SOME NEW INTEGRAL REPRESENTATIONS OF GENERALIZED MATHIEU SERIES AND ALTERNATING MATHIEU SERIES

ŽIVORAD TOMOVSKI

Dedicated to Prof. Hari M. Srivastava on the occasion of his 70th birthday

Abstract. The main purpose of this paper is to present a number of new integral representations for the familiar Mathieu series $S_{\mu}^{(\alpha,\beta)}(r; \{a_k\}_{k=1}^{\infty})(r \in R, \alpha, \beta, \mu, \{a_k\}_{k=1}^{\infty} \in R^+)$ [12] as well as for its alternating version [8, 16] when $a_k = \{k^p\}_{k=1}^{\infty}$, $a_k = \{(k!)^p\}_{k=1}^{\infty}$, $a_k = \{(\ln k!)^p\}_{k=1}^{\infty}$ with $p = \gamma$, $\gamma(\mu\alpha - \beta) > 1$ and $p = \frac{q}{\alpha}$, $\mu - \frac{\beta}{\alpha} > q^{-1}$, $q \in N$.

1. Introduction

The following familiar infinite series

$$S(r) = \sum_{n=1}^{\infty} \frac{2n}{(n^2 + r^2)^2} \qquad (r \in R)$$
(1.1)

is named after Emile Leonard Mathieu (1835-1890), who investigated it in his 1890 work [7] on elasticity of solid bodies. A remarkably useful integral representation for S(r) in the elegant form

$$S(r) = \frac{1}{r} \int_0^\infty \frac{t \sin(rt)}{e^t - 1} dt$$
 (1.2)

was given by Emersleben [5]. An alternating version of (1.1)

$$\widetilde{S}(r) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{2n}{(n^2 + r^2)^2} \qquad (r \in R)$$
(1.3)

was recently introduced by Pogany et al. in [8].

In [8] it was given the following relationship between S(r) and $\tilde{S}(r)$:

$$\widetilde{S}(r) = S(r) - \frac{1}{4}S\left(\frac{r}{2}\right). \tag{1.4}$$

Received September 16, 2009; revised June 3, 2010.

2000 Mathematics Subject Classification. Primary 33E20; Secondary 33C20.

Key words and phrases. Mathieu series, alternating Mathieu series, integral representations, Laplace transform.

Let F be a Laplace transform of f, i.e.

$$F(p) = \mathcal{L}_p(f(x)). \tag{1.5}$$

Using the relations (see [9]), p.651)

$$\sum_{n=1}^{\infty} F(n) = \int_0^\infty \frac{f(x)}{e^x - 1} dx$$
(1.6)

$$\sum_{n=1}^{\infty} (-1)^{n-1} F(n) = \int_0^\infty \frac{f(x)}{e^x + 1} dx$$
(1.7)

Pogany et al. [8] gave an integral representation for $\widetilde{S}(r)$:

$$\widetilde{S}(r) = \frac{1}{r} \int_0^\infty \frac{t \sin(rt)}{e^t + 1} dt.$$
(1.8)

Choi and Srivastava (see [2], Theorem 1) presented a relationship between the Mathieu series S(r) and certain series involving the Riemann Zeta function. Pogany et al. (see [8], Proposition 1) gave a relationship between the alternating Mathieu series $\tilde{S}(r)$ and certain series involving the Dirichlet Eta function. By means of these relationships Choi and Srivastava (see [2]) presented various integral representations of S(r) and $\tilde{S}(r)$, in terms of the Trigamma function $\psi'(z)$ or (equivalently) the Hurwitz (or generalized) Zeta function $\zeta(s, a)$.

Several interesting problems and solutions dealing with integral representations and bounds for the following slight generalization of the Mathieu series with a fractional power

$$S_{\mu}(r) = \sum_{n=1}^{\infty} \frac{2n}{(n^2 + r^2)^{\mu}} \qquad (r \in R; \mu > 1)$$
(1.9)

can be found in the works by Diananda [3], Tomovski and Trencevski [14], Cerone and Lenard [1] and Choi and Srivastava [2]. Namely, Tomovski and Trencevski [14] presented a relationship (integral representation) of (1.9) in terms of the Polygamma function $\psi^{(\mu)}(z), \mu = 2, 3, 4, \ldots$:

$$S_{\mu+1}(r) = \frac{2}{\mu!(2r)^{\mu}} \operatorname{Re}[e^{i\mu\pi/2}\psi^{(\mu)}(1+ir)] + \sum_{k=1}^{\mu} \frac{2(1-K)}{(2r)^{2\mu-k+1}k!(\mu-k+1)} \binom{-(\mu+1)}{\mu-k} \operatorname{Re}[e^{i(2\mu-k+1)\pi/2}\psi^{(\mu)}(1+ir)] \ (\mu \in N).$$
(1.10)

