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INTEGRAL PROPERTIES OF CERTAIN CLASSES OF
MULTIVALENT ANALYTIC FUNCTIONS WITH COMPLEX ORDER

TARIQ O. SALIM

Abstract. In the present paper, the generalized Komatu integral operator and the general-
ized Jung-Kim-Srivastava integral operator are applied to study the integral properties of
two subclasses of analytic and p—valent functions of complex order. Some special cases
(known or new) of the main theorems are indicated.

1. Introduction

Let Ap(n) denote the class of functions of the form
o k
f@=2- ) az", (ap=0;n,peN) (1.1)
k=n+p
that are analytic and p—valent in the open unitdisk U ={z:z€ C,| z |< 1}.
Differentiating both sides of (1.1) m—times with respect to z, we get

p! © K

7 op-m_
(p—m)n" k:%p (k- m)!

i (z) = apzk—m (1.2)

where n,peN, meNy=NU{0}; p>m.

Now, let us recall the subclasses R ﬁym (A, b) and Lg,m (A, b) introduced and studied recently
by Srivastava and Orhan [7] and Giiney and Breaz [1], which consists of functions f(z) belong-
ing to A, (n) and satisfying the inequality, respectively:

1 (1+m) Az2 f@+m)
’_( ZfUHM (2) + 122 M) () (- )) <1 (1.3)
b\ AzfA+m(z)+ (1 - 1) fM (2)

and 1
E(f(1+m)(Z)+/1Zf(2+M)(Z)_(P_m)) <p_m' (].4)

where ze U; peN, meNy; p>m;0<A<1andbeC\{0}.
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Srivastava and Orhan [7] (see, e.g. Giiney and Breaz [1]) proved the following lemmas, in
which coefficient inequalities are given as necessary and sufficient conditions for functions
f(z) € Ap(n) to belong to the classes Rﬁym(ﬂt, b) and Lﬁym(/l, b).

Lemma 1.1. Let f(z) € Ay(n) be given by (1.1). Then f(z) € Rﬁym(ﬂt, b) ifand only if

(k+Ibl-p) klAk—m—1) +1] DI p! [AMp—-m—1)+1]

T ay < o . (1.5)

2
k=n+p
Lemma 1.2. Let f(z) € Ay(n) be given by (1.1). Then f(z) € LZ,m(/l, b) if and only if

Y (k)(k mAMk-m-1D+1lai<(p-m)
k=n+p m

|b| -
(1.6)

(m) [Ap-m-1)+1]

The generalized Komatu integral operator [4], P‘Z p+ Ap(n) — Ap(n) and the generalized
Jung-Kim-Srivastava integral operator [2], Q‘Zyp : Ap(n) — Ap(n) (see,e.g. [3] and [6]) are de-
fined for6 >0and c> —p as

(c+ p) se-1 z 6-1
P, f(z) = e (logt) fde (L.7)
and
_ z 6-1
Q0 ,f(2) = orctp l)if tc‘l(l—f) fodt (1.8)
’ c+p-1 |zJo z

Note that for functions f(z) € A, (n) of the form (1.1), we have

S (etpy
po =zP - 1.
opf(2) =2 k:%p(c-i-k) aiz (1.9
and - (c+p)
0 =2zP - DR g R 1.10
Qpfle)=2 k:;rp (c+p+6)k_pakz (1.10)
where
) Te+k |1, (k=0,0€C\{0})
T  \ow+D--0+n-1), (k=neN,oeC)

is the Pochhammer symbol of the extended factorial function.

