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Abstract. Inverse nodal problems consist in constructing opera-
tors from the given zeros of their eigenfunctions. In this work, we
deal with the inverse nodal problems of reconstructing the Sturm-
Liouville operator on a star graph with δ′s couplings at the central
vertex. The uniqueness theorem is proved and a constructive pro-
cedure for the solution is provided from a dense subset of zeros of
the eigenfunctions for the problem as a data.

1. Introduction

In 1988, the inverse nodal problem was posed and solved for Sturm-
Liouville problems by J. R. McLaughlin [30], who showed that knowl-
edge of a dense subset of nodal points of the eigenfunctions alone can
determine the potential function of the Sturm-Liouville problem up to
a constant. Some numerical schemes were provided by O. H. Hald and
J. R. McLaughlin for the reconstruction of the potential [14]. From
the physical point of view this corresponds to finding, e.g., the density
of a string or a beam from the zero-amplitude positions of their eigen-
vibrations. Recently, some authors have reconstructed the potential
function for generalizations of the Sturm-Liouville problem from the
nodal points (for example, refer to [3, 5, 7, 10, 11, 14, 19, 24, 25, 26,
30, 33, 34, 35, 37, 41, 42]).

Quantum graphs became in the last decade a useful and versatile tool
to describe several classes of physical systems, in particular, various
combinations of quantum wires. There are numerous papers devoted
to the subject and we restrict ourselves to mentioning the bibliography
given in [17, 20], where also basic concepts of theory are discussed.
In [17, 20], all symmetrical vertex matching conditions are described
(something more general than standard boundary conditions). For ex-
ample, so-called Kirchhoff boundary conditions as the most common
case of the standard δ couplings; a kind of δ′s couplings similar to δ
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couplings, just with roles of the function and its derivative exchanged.
For Kirchhoff boundary conditions, its important applications are clear,
i.e., in electrical circuits, it expresses Kirchhoff’s law; in elastic string
network, it expresses the balance of tension, and so on. A graph with
δ′s couplings was introduced and investigated by Peter Exner, and Pe-
ter Kuchment, and so on. A graph with δ′s couplings has important
applications in lattice Kronig-Penney models, and the δ′s couplings at
a d adge vertex can be approximated by means of d + 1 couplings of
the δ-type [9]. The question of physical meaning of such a coupling on
graphs was addressed and a pair of simple nontrivial examples of the
so-called δ′s couplings was presented in [12, 13].

Recently, the spectral problems of quantum graphs have become a
rapidly-developing field of mathematics and mathematical physics, and
spectral properties of quantum graphs and different inverse problems
have been studied in both forward [20, 21, 22, 31, 39] and inverse [4,
23, 32, 38, 40, 41, 42], etc. Nowadays there are only a number of papers
devoted to inverse nodal problems for differential operators on graphs
(for example, refer to [8, 11, 41, 42]).

In this work we concern ourselves with reconstructing Sturm-Liouville
operators on a star graph with δ′s couplings from nodal data. We prove
the corresponding uniqueness theorem and provide a constructive pro-
cedure for the solution. For the Sturm-Liouville operators on a graph
with δ′s couplings, the uniqueness theorem and recovery algorithm for
the potential obtained in this work are new. We also show connections
of these problems with inverse spectral problems of Sturm-Liouville
operators on a star graph with δ′s couplings at the central vertex.

2. Preliminary

In this work, we consider the following boundary value problem for
the Sturm-Liouville operator on a star-shaped graph consisting of d
segments of equal length:

− y′′j (x) + qj(x)yj(x) = λyj(x), x ∈ (0, π), j = 1, d; d ≥ 2, (2.1)

which are subject to the boundary conditions

yj(0) = 0, j = 1, d (2.2)

or

y′j(0) = 0, j = 1, d, (2.3)

at the pendant vertices 0, and

y′1(π) = y′2(π) = · · · = y′d(π), (2.4)
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d∑
j=1

yj(π) = 0, (2.5)

at the central vertex π. In the equation (2.1), qj ∈ C1[0, π], j =
1, 2, · · · , d, are real-valued functions. The boundary conditions (2.4)
and (2.5) are the so-called a δ′s couplings.