Choi and Srivastava [2] presented two relationships (integral representations) for the series $S_3(r)$ when 0 < |r| < 1 and $\operatorname{Re}(r) > 0$:

$$S_{3}(r) = \frac{i}{8r^{3}} [\psi'(1+ir) - \psi'(1-ir)] + \frac{1}{8r^{3}} [\psi''(1+ir) + \psi''(1-ir)] \\ = \frac{i}{8r^{3}} [\zeta'(2,1+ir) - \zeta'(2,1-ir)] - \frac{1}{4r^{2}} [\zeta(3,1+ir) + \zeta(3,1-ir)] \ (0 < |r| < 1), \quad (1.11) \\ S_{3}(r) = \frac{3+r^{2}}{2(1+r^{2})^{3}} + \frac{1}{4r^{3}} \int_{0}^{\infty} \left(\frac{1}{e^{t}-1} - \frac{1}{t} + \frac{1}{2}\right) te^{-t} [\sin(rt) - rt\cos(rt)] \ (\operatorname{Re}(r) > 0).$$

Motivated essentially by the works of Cerone and Lenard [1] (and Qi [10]) the *five*parameter family of generalized Mathieu series

$$S_{\mu}^{(\alpha,\beta)}(r;a) = S_{\mu}^{(\alpha,\beta)}(r;\{a_k\}_{k=1}^{\infty}) = \sum_{k=1}^{\infty} \frac{2a_k^{\beta}}{(a_k^{\alpha} + r^2)^{\mu}} \quad (r \in R, \alpha, \beta, \mu \in R^+)$$
(1.12)

was defined in [12], where it is tacitly assumed that the positive sequence

$$a = \{a_n\}_{k=1}^{\infty} = \{a_1, a_2, a_3, \ldots\} \quad (\lim_{k \to \infty} a_k = \infty)$$

is so chosen that the infinite series in definition (1.12) converges, that is, that the following auxiliary series

$$\sum_{k=1}^{\infty} \frac{1}{a_k^{\mu\alpha-\beta}}$$

is convergent. Comparing the definitions (1.1), (1.9) and (1.12), we see that $S_2(r) = S(r)$ and $S_{\mu}(r) = S_{\mu}^{(2,1)}(r, \{k\}_{k=1}^{\infty})$. Furthermore, the special cases $S_2^{(2,1)}(r; \{a_k\}_{k=1}^{\infty})$, $S_{\mu}(r) = S_{\mu}^{(2,1)}(r; \{k\}_{k=1}^{\infty})$, $S_{\mu}^{(2,1)}(r; \{k\}_{k=1}^{\infty})$ and $S_{\mu}^{(\alpha,\alpha/2)}(r; \{k\}_{k=1}^{\infty})$ were investigated by Qi [10]; Diananda [3]; Tomovski [15] and Cerone-Lenard [1]. Let (see [8, 16])

$$\widetilde{S}_{\mu}^{(\alpha,\beta)}(r;a) = \widetilde{S}_{\mu}^{(\alpha,\beta)}(r;\{a_k\}_{k=1}^{\infty}) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{2a_k^{\beta}}{(a_k^{\alpha} + r^2)^{\mu}} \quad (r \in R, \alpha, \beta, \mu \in R^+)$$
(1.13)

be an alternating variant of (1.12), where the positive sequence $\{a_k\}_{k=1}^{\infty}$ satisfies the same conditions of the definition (1.12). In [4, 8, 12, 16] several integral representations for (1.12) and their alternating variants (1.13) were presented in terms of the generalized hypergeometric functions, the Bessel function of first kind and the generalized Mittag-Leffler functions.

