TAMKANG JOURNAL OF MATHEMATICS Volume 38, Number 3, 253-259, Autumn 2007

NEW OSTROWSKI TYPE INEQUALITY FOR TRIPLE INTEGRALS

B. G. PACHPATTE

Abstract. The main aim of this paper is to establish a new Ostrowski type inequality for triple integrals by using a fairly elementary analysis. The discrete version of the result is also given.

1. Introduction

The well known Ostrowski's inequality [7] can be stated as follows (see slso [6, p.469]).

Let $f : [a, b] \to R$ be continuous on [a, b] and differentiable on (a, b) whose derivative $f' : (a, b) \to R$ is bounded on (a, b) i.e., $\|f'\|_{\infty} = \sup_{t \in (a, b)} |f'(t)| < \infty$, then

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right| \leq \left[\frac{1}{4} + \frac{\left(x - \frac{a+b}{2}\right)^{2}}{\left(b-a\right)^{2}} \right] \left(b-a\right) \left\| f' \right\|_{\infty},$$
(1.1)

for all $x \in [a, b]$.

In 2000, Pachpatte [8] obtained the following Ostrowski type inequality for triple integrals.

Let $\Delta = [a, k] \times [b, m] \times [c, n]$ for a, b, c, k, m, n in R_+ and f(r, s, t) be differentiable on Δ . Denote the partial derivatives by $D_1 f(r, s, t) = \frac{\partial}{\partial r} f(r, s, t), D_2 f(r, s, t) = \frac{\partial}{\partial s} f(r, s, t), D_3 f(r, s, t) = \frac{\partial}{\partial t} f(r, s, t)$ and $D_3 D_2 D_1 f(r, s, t) = \frac{\partial^3}{\partial t \partial s \partial r} f(r, s, t)$. Let $F(\Delta)$ be the class of continuous functions $f: \Delta \to R$ for which $D_1 f, D_2 f, D_3 f, D_3 D_2 D_1 f$ exist and are continuous on Δ . For $f \in F(\Delta)$ we have

$$\int_{a}^{k} \int_{b}^{m} \int_{c}^{n} f(r, s, t) dt ds dr - \frac{1}{8} (k - a) (m - b) (n - c) [f(a, b, c) + f(k, m, n)]$$

+ $\frac{1}{4} (m - b) (n - c) \int_{a}^{k} [f(r, b, c) + f(r, m, n) + f(r, m, c) + f(r, b, n)] dr$
+ $\frac{1}{4} (k - a) (n - c) \int_{b}^{m} [f(a, s, c) + f(k, s, n) + f(a, s, n) + f(k, s, c)] ds$

Received November 22, 2005.

2000 Mathematics Subject Classification. 26D15, 26D20.

Key words and phrases. Ostrowski type inequality, triple integrals, discrete version, partial derivatives, difference operators, identity.

B. G. PACHPATTE

$$+ \frac{1}{4} (k-a) (m-b) \int_{c}^{n} [f(a,b,t) + f(k,m,t) + f(k,b,t) + f(a,m,t)] dt - \frac{1}{2} (k-a) \int_{b}^{m} \int_{c}^{n} [f(a,s,t) + f(k,s,t)] dt ds - \frac{1}{2} (m-b) \int_{a}^{k} \int_{c}^{n} [f(r,b,t) + f(r,m,t)] dt dr - \frac{1}{2} (n-c) \int_{a}^{k} \int_{b}^{m} [f(r,s,c) + f(r,s,n)] ds dr | \leq \frac{1}{8} (k-a) (m-b) (n-c) \int_{a}^{k} \int_{b}^{m} \int_{c}^{n} |D_{3}D_{2}D_{1}f(r,s,t)| dt ds dr.$$
(1.2)

In [8], the inequality (1.2) and its discrete version are established by using elementary analysis. In [13] Sofo has given a refinement of the inequality (1.2) by using Peano kernels. For Ostrowski type inequalities in several independent variables, we refer the interested readers to [1-5, 9-12]. The main purpose of the present paper is to establish a new Ostrowski type inequality involving functions of three independent variables and their partial derivatives. The discrete version of the main result is also given.