For convenience, we denote by A1, A2 the operator acting in Hilbert
space L2

d[0, π] =:
⊕d

i=1 L
2[0, π] for the problem (2.1), (2.2), (2.4) and

(2.5) or (2.1), (2.3), (2.4) and (2.5), respectively.
In [39], regularized trace formulae for the operators A1 and A2 are

calculated with some techniques in classical analysis; next, these trace
formulae are used to obtain a result of inverse problem in the spirit of
Ambarzumyan; finally we give the asymptotic expressions of eigenval-
ues for the operators A1 and A2, and show that there are d sequences of
eigenvalues which one sequence is simple while the others might not be
(see Lemmas 2.1 and 2.2 in this paper). Let {λDn,j, j = 1, d}∞n=1 be the

sequence of the eigenvalues for the operator A1 and {λNn,j, j = 1, d}∞n=0

be the sequence of eigenvalues for the operator A2, and denote

q̄j =
1

2π

∫ π

0

qj(x)dx, q̄ =
2

d

d∑
j=1

q̄j. (2.6)

Lemma 2.1. (see [39]) For sufficiently large n, the eigenvalues of the
operator A1 possess the following asymptotic expression√

λDn,d = n+
q̄/2

n
+ o

(
1

n

)
, (2.7)

and √
λDn,j = n− 1

2
+

cj,0
n− 1

2

+ o

(
1

n

)
, j = 1, d− 1, (2.8)

where cj,0, 1 ≤ j ≤ d− 1, are the solutions of the equation for c

d∑
j=1

∏
j ̸=l∈{1,2,··· ,d}

(c− q̄j) = 0. (2.9)

Remark 1. Define f(x)=
∏d

j=1(x− q̄j), then f ′(x)=
∑d

j=1

∏
j ̸=l=1,d(x− q̄j)

is a polynomial with order d − 1 and its zeros are identified with all
solutions to the equation (2.9). By the Rolle Theorem, it follows that
all solutions to the equation (2.9) are real.
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Lemma 2.2. (see [39]) For sufficiently large n, the eigenvalues of the
operator A2 possess the following asymptotic expression√

λNn,d = (n− 1

2
) +

q̄/2

n− 1
2

+ o

(
1

n

)
, (2.10)

and √
λNn,j = n+

cj,0
n

+ o

(
1

n

)
, j = 1, d− 1, (2.11)

where cj,0, 1 ≤ j ≤ d− 1, are the solutions of the equation (2.9).

3. Inverse nodal problems

Denote by φj(λ, x), j = 1, d, the solutions of (2.1) satisfying the
initial conditions

φj(λ, 0) = 0, φ′
j(λ, 0) = 1, (3.1)

then, we have [28]

φj(λ, x) =
sin(

√
λx)√
λ

− cos(
√
λx)

λ
Kj(x, x)+

1
λ

∫ x

0
K ′

j,t(x, t) cos(
√
λt)dt, (3.2)

where both of the first partial derivatives K ′
j,x(x, t) and K ′

j,t(x, t) of

Kj(x, t), j = 1, 2, · · · , d, exist and K ′
j,x(x, ·) ∈ L2[0, π] and K ′

j,t(x, ·) ∈
L2[0, π].

Similarly, denote by ψj(λ, x), j = 1, d, the solutions of (2.1) satisfy-
ing the initial conditions

ψj(λ, 0) = 1, ψ′
j(λ, 0) = 0, (3.3)

then, we get [28]

ψj(λ, x)=cos(
√
λx)+sin(

√
λx)√
λ

K̃j(x, x)− 1√
λ

∫ x

0
K̃ ′

j,t(x, t) sin(
√
λt)dt, (3.4)

where K̃j(x, t) has the same properties as Kj(x, t) and

Kj(x, x) = K̃j(x, x)=
1

2

∫ x

0

qj(t)dt. (3.5)

For definiteness, we take λn = λDn,d and study the zeros of eigenfunc-
tions corresponding to the eigenvalue λn for the operator A1 in more
details.