The generalized hypergeometric function $\ _{p}F_{q}$ with p numerator and q denominator parameters is defined by

$${}_{p}F_{q}[(a_{l})_{1,p};(b_{j})_{1,q};x] = \sum_{m=0}^{\infty} \frac{\prod_{l=1}^{p} (a_{l})_{m}}{\prod_{j=1}^{q} (b_{j})_{m}} \frac{x^{m}}{m!}$$
(1.14)

where $(\delta)_m$ is the Pochhammer symbol, defined by

$$(\delta)_0 = 1, \ (\delta_m) = \delta(\delta+1)\cdots(\delta+m-1) = \frac{\Gamma(\delta+m)}{\Gamma(\delta)} \quad (m \in N).$$

The Fox-Wright generalization ${}_{p}\Psi_{q}$ of the hypergeometric ${}_{p}F_{q}$ function is defined by

$${}_{p}\Psi_{q}(x) = {}_{p}\Psi_{q}[(a_{l},\alpha_{l})_{1,p};(b_{j},\beta_{j})_{1,q};x] = \sum_{k=0}^{\infty} \frac{\prod_{l=1}^{p} (a_{l}+\alpha_{l}k)}{\prod_{j=1}^{q} (b_{j}+\beta_{j}k)} \frac{x^{k}}{k!}$$
$$\left(a_{l},b_{j},\alpha_{l},\beta_{j}\in R; l=1,2,\dots,p, j=1,2,\dots,q; 1+\sum_{j=1}^{q} \beta_{j}-\sum_{l=1}^{p} \alpha_{l}>0\right)$$
(1.15)

so that, obviously

$${}_{p}\Psi_{q}[(a_{l},1)_{1,p};(b_{j},1)_{1,q};x] = \frac{\prod_{l=1}^{p}\Gamma(a_{l})}{\prod_{j=1}^{q}\Gamma(b_{j})} {}_{p}F_{q}[(a_{l})_{1,p};(b_{j})_{1,q};x] \quad (a_{l} > 0, b_{j} \notin Z_{0}^{-}). \quad (1.16)$$

2. Integral Representations for $\widetilde{S}_{\mu}^{(\alpha,\beta)}(r;a)$

In this section we present some new integral representations for generalized alternating Mathieu series (1.13) by using some recent investigated integral representations for (1.12).

Theorem 2.1. For the alternating Mathieu series $\widetilde{S}(r)$ and its generalizations $\widetilde{S}^{(\alpha,\beta)}_{\mu}(r; \{k^{\gamma}\}), \widetilde{S}^{(\alpha,\beta)}_{\mu}(r; \{k^{q/\alpha}\})$ the following integral representations hold:

$$\widetilde{S}(r) = \widetilde{S}_{2}^{(2,1)}(r; \{k\}) = \frac{1}{r} \int_{0}^{\infty} \frac{t}{e^{t} - 1} \Big[\sin(tr) - \frac{1}{2} \sin(\frac{tr}{2}) \Big] dt \ (r \in R), \quad (2.1)$$

$$\widetilde{S}^{(\alpha,\beta)}_{\mu}(r;\{k^{\gamma}\}) = \frac{2}{\Gamma(\mu)} \int_{0}^{\gamma} \frac{t^{\gamma,(\mu\alpha-\beta)-1}}{e^{t}-1} \left\{ {}_{1}\Psi_{1}\left[(\mu,1),(\gamma(\mu\alpha-\beta),\gamma\alpha);-r^{2}t^{\gamma\alpha}\right] - \left(\frac{1}{2}\right)^{\gamma(\mu\alpha-\beta)-1} {}_{1}\Psi_{1}\left[(\mu,1),(\gamma(\mu\alpha-\beta),\gamma\alpha);-r^{2}\left(\frac{t}{2}\right)^{\gamma\alpha}\right] \right\} dt$$

$$(r \in R, \alpha, \beta, \gamma \in R^{+}, \gamma(\mu\alpha-\beta) > 1), \qquad (2.2)$$

$$\widetilde{S}_{\mu}^{(\alpha,\beta)}(r;\{k^{q/\alpha}\}) = \frac{2}{\Gamma\left(q\left(\mu - \frac{\beta}{\alpha}\right)\right)} \int_{0}^{\infty} \frac{t^{q\left(\mu - \beta/\alpha\right) - 1}}{e^{t} - 1} \left\{ {}_{1}F_{q}\left[\mu, \Delta\left(q; q\left(\mu - \frac{\beta}{\alpha}\right)\right); -r^{2}\left(\frac{t}{q}\right)^{q}\right] - \left(\frac{1}{2}\right)^{q\left(\mu - \beta/\alpha\right)} {}_{1}F_{1}\left[\mu, \Delta\left(q; q\left(\mu - \frac{\beta}{\alpha}\right)\right); -r^{2}\left(\frac{t}{2q}\right)^{q}\right] \right\} dt$$

$$(r \in R, \alpha, \beta, \gamma \in R^{+}, \mu - \frac{\beta}{\alpha} > q^{-1}, q \text{ belong to } N),$$
(2.3)

where $\Delta(q;\lambda)$ is the q-tuple $\left(\frac{\lambda}{q},\frac{\lambda+1}{q},\ldots,\frac{\lambda+q-1}{q}\right)$.