2. Statement of Results

In what follows R denotes the set of real numbers. We use the notation $H = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3]$ $(a_1 < b_1, a_2 < b_2, a_3 < b_3)$ for $a_1, a_2, a_3, b_1, b_2, b_3$ in R. If h = h(r, s, t) is a differentiable function defined on H, then its partial derivatives are denoted by $D_1h = \frac{\partial}{\partial r}h$, $D_2h = \frac{\partial}{\partial s}h$, $D_3h = \frac{\partial}{\partial t}h$, $D_1D_2h = \frac{\partial^2}{\partial r\partial s}h$, $D_2D_3h = \frac{\partial^2}{\partial s\partial t}h$, $D_3D_1h = \frac{\partial^2}{\partial t\partial \sigma}h$, and $D_3D_2D_1h = \frac{\partial^3}{\partial t\partial s\partial \sigma}h$. We denote by F(H) the class of continuous functions $h : H \to R$ for which D_1h , D_2h , D_3h , D_1D_2h , D_2D_3h , D_3D_1h , $D_3D_2D_1h$ exist and are continuous on H. Let N denote the set of natural numbers, $A = \{1, 2, \ldots, a + 1\}$, $B = \{1, 2, \ldots, b + 1\}$, $C = \{1, 2, \ldots, c + 1\}$ for a, b, c in N and $E = A \times B \times C$. For a function $h = h(x, y, z) : N^3 \to R$ we define the difference operators $\Delta_1h = h(x + 1, y, z) - h(x, y, z)$, $\Delta_2h = h(x, y + 1, z) - h(x, y, z)$, $\Delta_3h = h(x, y, z + 1) - h(x, y, z)$, $\Delta_1\Delta_2h = \Delta_1(\Delta_2h)$, $\Delta_2\Delta_3h = \Delta_2(\Delta_3h)$, $\Delta_3\Delta_1h = \Delta_3(\Delta_1h)$, $\Delta_3\Delta_2\Delta_1h = \Delta_3(\Delta_2\Delta_1h)$. We denote by G(E) the class of functions $h = h(x, y, z) : E \to R$ for which Δ_1h , Δ_2h , Δ_3h , $\Delta_1\Delta_2h$, $\Delta_2\Delta_3h$, $\Delta_3\Delta_1h$, $\Delta_3\Delta_2\Delta_1h$ exist on E. We assume that h(x, y, z) = 0 for $(x, y, z) \notin E$ and also use the usual convention that, empty sum is taken to be 0.

Our main result is given in the following theorem.

Theorem 1. Let $f \in F(H)$. Then

$$\left| f(x,y,z) - \left[\frac{1}{b_1 - a_1} \int_{a_1}^{b_1} f(r,y,z) \, dr + \frac{1}{b_2 - a_2} \int_{a_2}^{b_2} f(x,s,z) \, ds \right. \right|$$

$$\begin{aligned} &+ \frac{1}{b_{3} - a_{3}} \int_{a_{3}}^{b_{3}} f\left(x, y, t\right) dt \Big] \\ &+ \Big[\frac{1}{(b_{1} - a_{1})(b_{2} - a_{2})} \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} f\left(r, s, z\right) ds dr \\ &+ \frac{1}{(b_{1} - a_{1})(b_{3} - a_{3})} \int_{a_{1}}^{b_{1}} \int_{a_{3}}^{b_{3}} f\left(r, y, t\right) dt dr \\ &+ \frac{1}{(b_{2} - a_{2})(b_{3} - a_{3})} \int_{a_{2}}^{b_{2}} \int_{a_{3}}^{b_{3}} f\left(x, s, t\right) dt ds \Big] \\ &- \frac{1}{(b_{1} - a_{1})(b_{2} - a_{2})(b_{3} - a_{3})} \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \int_{a_{3}}^{b_{3}} f\left(r, s, t\right) dt ds dr \Big| \\ &\leq \frac{1}{(b_{1} - a_{1})(b_{2} - a_{2})(b_{3} - a_{3})} \\ &\times \int_{a_{1}}^{b_{1}} \int_{a_{2}}^{b_{2}} \int_{a_{3}}^{b_{3}} \left| \int_{r}^{x} \int_{s}^{y} \int_{t}^{z} D_{3} D_{2} D_{1} f\left(u, v, w\right) dw dv du \Big| dt ds dr, \end{aligned}$$
(2.1)

for all $(x, y, z) \in H$.

