) with integral representations (2.4) and (2.5) and applying

(3.25) and (3.26) with (3.19) and (3.20) we get the following results.

Theorem 3.8. For the generalized Mathieu series the following integral representations
hold:

S (s Ak 12 ) = % /ooo/looywm_ﬁ) 101 (i 1); (v (e = B), ya)); =1y

xx_y_l({l"_l(ac)} - 1)dxdy, (3.27)
S (kY Vs = s [ 50 01 (e = B0 =2
xx ¥t cos? (g{F* (x)})dzdy,
(TERa,ﬁ’yER"’,v ua—ﬁ)>1) (3.28)
(@8) (o £(In kNI @100 alu—21 : : _B :
Sy (,{(1 k!) }k72) u—— / / F, [u A(q q[u aD
_Tz(y) |z ([0 @)] = 1) dady, (3.29)
gﬁa’ﬁ)(r;{(lnk!)q/a}iiz) = / / =51, F, [MA((J;Q[M—g})§
—7‘2(5> ]:v v=1 cos? (;T [F_l(:v)])d:vdy
(reR,a,ﬁeRJr,u—g>q_1;q€N). (3.30)
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