Proof. Using the relation (1.4) and integral representation (1.2) we get

$$\widetilde{S}(r) = S(r) - \frac{1}{4}S\left(\frac{r}{2}\right) = \frac{1}{r} \int_0^\infty \frac{t\sin(tr)}{e^t - 1} dt - \frac{1}{2r} \int_0^\infty \frac{t\sin(\frac{tr}{2})}{e^t - 1} dt = \frac{1}{r} \int_0^\infty \frac{t}{e^t - 1} \left[\sin(tr) - \frac{1}{2}\sin\left(\frac{tr}{2}\right)\right] dt.$$

In [12] the following two integral representations were proved:

$$S_{\mu}^{(\alpha,\beta)}(r;\{n^{\gamma}\}) = \frac{2}{\Gamma(\mu)} \int_{0}^{\infty} \frac{x^{\gamma(\mu\alpha-\beta)-1}}{e^{x}-1} {}_{1}\Psi_{1}[(\mu,1),(\gamma(\mu\alpha-\beta),\gamma\alpha);-r^{2}x^{\gamma\alpha}]dt$$
$$(r \in R, \alpha, \beta, \gamma \in R^{+}, \gamma(\mu\alpha-\beta) > 1)$$
(2.4)

$$S^{(\alpha,\beta)}_{\mu}(r;\{n^{q/\alpha}\}) = \frac{2}{\Gamma\left(q\left[\mu - \frac{\beta}{\alpha}\right]\right)} \int_{0}^{\infty} \frac{x^{q\left[\mu - \frac{\beta}{\alpha}\right] - 1}}{e^{t} - 1} {}_{1}F_{q}\left[\mu;\Delta[q;q[\mu - \beta/\alpha]); -r^{2}\left(\frac{x}{q}\right)^{q}\right] dx$$
$$(r \in R, \alpha, \beta \in R^{+}, \mu - \frac{\beta}{\alpha} > q^{-1}; q \in N).$$
(2.5)

Substituting the last two integral representations in the following two relationships

$$\widetilde{S}^{(\alpha,\beta)}_{\mu}(r;\{n^{\gamma}\}) = S^{(\alpha,\beta)}_{\mu}(r;\{n^{\gamma}\}) - \frac{1}{2^{\gamma(\mu\alpha-\beta)-1}}S^{(\alpha,\beta)}_{\mu}\left(\frac{r}{2^{\frac{\gamma\alpha}{2}}};\{n^{\gamma}\}\right),$$
(2.6)

$$\widetilde{S}_{\mu}^{(\alpha,\beta)}(r;\{n^{q/\alpha}\}) = S_{\mu}^{(\alpha,\beta)}(r;\{n^{q/\alpha}\}) - \frac{1}{2^{q(\mu-\beta/\alpha)-1}}S_{\mu}^{(\alpha,\beta)}\left(\frac{r}{2^{\frac{q}{2}}};\{n^{q/\alpha}\}\right), \quad (2.7)$$

we obtain (2.2) and (2.3) respectively.

3. Integral representations for $S^{(\alpha,\beta)}_{\mu}(r;a)$ and $\widetilde{S}^{(\alpha,\beta)}_{\mu}(r;a)$ with $a_k = \{(k!)^p\}_{k=1}^{\infty}$ and $a_k = \{(\ln k!)^p\}_{k=1}^{\infty}$

The positive sequences $\{(k!)_{k=1}^{\infty}\}$ and $\{(\ln k!)_{k=1}^{\infty}\}$ tends to infinity and the auxiliary series $\sum_{k=1}^{\infty} \frac{1}{(k!)^p}$ and $\sum_{k=2}^{\infty} \frac{1}{(\ln k!)^p}$ are convergent for any p > 1. Hence we can consider the following special cases of (1.12): $S_{\mu}^{(\alpha,\beta)}(r; \{(k!)^{\gamma}\}_{k=1}^{\infty}), S_{\mu}^{(\alpha,\beta)}(r; \{(k!)^{\gamma}\}_{k=2}^{\infty}), S_{\mu}^{(\alpha,\beta)}(r; \{(\ln k!)^{q/\alpha}\}_{k=2}^{\infty}),$ as well as their alternating variants as special cases of (1.13). To express their integral representations we need the following Lemmas.