Using (3.2), we get the asymptotics for the components φj(λn, x) of
eigenfunctions, for n→ ∞ uniformly in x ∈ [0, π]:

ρnφj(λn, x) = sin(ρnx)− cos(ρnx)Kj(x,x)

ρn
+ o

(
1
n

)
= sin(nx)−

∫ x
0 qj(x)−q̄x

2n
cos(nx) + o

(
1
n

)
, ρn :=

√
λn.
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For a fixed n and j, we estimate the nodal point xkn,j of the eigen-
function φj(λn, x). From

0 = sin(nx)−
∫ x

0
qj(x)− q̄x

2n
cos(nx) + o

(
1

n

)
,

we obtain

tan(nx) =

∫ x

0
qj(x)− q̄x

2n
+ o

(
1

n

)
. (3.6)

Using Taylor’s expansion for the arctangent, we obtain the following
asymptotic formulae for nodal points, as n→ ∞ uniformly in k ∈ N:

nxkn,j = kπ +
1

2n

[∫ xk
n,j

0

qj(t)dt− q̄xkn,j

]
+ o

(
1

n

)
,

which implies

xkn,j = kπ
n
+ 1

2n2

[∫ xk
n,j

0 qj(t)dt− q̄xkn,j

]
+ o

(
1
n2

)
= kπ

n
+ 1

2n2

[∫ kπ
n

0
qj(t)dt− q̄ kπ

n

]
+ o

(
1
n2

)
.

(3.7)

The equality (3.7) gives

xk+1
n,j − xkn,j := lkn,j =

π

n
+O

(
1

n2

)
, n→ ∞,

uniformly with respect to k. For k = 0, 1, · · · , n, the formula (3.7)
gives

x0n,j = O
(

1
n2

)
, x1n,j =

π
n
+O

(
1
n2

)
, · · · ,

xn−1
n,j = (n−1)π

n
+O

(
1
n2

)
, xnn,j = π +O

(
1
n2

)
.

For a fixed j ∈ {1, 2, · · · , d}, there exists N0 such that for all n > N0

the function φj(λn, x) has exactly n−1 simple zeros inside the interval
(0, π), namely: 0 < x1n,j < · · · < xn−1

n,j < π. The points X1
j := {xkn,j}

are called nodal points on the edge ej related to the eigenvalues {λn}.
Thus, according to the order of xkn,j, for large n, the components

φj(λn, x) of eigenfunctions has exactly n−1 nodes in the interval (0, π),
i.e., xkn,j, k = 1, n− 1.

In the above results, the order estimate is independent of k. As a
result,

lkn,j =
π

n
+ o

(
1

n

)
. (3.8)

Corollary 3.1. The sets X1
j = {xkn,j} is dense in [0, π], where xkn,j is

defined by (3.7).
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We consider the following inverse problem.
Problem: Given nodal points set X1

j or its subset X1,0
j which is

dense in (0, π), how to find the potential qj(x) on the edge ej.
Using (3.7) we arrive at the following assertions.

Theorem 3.2. Fix j ∈ {1, 2, · · · , d} and x ∈ [0, π]. Let {xkn,j} ⊂ X1
j be

dense in (0, π) so that there exists k = k(n) such that limn→∞ x
k(n)
n,j = x.

Then the following finite limit exists and the corresponding equality
holds.

lim
n→∞

2n
[
nxkn,j − kπ

]
:= gj(x), (3.9)

and

gj(x) =
∫ x

0
qj(t)dt− q̄x. (3.10)

Remark 2. In the proof of Theorem 3.2, we use the nodal data cor-
responding to the eigenvalue of the form as in (2.7) to derive the
reconstruction formula (3.9). If the eigenvalues of the form as in

(2.8) are chosen, a similar formula still holds. We take
√
λDn,j0 =

n − 1
2
+

cj0,0

n− 1
2

+ o
(
1
n

)
, j0 ∈ {1, 2, · · · , d − 1} and obtain the zeros of

eigenfunctions corresponding to the eigenvalue λDn,j0 for the operator
A1:

xkn,j = kπ
n− 1

2

+ 1

2(n− 1
2)

2

[∫ kπ
n

0
qj(t)dt− 2cj0,0

kπ
n− 1

2

]
+ o

(
1
n2

)
.