The following Corollary holds.

$$\begin{aligned} & \text{Corollary. Let } f \ be \ as \ in \ Theorem \ 1. \ Then} \\ & \left| f\left(\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}, \frac{a_3+b_3}{2}\right) - \left[\frac{1}{b_1-a_1} \int_{a_1}^{b_1} f\left(r, \frac{a_2+b_2}{2}, \frac{a_3+b_3}{2}\right) dr \right. \\ & \left. + \frac{1}{b_2-a_2} \int_{a_2}^{b_2} f\left(\frac{a_1+b_1}{2}, s, \frac{a_3+b_3}{2}\right) ds + \frac{1}{b_3-a_3} \int_{a_3}^{b_3} f\left(\frac{a_1+b_1}{2}, \frac{a_2+b_2}{2}, t\right) dt \right] \\ & \left. + \left[\frac{1}{(b_1-a_1)(b_2-a_2)} \int_{a_1}^{b_1} \int_{a_2}^{b_2} f\left(r, s, \frac{a_3+b_3}{2}\right) ds dr \right. \\ & \left. + \frac{1}{(b_1-a_1)(b_3-a_3)} \int_{a_1}^{b_1} \int_{a_3}^{b_3} f\left(r, \frac{a_2+b_2}{2}, t\right) dt dr \\ & \left. + \frac{1}{(b_2-a_2)(b_3-a_3)} \int_{a_2}^{b_2} \int_{a_3}^{b_3} f\left(\frac{a_1+b_1}{2}, s, t\right) dt ds \right] \\ & \left. - \frac{1}{(b_1-a_1)(b_2-a_2)(b_3-a_3)} \int_{a_1}^{b_1} \int_{a_2}^{b_2} \int_{a_3}^{b_3} f\left(r, s, t\right) dt ds dr \right| \\ & \leq \frac{(b_1-a_1)(b_2-a_2)(b_3-a_3)}{64} \|D_3D_2D_1f\|_{\infty} \,, \end{aligned}$$

where

$$||D_3 D_2 D_1 f||_{\infty} = \sup_{(u,v,w) \in H} |D_3 D_2 D_1 f(u,v,w)| < \infty.$$

By taking $x = \frac{a_1+b_1}{2}$, $y = \frac{a_2+b_2}{2}$, $z = \frac{a_3+b_3}{2}$ in (2.1) and simple computation, we get the desired inequality in (2.2).

B. G. PACHPATTE

The discrete version of Theorem 1 is embodied in the following theorem.

Theorem 2. Let $f \in G(E)$. Then

$$\left| f\left(k,m,n\right) - \left[\frac{1}{a} \sum_{r=1}^{a} f\left(r,m,n\right) + \frac{1}{b} \sum_{s=1}^{b} f\left(k,s,n\right) + \frac{1}{c} \sum_{t=1}^{c} f\left(k,m,t\right) \right] \right. \\ \left. + \left[\frac{1}{ab} \sum_{r=1}^{a} \sum_{s=1}^{b} f\left(r,s,n\right) + \frac{1}{ac} \sum_{r=1}^{a} \sum_{t=1}^{c} f\left(r,m,t\right) + \frac{1}{bc} \sum_{s=1}^{b} \sum_{t=1}^{c} f\left(k,s,t\right) \right] \right. \\ \left. - \frac{1}{abc} \sum_{r=1}^{a} \sum_{s=1}^{b} \sum_{t=1}^{c} f\left(r,s,t\right) \right| \\ \left. \leq \frac{1}{abc} \sum_{r=1}^{a} \sum_{s=1}^{b} \sum_{t=1}^{c} \left| \sum_{u=r}^{k-1} \sum_{v=s}^{m-1} \sum_{w=t}^{n-1} \Delta_{3} \Delta_{2} \Delta_{1} f\left(u,v,w\right) \right|,$$

$$(2.3)$$

for all $(k, m, n) \in E$.

3. Proof of Theorem 1

The proof is based on the following identity

$$I = f(x, y, z) - [f(r, y, z) + f(x, s, z) + f(x, y, t)] + [f(r, s, z) + f(r, y, t) + f(x, s, t)] - f(r, s, t),$$
(3.1)

for $(x, y, z), (r, s, t) \in H$, where

$$I = \int_{r}^{x} \int_{s}^{y} \int_{t}^{z} D_{3} D_{2} D_{1} f(u, v, w) \, dw dv du.$$
(3.2)

From (3.2) it is easy to observe that

$$I = \int_{r}^{x} \int_{s}^{y} D_{2}D_{1}f(u, v, z) \, dv du - \int_{r}^{x} \int_{s}^{y} D_{2}D_{1}f(u, v, t) \, dv du$$

= $I_{1} - I_{2}$. (3.3)

By simple computation we have

$$I_{1} = \int_{r}^{x} \int_{s}^{y} D_{2}D_{1}f(u, v, z) dv du$$

= $\int_{r}^{x} D_{1}f(u, y, z) du - \int_{r}^{x} D_{1}f(u, s, z) du$
= $f(x, y, z) - f(r, y, z) - f(x, s, z) + f(r, s, z)$. (3.4)

Similarly, we have

$$I_{2} = f(x, y, t) - f(r, y, t) - f(x, s, t) + f(r, s, t).$$
(3.5)

Using (3.4) and (3.5) in (3.3) we get (3.1).