Lemma 3.1. The following two integral representations are valid

$$\sum_{k=1}^{\infty} F(k!) = \int_0^{\infty} f(y) D_{k!}(y) dy$$
(3.1)

$$\sum_{k=1}^{\infty} (-1)^{k-1} F(k!) = \int_0^{\infty} f(y) \widetilde{D}_{k!}(y) dy$$
(3.2)

where $D_{k!}(y) = \sum_{k=1}^{\infty} \frac{1}{e^{yk!}}$ and $\widetilde{D}_{\ln k!}(y) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{e^{yk!}}$ are Dirichlet series.

Proof. It is sufficient to proof the first equality since the second can be proved analogously.

$$\sum_{k=1}^{\infty} F(k!) = \sum_{k=1}^{\infty} \int_{0}^{\infty} e^{-yk!} f(y) dy = \int_{0}^{\infty} f(y) \Big(\sum_{k=1}^{\infty} \frac{1}{e^{yk!}} \Big) dy = \int_{0}^{\infty} f(y) D_{k!}(y) dy. \quad \Box$$

Lemma 3.2. The following two integral representations are valid

$$\sum_{k=1}^{\infty} F(\ln k!) = \int_0^{\infty} f(y) D_{\ln k!}(y) dy$$
(3.3)

$$\sum_{k=1}^{\infty} (-1)^{k-1} F(\ln k!) = \int_0^\infty f(y) \widetilde{D}_{\ln k!}(y) dy$$
(3.4)

where $D_{\ln k!}(y) = \sum_{k=1}^{\infty} \frac{1}{(k!)^y}$ and $\widetilde{D}_{\ln k!}(y) = \sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{(k!)^y}$ are Dirichlet series.

Proof. It is sufficient to proof the first equality, since the second can be proved analogously. Indeed we have

$$\sum_{k=1}^{\infty} F(\ln k!) = \sum_{k=1}^{\infty} \int_0^{\infty} e^{-y\ln k!} f(y) dy = \int_0^{\infty} f(y) \Big(\sum_{k=1}^{\infty} \frac{1}{(k!)^y}\Big) dy = \int_0^{\infty} f(y) D_{\ln k!}(y) dy.$$

Throughout next Lemmas, we also find it to be useful to consider the function $a_x = a(x)$ such that

$$a_x = a(x)\Big|_{x \in N} = a$$

a and $\lfloor a^{-1}(x) \rfloor$ denotes the integer part of the inverse of the function a(x).

Lemma 3.3. For Dirichlet series $D_{k!}(y)$ and $\widetilde{D}_{k!}(y)$ the following integral representations hold:

$$D_{k!}(y) = y \int_0^\infty e^{-yt} ([\Gamma^{-1}(t)] - 1) dt$$
(3.5)

$$\widetilde{D}_{k!}(y) = y \int_0^\infty e^{-yt} \cos^2\left(\frac{\pi}{2}[\Gamma^{-1}(t)]\right) dt$$
(3.6)

where $\Gamma^{-1}(x)$ is the inverse function of Gamma function.

Proof. When $a = \{a_n\}_{n=1}^{\infty}$ is monotone increasing to infinity then (see [8], [16])

$$D_{a}(y) = \sum_{k=1}^{\infty} e^{-a_{k}y} = y \int_{0}^{\infty} e^{-yt} A(t) dt$$
(3.7)

$$\widetilde{D}_{a}(y) = \sum_{k=1}^{\infty} (-1)^{k-1} e^{-a_{k}y} = y \int_{0}^{\infty} e^{-yt} \widetilde{A}(t) dt$$
(3.8)

where the so-called countining functions A(t) and $\widetilde{A}(t)$ has been found easily in the following manners:

$$A(t) = \sum_{k:a_k \le t} 1 = [a^{-1}(t)]$$
(3.9)

$$\widetilde{A}(t) = \sum_{k:a_k \le t} (-1)^{k-1} = \frac{1 - (-1)^{[a^{-1}(t)]}}{2} = \sin^2\left(\frac{\pi}{2}[a^{-1}(t)]\right).$$
(3.10)

Since

$$A(t) = \sum_{k:k! \le t} 1 = \sum_{k=1}^{k! \le t} 1 = \sum_{k=1}^{\Gamma(k+1) \le t} 1 = \sum_{k=1}^{[\Gamma^{-1}(t)]-1} 1 = [\Gamma^{-1}(t)] - 1, \quad (3.11)$$

$$\widetilde{A}(t) = \sum_{k:k! \le t} (-1)^{k-1} = \sin^2\left(\frac{\pi}{2}[\Gamma^{-1}(t)] - \frac{\pi}{2}\right) = \cos^2\left(\frac{\pi}{2}[\Gamma^{-1}(t)]\right)$$
(3.12)

applying the integral representations (3.7) and (3.8) with (3.11) and (3.12) respectively to $D_{k!}(y)$ and $\widetilde{D}_{k!}(y)$ we get (3.5) and (3.6).