Thus, the formula (3.9) has the following form

lim
n→∞

2

(
n− 1

2

)[(
n− 1

2

)
xkn,j − kπ

]
:= hj(x)

and

hj(x) =
∫ x

0
qj(t)dt− 2cj0,0x.

And the reconstruction formula (3.11) has the following form

qj(x)−
1

π

∫ x

0

qj(t)dt = h′j(x)−
hj(π)

π
.

Let us now formulate a uniqueness theorem and provide a construc-
tive procedure for the solution of the inverse nodal problem.

Theorem 3.3. Fix j ∈ {1, 2, · · · , d} and x ∈ [0, π]. Let X1,0
j ⊂ X1

j be

a subset of nodal points which is dense in (0, π). Let {xkn,j} ⊂ X1,0
j be

dense in (0, π) so that there exists k = k(n) such that limn→∞ x
k(n)
n,j =

x. Then, the specification of X1,0
j uniquely determines the potential
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qj(x) − q̄ in (0, π). The potential qj(x) − q̄ can be constructed via the
following algorithm:

(1) for each x ∈ [0, π] choose a sequence {xkn,j} ⊂ X1,0
j such that

xkn,j → x as n→ ∞;
(2) find the function gj(x) via (3.9) and from (3.10) calculate

qj(x)− q̄ = g′j(x). (3.11)

Similarly, we take λn = λNn,d and study the operator A2.
Using (3.4), we get the asymptotics for the components ψj(λn, x) of

eigenfunctions, for n→ ∞ uniformly in x ∈ [0, π]:

ψj(λn, x) = cos(ρnx) +
sin(ρnx)K̃j(x,x)

ρn
+ o

(
1
n

)
= cos(n− 1

2
)x+

∫ x
0 qj(x)−q̄x

2n
sin(n− 1

2
)x+ o

(
1
n

)
, ρn :=

√
λn.

For a fixed n and j, we estimate the nodal point xkn,j of the eigen-
function ψj(λn, x). From

0 = cos(n− 1

2
)x+

∫ x

0
qj(x)− q̄x

2n
sin(n− 1

2
)x+ o

(
1

n

)
,

we obtain

cot(n− 1

2
)x =

q̄x−
∫ x

0
qj(x)

2n
+ o

(
1

n

)
. (3.12)

Using Taylor’s expansions, we obtain the following asymptotic formulae
for nodal points, as n→ ∞ uniformly in k ∈ N:

xkn,j =
(k+ 1

2
)π

n− 1
2

+ 1
2n2

[∫ xk
n,j

0 qj(t)dt− q̄xkn,j

]
+ o

(
1
n2

)
=

(k+ 1
2
)π

n− 1
2

+ 1
2n2

∫ (k+1
2 )π

n− 1
2

0 qj(t)dt− q̄
(k+ 1

2
)π

n− 1
2

+ o
(

1
n2

)
.

(3.13)

The equality (3.13) gives

xk+1
n,j − xkn,j := lkn,j =

π

n
+ o(1), n→ ∞,

uniformly with respect to k. For k = 0, 1, · · · , n, the formula (3.7)
gives

x0n,j =
1
2
π

n− 1
2

+O
(

1
n2

)
, x1n,j =

3
2
π

n− 1
2

+O
(

1
n2

)
, · · · ,

xn−1
n,j =

(n− 1
2
)π

n
+O

(
1
n2

)
, xnn,j =

(n+ 1
2
)π

n
+O

(
1
n2

)
.

For a fixed j ∈ {1, 2, · · · , d}. The points X2
j := {xkn,j} are called

nodal points on the edge ej related to the eigenvalues {λn}. Thus,
according to the order of xkn,j, for large n, the components φj(λn, x) of
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eigenfunctions has exactly n nodes in the interval (0, π), i.e., xkn,j, k =

1, n.