Now, let us define the integral operator Hg ’;f 1 Ap(n) — Ap(n) by
H(z) = HOb f(2) = uPS, f(2) + (1 - QS , f(2)

(7 1 P z\0-1 T(c+p+9) |01
_fo T')z° pletp) (log;) -4 I'(c+p) (1__)

] fdr (1.11)
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for6>0, c>-p, peNandO<spu<1.
Hence, in view of (1.9) and (1.10), for functions f(z) € A,(n) of the form (1.1), we have

& c+p\o (c+Pli-p k
H(z) = zP — 24 1-y)—M 7 1.12
(2) =z Ky /J(C+k) T )(c+p+5)k_p P2 ( )

Motivated by the recent investigations by Sdldgean [5] and Giiney and Breaz [1] and oth-
ers, the main object of the present investigation is to establish integral properties of ana-
lytic p—valently functions with negative coefficients and with complex order belonging to the
classes Rﬁym(ﬂt, b) and Lﬁym(ﬂt, b).

2. Integral properties of the class Rﬁy mA, b)

We begin by proving the following Lemma which is needed to proceed in proving the

main theorems.

Lemma 2.1. Let

_ B c+p\d (c+Pli-p
Bi. = B(k,c, p, 1, 0) = [“(m) NSy v @1

fork=zn+p, >0, c>—-p, peNandO0< p<1. Then By, is a decreasing function of k, and

Bis1<Br<Buip<l. 2.2)

Proof. Since k=n+p = pfor neN, then

ctp _ctp__ctp

< < <1,
c+k+1 c+k c+n+p
and
(c+Pliri-p  (c+plip c+k - (c+Pli-p __(c+phn
C+p+0)ks1—p (C+p+8ip_pc+k+8  (c+p+8)i_p (c+p+8),
which yields (2.2). O

Now we prove

Theorem 2.2. If f(z) € R} ,,(A, b), then H(z) € R, ,,(A,y), where

_ n|b|Bn+p
741D Byyp)’

lyl (2.3)

and |y| < |b|, provided that p,ne NymeNy, 6 >0, beC\{0}, ¢c>—-p, 0su<1, 0<sA<l
and By p is given by (2.1). The result is sharp.
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Proof. From Lemma (1.1) and (1.12), H(z) € Rﬁym()t,y) if and only if

i (k+|y|-p)k(p - m)! Ak —m—1) +1]
kimep  Ge=m)lly|[p! [A(p—m—1)+1]

Now for k = n + p, the inequality

(k+|y| = p) ki(p — ) Ak — m=1) +1]
(k—m)!|y|p![A(p—m—1)+1]

By

_ (k+Ibl-p)kl(p—m)!Ak—m—1)+1]
— (k=m)bIp[A(p-m—-1)+1]

implies (2.4), since f € Rﬁym(/l, b) and satisfies (1.5). Hence

(k+]y]-p) B _ (k+1bl-p)

7| ||

which yields
|Y|> (k_p)|b|Bk
~ (k=p)+Ibl(1-By)

Now, we show that |y| is a decreasing function of k, k= n+ p. Indeed, let

(k—p)Ibl Bk

h(k) =
(k—p)+1bI(1-By)

So, in view of Lemma (2.1), we have

(k+1-p)IbIBa  (k=p)IbIByg
(k+1-p)+Ibl(1-Bks1) (k—p)+Ibl(1-By)

h(k+1)—h(k) =

_ (k+1-p) (k=p)|BI(Bis1=Bi)+(k+1=p) bI* Bs1 (1= Bi) = (k= p) |b* B 1~ Bei1)

Brayp < 1.

[(k+1=p)+1BI(1—Bgs D] [(k—p) +IbI(1-By)]

_ (k+1-p)(k—p)Ibl(Bxr1—Bi) + (k+1-p) |bI? (Bis1 — By

[(k+1-p)+Ibl(1 - B+ [(k—p)+ bl (1-By)]

<0.

So h(k) is a decreasing function of k and we have

ly(p. ke, b, 8)| < |y| = |y(p.p+n,c.bpd; k=n+p.

Thus (2.3) is proved, and in view of Lemma (2.1), By, p < 1 directly implies |y| <|b|.