Lemma 3.4. For Dirichlet series $D_{\ln k!}(y)$ and $\widetilde{D}_{\ln k!}(y)$ the following integral representations hold:

$$D_{\ln k!}(y) = y \int_{1}^{\infty} x^{-y-1}([\Gamma^{-1}(t)] - 1)dt$$
(3.13)

$$\widetilde{D}_{\ln k!}(y) = y \int_{1}^{\infty} x^{-y-1} \cos^2\left(\frac{\pi}{2} [\Gamma^{-1}(x)]\right) dx$$
(3.14)

where $\Gamma^{-1}(x)$ is the inverse function of Gamma function.

Proof. Since

$$A(t) = \sum_{k:\ln k! \le t} 1 = \sum_{k=1}^{\ln k! \le t} 1 = \sum_{k=1}^{[\Gamma^{-1}(e^t)]-1} 1 = [\Gamma^{-1}(e^t)] - 1$$
(3.15)

$$\widetilde{A}(t) = \sum_{k:\ln k! \le t} (-1)^{k-1} = \sin^2\left(\frac{\pi}{2}[\Gamma^{-1}(e^t)] - \frac{\pi}{2}\right) = \cos^2\left(\frac{\pi}{2}[\Gamma^{-1}(e^t)]\right)$$
(3.16)

applying the integral representations (3.7) and (3.8) respectively to $D_{\ln k!}(y)$ and $\widetilde{D}_{\ln k!}(y)$ after substitution $x = e^t$ we get (3.13) and (3.14).

Substituting (3.5) and (3.6) in (3.1) and (3.2) respectively, we obtain the following Theorem.

Theorem 3.5. The following two integral representations are valid

$$\sum_{k=1}^{\infty} F(k!) = \int_0^{\infty} \int_0^{\infty} y f(y) e^{-yt} ([\Gamma^{-1}(t)] - 1) dt dy, \qquad (3.17)$$

$$\sum_{k=1}^{\infty} (-1)^{k-1} F(k!) = \int_0^\infty \int_0^\infty y f(y) e^{-yt} \cos^2\left(\frac{\pi}{2} [\Gamma^{-1}(t)]\right) dt dy.$$
(3.18)

Comparing (1.6) and (1.7) with integral representations (2.4) and (2.5) and applying the last two equations with

$$f(y) = \frac{2}{\Gamma(\mu)} y^{\gamma(\mu\alpha-\beta)-1} \, _{1}\Psi_{1}[(\mu,1);(\gamma(\mu\alpha-\beta,\gamma\alpha));-r^{2}y^{\gamma\alpha}]$$
(3.19)

and

$$f(y) = \frac{2}{\Gamma\left(q\left[\mu - \frac{\beta}{\alpha}\right]\right)} y^{q\left[\mu - \frac{\beta}{\alpha}\right] - 1} {}_{1}F_{q}\left[\mu; \Delta\left(q; q\left[\mu - \frac{\beta}{\alpha}\right]\right); -r^{2}\left(\frac{y}{q}\right)^{q}\right]$$
(3.20)

we get the following results.

Theorem 3.6. For the generalized Mathieu series the following integral representations hold:

$$S^{(\alpha,\beta)}_{\mu}\left(r;\{(k!)^{\gamma}\}_{k=1}^{\infty}\right) = \frac{2}{\Gamma(\mu)} \int_{0}^{\infty} \int_{0}^{\infty} y^{\gamma(\mu\alpha-\beta)} e^{-yx} \,_{1}\Psi_{1}[(\mu,1);(\gamma(\mu\alpha-\beta),\gamma\alpha)); -r^{2}y^{\gamma\alpha}] \times \left(\left[\Gamma^{-1}(x)\right] - 1\right) dxdy,$$
(3.21)

$$\widetilde{S}^{(\alpha,\beta)}_{\mu}\Big(r;\{(k!)^{\gamma}\}_{k=1}^{\infty}\Big) = \frac{2}{\Gamma(\mu)} \int_{0}^{\infty} \int_{0}^{\infty} y^{\gamma(\mu\alpha-\beta)} e^{-yx} \,_{1}\Psi_{1}[(\mu,1);(\gamma(\mu\alpha-\beta),\gamma\alpha)); -r^{2}y^{\gamma\alpha}] \times \cos^{2}\Big(\frac{\pi}{2}\Big[\Gamma^{-1}(x)\Big]\Big)dxdy,$$