Corollary 3.4. The sets X2
j = {xkn,j} is dense in [0, π], where xkn,j is

defined by (3.13).

Using (3.13) we arrive at the following assertions.

Theorem 3.5. Fix j ∈ {1, 2, · · · , d} and x ∈ [0, π]. Let {xkn,j} ⊂ X2
j be

dense in (0, π) so that there exists k = k(n) such that limn→∞ x
k(n)
n,j = x.

Then the following finite limit exists and the corresponding equality
holds.

lim
n→∞

2n

[
(n− 1

2
)xkn,j − (k +

1

2
)π

]
:= fj(x), (3.14)

and

fj(x) =
∫ x

0
qj(t)dt− q̄x. (3.15)

Theorem 3.6. Fix j ∈ {1, 2, · · · , d} and x ∈ [0, π]. Let X2,0
j ⊂ X2

j be

a subset of nodal points which is dense in (0, π). Let {xkn,j} ⊂ X2,0
j be

dense in (0, π) so that there exists k = k(n) such that limn→∞ x
k(n)
n,j =

x. Then, the specification of X2,0
j uniquely determines the potential

qj(x) − q̄ in (0, π). The potential qj(x) − q̄ can be constructed via the
following algorithm:

(1) for each x ∈ [0, π] choose a sequence {xkn,j} ⊂ X2,0
j such that

xkn,j → x as n→ ∞;
(2) find the function fj(x) via (3.14) and from (3.15) calculate

qj(x)− q̄ = f ′
j(x). (3.16)

4. Incomplete inverse problems

Together with Ai we consider a boundary value problem Ãi of the
same form (2.1)–(2.5) with the potential functions q̃1(x), · · · , q̃d(x). We
agree that if a certain symbol δ denotes an object related to Ai, then

δ̃ will denote an analogous object related to Ãi.
Now we give the following incomplete inverse spectral problem. Sup-

pose that qk(x) are known a priori for k ∈ {1, 2, · · · , d}\{j}, x ∈ (0, π).
Moreover, suppose that qj(x) is known on a part of the interval, namely,
for x ∈ (b, π). The inverse problem is to construct qj(x) for x ∈ (0, b)
from a part of the spectrum for the operator Ai. Denote by σ

i
k (i = 1, 2)

the spectrum of the boundary value problem

−y′′k(x) + qk(x)yk(x) = λyk(x), y
(i−1)
k (0) = 0 = y′k(π).
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Theorem 4.1. Fix j ∈ {1, 2, · · · , d} and b ∈ (0, π
2
). Let qk(x) are

known a priori for k ∈ {1, 2, · · · , d} \ {j}, x ∈ (0, π) and qj(x) = q̃j(x)
on (b, π). Let Λ ⊂ N be a subset of positive integer numbers, and
suppose Ω := {λn}n∈Λ is a part of the spectrum for the operator Ai such
that σi

k ∩Ω = ∅, k ∈ {1, 2, · · · , d} \ {j} and the system of the functions

{cos 2
√
λnx}n∈Λ is complete in L2(0, b). If Ω = Ω̃, then qj(x) = q̃j(x)

on (0, π).

Proof. Here we only need prove that Theorem 4.1 is true for the oper-
ator A1. Since

−φ′′
j (λ, x) + qj(x)φj(λ, x) = λφj(λ, x),

−φ̃′′
j (λ, x) + q̃j(x)φ̃j(λ, x) = λφ̃j(λ, x),

φj(λ, 0) = φ̃j(λ, 0) = 0, φ′
j(λ, 0) = φ̃′

j(λ, 0) = 1,

from the boundary conditions (2.2) it follows that∫ π

0

Qj(x)φj(λ, x)φ̃j(λ, x)dx=φ
′
j(λ, π)φ̃j(λ, π)−φj(λ, π)φ̃

′
j(λ, π), (4.1)

where Qj(x) = qj(x)− q̃j(x). Moreover,

φk(λ, x) = φ̃k(λ, x), φ
′
k(λ, x) = φ̃′

k(λ, x), k ∈ {1, 2, · · · , d}\{j}, (4.2)

since for k ∈ {1, 2, · · · , d} \ {j}, qk(x) = q̃k(x) on (0, π). Clearly,
φ′
k(λn, π) = φ̃′

k(λn, π) ̸= 0 for k ∈ {1, 2, · · · , d} \ {j} since σ1
k ∩ Ω = ∅.