Now , the result is sharp because

HOS (fo) = fy

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9
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where bl 1 D1
Fol2) = 2P - [blptin+p=mAp—m=-D+1]  ,p 2.10)
(p—-m)ln+p)ln+|bDA(p—m—-1)+1]
and A
(n+p- —m-1)+1
flz)= b - y[pln+p-mMp-m-D+1l 211
(p-mln+p)ln+|yDAp-m-1)+1]
are extremal functions of Rs' n(A, b) and Rﬁym(ﬂt,y), respectively.
Indeed, we have
S, _.p |Iblp!n+p-m)[AM(p—m—-1)+1] n+p
H =z - B 2.12
ap D) &) = &+ P+ 1BDA(p —m — 1) + 1] 2P ®12)
Thus in comparison with (2.11), we deduce
|| ||
= — 2.13
n+|)/| n+|b| n+p ( )
which implies (2.8). O

Setting 1 =1 and p = 0, respectively in Theorem (2.2), we get the following corollaries:
Corollary2.3. If f(z) € Rg,m(/l, b), then ngf(z) € Rg,m(ﬂ,)q), where

n|bl(c+ p)°
n(c+n+p)?+1bl[(c+n+p?—(c+p)?]

ly1] = 2.14)

and |y1| < |bl, provided that p,ne NymeNy, 6 >0, beC\{0}, c>—-pand0<A<1. The

result is sharp.
Corollary2.4. If f(z) € Rg,m(/l, b), then Qf’pf(z) € Rg,m(/l, Y2), where

n|bl(c+ p)n
n(c+p+6),+1bl[(c+p+8n—(c+p)u]

|v2| = (2.15)
and |y»| < |bl, provided that p,ne NymeNy, 6 >0, beC\{0}, c>—-pand0<A<1. The

result is sharp.

Setting 6 = 1 in either (2.14) or (2.15), we get the result recently obtained by Giiney and
Breaz [1, Theorem 1]. Also, if we putd =1, p=1, m=0, b=1-a and y =1 - 3, we obtain
the result established by Séldgean [5]. Several special cases can be obtained by specifying the

parameters in Theorem (2.2).
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3. Integral properties of the class Lz, mA, D)

Theorem 3.1. If f(z) € Lﬁym(/l, b), then H(z) € LZ’m()L, B), where

!
8| = (161 = 1) By p + %m)‘ [Ap-m-1)+1] (Buyp—1)+1 3.1)

(p

and || < |bl, provided thatp,ne N,meNy 6§ >0, be C\{0}, c>—-p, O0spu<1, 0sA<land
B+ p is given by (2.1). The result is sharp.

Proof. Following similar steps to that in the proof of Theorem (2.2), we can get the result [
Setting 1 =1 and p = 0, respectively in Theorem 3.1, we get the following corollaries:

Corollary 3.2. If f(z) € Lﬁ,m(ﬂt, b), then ngf(z) € LZ,m(/l,,Bﬂ, where

6 5

+ ! +

|,51|=(|b|—1)( °rp ) L Ap-m-1+1] (i) ~1]+1 3.2)
c+n+p (p—m)! c+n+p

and |B1| < |b|, provided that p,n e NymeNy, 6 >0, beC\{0}, c>—-pand0<A<1. The

result is sharp.
Corollary3.3. If f(z) € LZ’m()L, b), then Q‘Z’ pf(2) € LZ’m(A, B2), where

(c+pn

(c+pn N p!
(c+p+0)n

|ﬁ2|:('b'_”(c+p+6)n (p—m)!

[A(p-m-1)+1]

— 1) +1 (3.3)

and | B2| < |bl, provided that pn e N,meNy, 6 >0, beC\{0}, c>-pand0<A<1. The
result is sharp.

Setting 0 = 1 in either (3.2) or (3.3), we get the result recently obtained by Giiney and
Breaz [1, Theorem 2]. More particular results can be obtained by specifying the parameters in
Theorem 3.1.
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