$$(r \in R, \alpha, \beta, \gamma \in R^+, \gamma(\mu\alpha - \beta) > 1);$$

$$(3.22)$$

$$S_{\mu}^{(\alpha,\beta)}\left(r;\{(k!)^{q/\alpha}\}_{k=1}^{\infty}\right) = \frac{2}{\Gamma\left(q\left[\mu - \frac{\beta}{\alpha}\right]\right)} \int_{0}^{\infty} \int_{0}^{\infty} y^{q\left[\mu - \frac{\beta}{\alpha}\right]} e^{-yx}$$

$${}_{1}F_{q}\left[\mu; \Delta\left(q;q\left[\mu - \frac{\beta}{\alpha}\right]\right); -r^{2}\left(\frac{y}{q}\right)^{q}\right] \left(\left[\Gamma^{-1}(x)\right] - 1\right) dxdy, (3.23)$$

$$\widetilde{S}_{\mu}^{(\alpha,\beta)}\left(r;\{(k!)^{q/\alpha}\}_{k=1}^{\infty}\right) = \frac{2}{\Gamma\left(q\left[\mu - \frac{\beta}{\alpha}\right]\right)} \int_{0}^{\infty} \int_{0}^{\infty} y^{q\left[\mu - \frac{\beta}{\alpha}\right]} e^{-yx}$$

$${}_{1}F_{q}\left[\mu; \Delta\left(q;q\left[\mu - \frac{\beta}{\alpha}\right]\right); -r^{2}\left(\frac{y}{q}\right)^{q}\right] \cos^{2}\left(\frac{\pi}{2}\left[\Gamma^{-1}(x)\right]\right) dxdy, (r \in R, \alpha, \beta \in R^{+}, \mu - \frac{\beta}{\alpha} > q^{-1}; q \in N).$$

$$(3.24)$$

Now substituting (3.13) and (3.14) in (3.1) and (3.2) respectively, we obtain the following Theorem.

Theorem 3.7. The following two integral representations are valid

$$\sum_{k=1}^{\infty} F(\ln k!) = \int_0^{\infty} \int_1^{\infty} y f(y) x^{-y-1} ([\Gamma^{-1}(x)] - 1) dx dy, \qquad (3.25)$$

$$\sum_{k=1}^{\infty} (-1)^{k-1} F(\ln k!) = \int_0^{\infty} \int_1^{\infty} y f(y) x^{-y-1} \cos^2\left(\frac{\pi}{2} [\Gamma^{-1}(x)]\right) dx dy.$$
(3.26)

Comparing (1.6) and (1.7) with integral representations (2.4) and (2.5) and applying (3.25) and (3.26) with (3.19) and (3.20) we get the following results.

Theorem 3.8. For the generalized Mathieu series the following integral representations hold:

$$S^{(\alpha,\beta)}_{\mu}\Big(r;\{(\ln k!)^{\gamma}\}_{k=2}^{\infty}\Big) = \frac{2}{\Gamma(\mu)} \int_{0}^{\infty} \int_{1}^{\infty} y^{\gamma(\mu\alpha-\beta)} \, _{1}\Psi_{1}[(\mu,1);(\gamma(\mu\alpha-\beta),\gamma\alpha)); -r^{2}y^{\gamma\alpha}] \times x^{-y-1}\Big(\Big[\Gamma^{-1}(x)\Big] - 1\Big)dxdy,$$
(3.27)

$$\begin{split} \widetilde{S}^{(\alpha,\beta)}_{\mu}\Big(r;\{(\ln k!)^{\gamma}\}_{k=2}^{\infty}\Big) &= \frac{2}{\Gamma(\mu)} \int_{0}^{\infty} \int_{1}^{\infty} y^{\gamma(\mu\alpha-\beta)} \,_{1}\Psi_{1}[(\mu,1);(\gamma(\mu\alpha-\beta),\gamma\alpha)); -r^{2}y^{\gamma\alpha}] \\ &\times x^{-y-1} \cos^{2}\Big(\frac{\pi}{2}\Big[\Gamma^{-1}(x)\Big]\Big) dxdy, \\ &(r \in R, \alpha, \beta, \gamma \in R^{+}, \gamma(\mu\alpha-\beta) > 1); \end{split}$$
(3.28)