Using the boundary conditions (2.4) and (2.5) we obtain

d∑
k=1

φk(λn, π)

φ′
k(λn, π)

= 0,
d∑

k=1

φ̃k(λn, π)

φ̃′
k(λn, π)

= 0. (4.3)

From (4.2) and (4.3) it follows that(in details, refer (3.12)–(3.15) in
[38])

φj(λn, π)

φ′
j(λn, π)

=
φ̃j(λn, π)

φ̃′
j(λn, π)

, λn ∈ Ω. (4.4)

Using (4.1) and qj(x) = q̃j(x) on (b, π) we obtain∫ b

0

Qj(x)φj(λn, x)φ̃j(λn, x)dx = 0, λn ∈ Ω. (4.5)

Since φj(λ, x) is the solution of the equation (2.1) satisfying the ini-
tial conditions φj(λ, 0) = 0 and φ′

j(λ, 0) = 1, there exists a bounded
function Kj(x, t) (independent of λ) such that [15]

ρ2φj(λ, x)φ̃j(λ, x) =
1

2
− 1

2
cos(2ρx)− 1

2

∫ x

0

Kj(x, t) cos(2ρt)dt, (4.6)
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where ρ2 = λ. Substituting (4.6) into (4.5) and using the Riemann-
Lebesgue Lemma, we obtain∫ b

0

Qj(x)dx = 0

and∫ b

0

[Qj(x) +

∫ b

x

Kj(x, t)Qj(t)dt] cos 2
√
λnxdx = 0, λn ∈ Ω, (4.7)

and consequently,

Qj(x) +

∫ b

x

Kj(x, t)Qj(t)dt = 0 a.e. on (0, b). (4.8)

But this homogeneous Volterra integral equation has only the trivial
solution it follows that Qj(x) = 0 a.e. on (0, b), i.e., qj(x) = q̃j(x) on
x ∈ [0, b]. The proof is finished. �

For X i,0
j ⊂ X i

j, the set X i,0
j is called twin if together with each of

its point xkn,j, the set X i,0
j contains at least one of adjacent nodal xk−1

nj

or/and xk+1
n,j . For X i,0

j ⊂ X i
j we denote ΛXi,0

j
:= {m(n) : ∃k, xkm(n),j ∈

X i,0
j }, where m(n) is a sequence of natural numbers.

Theorem 4.2. Fix j ∈ {1, 2, · · · , d} and b ∈ (0, π
2
). Let qk(x) = q̃k(x)

on x ∈ (0, π) for k ∈ {1, 2, · · · , d} \ {j}. Let X i,0
j ⊂ X i

j

∩
(b, π) be a

dense on (b, π) twin subset of nodal points such that

σi
k ∩ {λm(n)}m(n)∈Λ

X
i,0
j

= ∅, k ∈ {1, 2, · · · , d} \ {j}

and the system of the functions {cos(2
√
λm(n)x)}m(n)∈Λ

X
i,0
j

is complete

in L2(0, b). If X i,0
j = X̃ i,0

j and q = q̃, then qj(x) = q̃j(x) on (0, π).

Proof. To prove this theorem we need a result [10, 37, 41]: Fix n, j,
k, let xkn,j = x̃knj, x

k+1
n,j = x̃k+1

nj , and qj(x) = q̃j(x) on (xkn,j, x
k+1
n,j ). Then

λn = λ̃n.
Since X i,0

j = X̃ i,0
j , it follows from Theorems 3.3 and 3.6 that gj(x) =

g̃j(x) or fj(x) = f̃j(x) for x ∈ (b, π). Using (3.11) and (3.16) we obtain

qj(x) = q̃j(x) on (b, π). Thus, we have λm(n) = λ̃m(n) for m(n) ∈ ΛXi,0
j
.