$$S^{(\alpha,\beta)}_{\mu}\Big(r;\{(\ln k!)^{q/\alpha}\}_{k=2}^{\infty}\Big) = \frac{2}{\Gamma\Big(q\Big[\mu - \frac{\beta}{\alpha}\Big]\Big)} \int_{0}^{\infty} \int_{1}^{\infty} y^{q[\mu - \frac{\beta}{\alpha}]} {}_{1}F_{q}\Big[\mu;\Delta\Big(q;q\Big[\mu - \frac{\beta}{\alpha}\Big]\Big);$$

$$-r^{2}\left(\frac{y}{q}\right)^{-1}x^{-y-1}\left(\left[\Gamma^{-1}(x)\right]-1\right)dxdy, \quad (3.29)$$

$$\widetilde{S}_{\mu}^{(\alpha,\beta)}\left(r;\left\{(\ln k!)^{q/\alpha}\right\}_{k=2}^{\infty}\right) = \frac{2}{\Gamma\left(q\left[\mu-\frac{\beta}{\alpha}\right]\right)}\int_{0}^{\infty}\int_{1}^{\infty}y^{q\left[\mu-\frac{\beta}{\alpha}\right]}{}_{1}F_{q}\left[\mu;\Delta\left(q;q\left[\mu-\frac{\beta}{\alpha}\right]\right);\right]$$

$$-r^{2}\left(\frac{y}{q}\right)^{q}x^{-y-1}\cos^{2}\left(\frac{\pi}{2}\left[\Gamma^{-1}(x)\right]\right)dxdy$$

$$(r \in R, \alpha, \beta \in R^{+}, \mu-\frac{\beta}{\alpha} > q^{-1}; q \in N). \quad (3.30)$$

References

- P. Cerone and C. T. Lenard, On integral forms of generalized Mathieu series, JIPAM 4(2003), Art.100, 1–11(electronic).
- [2] J. Choi and H. M. Srivastava, Mathieu series and associated sums involving the Zeta function, Comput. Math. Appl., 59 (2010), 861–867.
- [3] P. H. Diananda, Some inequalities related to an inequality of Mathieu, Math. Ann., 250 (1980), 95–98.
- [4] N. Elezovic, H. M. Srivastava, Ž. Tomovski, Integral representations and integral transforms of some families of Mathieu type series, Integral Transforms and Special Functions, 19 (2008), 481–495.
- [5] O. Emersleben, Uber die Reihe $\sum_{k=1}^{\infty} k/(k^2+c^2)^2$, Math. Ann., **125** (1952), 165–171.
- [6] A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Tables of Integral Transforms, Vol. I, Mc. Graw-Hill Book Company, New York, Toronto and London, 1954.
- [7] E. L. Mathieu, Traite' de Physique Mathematique. VI-VII: Theory de l'Elasticite' des Corps Solides (Part 2), Gauthier-Villars, Paris, 1890.

- [8] T. K. Pogany, H. M. Srivastava, Ž. Tomovski, Some families of Mathieu a-series and alternating Mathieu a-series, Appl. Math. Computation, 173 (2006), 69–108.
- [9] A. P. Prudnikov, Yu. A. Bryckov and O. I. Maricev, Integrals and Series (Elementary Functions), "Nauka", Moscow, 1981 (Russian); English translation: Integrals and Series, Vol.1: Elementary Functions, Gordon and Breach Science Publishers, New York, 1990.
- [10] F. Qi, An integral expression and some inequalities of Mathieu type series, Rostock. Math. Kolloq., 58 (2004), 37–46.
- [11] H. M. Srivastava and H. L. Manocha, A Treatise on generating Functions, Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1984.
- [12] H. M. Srivastava, Ž. Tomovski, Some problems and solutions involving Mathieu's series and its generalizations, JIPAM, 5(2004), Article 45, 1-13 (electronic).
- [13] H. M. Srivastava, J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic Publishers, Dordrecht, Boston and London, 2001.
- [14] Ž. Tomovski and K. Trencevski, On an open problem of Bai-Ni Guo and Feng Qi, J. Inequal. Pure Appl. Math., 4(2003), Article 29, 1–7 (electronic).
- [15] Ž. Tomovski, New double inequality for Mathieu series, Univ. Beograd Publ. Elektrotehn. Fak. Ser. Mat., 15 (2004), 79–83.
- [16] Ž. Tomovski, Integral representations of generalized Mathieu series via Mittag-Leffler type functions, Fract. Calc. & Appl. Anal., 10(2007), 127–138.

Faculty of Mathematics and Natural Sciences, Institute of Mathematics, PO.Box.162, Gazi Baba b.b. 1000 Skopje, Macedonia.

E-mail: tomovski@pmf.ukim.mk; zivoradt@yahoo.com