Applying Theorem 4.1 we conclude that qj(x) = q̃j(x) on (0, π). �

Theorem 4.3. Fix j ∈ {1, 2, · · · , d} and b ∈ (0, π
2
). Let qk(x) = q̃k(x)

on x ∈ (0, π) for k ∈ {1, 2, · · · , d} \ {j}. Let X i,0
j ⊂ X i

j

∩
(b, π) be a
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dense on (b, π) twin subset of nodal points such that

σi
k ∩ {λm(n)}m(n)∈Λ

X
i,0
j

= ∅, k ∈ {1, 2, · · · , d} \ {j}

and m(n) be a sequence of natural numbers such that

m(n) =
n

σ
(1 + ϵn), 0 < σ ≤ 1, ϵn → 0. (4.9)

If X i,0
j = X̃ i,0

j , q = q̃ and σ > 2b
π
, then qj(x) = q̃j(x) on (0, π).

Proof. Here we only need prove that Theorem 4.1 is true for the op-

erator A1. First, by the assumption X i,0
j = X̃ i,0

j and Theorem 3.3 we
obtain

qj(x) = q̃j(x) on (b, π).

Together with a result [10, 37, 41](see the proof of Theorem 4.2), we

have λm(n) = λ̃m(n) for m(n) ∈ ΛXi,0
j
.

Since

−φ′′
j (λ, x) + qj(x)φj(λ, x) = λφj(λ, x),

−φ̃′′
j (λ, x) + q̃j(x)φ̃j(λ, x) = λφ̃j(λ, x),

φj(λ, 0) = φ̃j(λ, 0) = 0, φ′
j(λ, 0) = φ̃′

j(λ, 0) = 1,

it follows that

G(ρ) : =
∫ b

0
Qj(x)2φj(λ, x)φ̃j(λ, x)dx

= φ′
j(λ, π)φ̃j(λ, π)− φj(λ, π)φ̃

′
j(λ, π), ρ =

√
λ,

(4.10)

where Qj(x) = qj(x)−q̃j(x). Using the method in the proof of Theorem
4.1, from (4.10) we obtain

G(sm(n)) = 0, sm(n) =
√
λm(n). (4.11)

Next, we will show that G(ρ) = 0 on the whole ρ-plane.
From (4.6) we see that the entire function G(ρ) is a function of

exponential type ≤ 2b. One has

|G(ρ)| ≤ Ce2br| sin θ| (4.12)

for some positive constant C, ρ =
√
λ = reiθ.

Define an indicator of the function G(ρ) by

h(θ) = lim sup
r→∞

ln|G(reiθ)|
r

. (4.13)

Since |Im
√
λ| = r| sin θ|, θ = arg

√
λ, from (4.12) and (4.13) one obtains

the following estimate

h(θ) ≤ 2b| sin θ|. (4.14)
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It is known [27] that for any entire function G(ρ) of exponential type,
not identically zero, one has

lim inf
r→∞

n(r)

r
≤ 1

2π

∫ 2π

0

h(θ)dθ, (4.15)

where n(r) is the number of zeros of G(ρ) in the disk |ρ| ≤ r. By (4.14),

1

2π

∫ 2π

0

h(θ)dθ ≤ b

π

∫ 2π

0

| sin θ|dθ = 4b

π
. (4.16)

From the known asymptotic expression (2.7) of the eigenvalues λn, for
the number of zeros of G(ρ) in the disk |ρ| ≤ r we have the estimate

n(r) ≥ 2
∑

n
σ
(1+o(1))<r

1 = 2σr[1 + o(1)], r → ∞. (4.17)

Since σ >
2b

π
, we get

lim
n→∞

n(r)

r
≥ 2σ >

4b

π
≥ 1

2π

∫ 2π

0

h(θ)dθ. (4.18)

Thus, inequalities (4.15) and (4.18) imply that G(ρ) ≡ 0 on the whole
ρ-plane.

Repeating the proof of Theorem 4.1, we have

Qj(x) = 0, x ∈ [0, b],

i.e.,
qj(x) = q̃j(x) on x ∈ [0, b].

The proof is completed. �
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