Integrating both sides of (3.1) with respect to (r, s, t) over H and rewriting we get

$$f(x, y, z) - \left[\frac{1}{b_1 - a_1} \int_{a_1}^{b_1} f(r, y, z) dr + \frac{1}{b_2 - a_2} \int_{a_2}^{b_2} f(x, s, z) ds + \frac{1}{b_3 - a_3} \int_{a_3}^{b_3} f(x, y, t) dt\right] + \left[\frac{1}{b_1 - a_1} \int_{a_2}^{b_1} \int_{a_1}^{b_1} \int_{a_2}^{b_2} f(r, s, z) ds dr + \frac{1}{(b_1 - a_1)(b_2 - a_2)} \int_{a_1}^{b_1} \int_{a_3}^{b_3} f(r, y, t) dt dr + \frac{1}{(b_2 - a_2)(b_3 - a_3)} \int_{a_2}^{b_2} \int_{a_3}^{b_3} f(x, s, t) dt ds - \frac{1}{(b_1 - a_1)(b_2 - a_2)(b_3 - a_3)} \int_{a_1}^{b_1} \int_{a_2}^{b_2} \int_{a_3}^{b_3} f(r, s, t) dt ds dr\right] = \frac{1}{(b_1 - a_1)(b_2 - a_2)(b_3 - a_3)} \times \int_{a_1}^{b_1} \int_{a_2}^{b_2} \int_{a_3}^{b_3} \left\{ \int_r^x \int_s^y \int_t^z D_3 D_2 D_1 f(u, v, w) dw dv du \right\} dt ds dr, \qquad (3.6)$$

for $(x, y, z) \in H$. From (3.6) and using the properties of modulus and integrals, we get the desired inequality in (2.1). The proof is complete.

4. Proof of Theorem 2

We first prove the following identity

$$S = f(k, m, n) - [f(r, m, n) + f(k, s, n) + f(k, m, t)] + [f(r, s, n) + f(r, m, t) + f(k, s, t)] - f(r, s, t),$$
(4.1)

for $(k, m, n), (r, s, t) \in E$, where

$$S = \sum_{u=r}^{k-1} \sum_{v=s}^{m-1} \sum_{w=t}^{n-1} \Delta_3 \Delta_2 \Delta_1 f(u, v, w) \,. \tag{4.2}$$

From (4.2), by simple calculation we have

$$S = \sum_{u=r}^{k-1} \sum_{v=s}^{m-1} \left[\sum_{w=t}^{n-1} \left\{ \Delta_2 \Delta_1 f(u, v, w+1) - \Delta_2 \Delta_1 f(u, v, w) \right\} \right]$$
$$= \sum_{u=r}^{k-1} \sum_{v=s}^{m-1} \Delta_2 \Delta_1 f(u, v, n) - \sum_{u=r}^{k-1} \sum_{v=s}^{m-1} \Delta_2 \Delta_1 f(u, v, t)$$

B. G. PACHPATTE

$$=S_1 - S_2. (4.3)$$

By simple calculation we have

$$S_{1} = \sum_{u=r}^{k-1} \sum_{v=s}^{m-1} \Delta_{2} \Delta_{1} f(u, v, n)$$

$$= \sum_{u=r}^{k-1} \left[\sum_{v=s}^{m-1} \left\{ \Delta_{1} f(u, v+1, n) - \Delta_{1} f(u, v, n) \right\} \right]$$

$$= \sum_{u=r}^{k-1} \Delta_{1} f(u, m, n) - \sum_{u=r}^{k-1} \Delta_{1} f(u, s, n)$$

$$= \sum_{u=r}^{k-1} \left\{ f(u+1, m, n) - f(u, m, n) \right\} - \sum_{u=r}^{k-1} \left\{ f(u+1, s, n) - f(u, s, n) \right\}$$

$$= f(k, m, n) - f(r, m, n) - f(k, s, n) + f(r, s, n). \qquad (4.4)$$

Similarly, we have

$$S_2 = f(k, m, t) - f(r, m, t) - f(k, s, t) + f(r, s, t).$$
(4.5)

Using (4.4) and (4.5) in (4.3) we get (4.1).

Summing both sides of (4.1) first with respect to t from 1 to c, then with respect to s from 1 to b and finally with respect to r from 1 to a and rewriting we have

$$\begin{split} f\left(k,m,n\right) &- \left[\frac{1}{a}\sum_{r=1}^{a}f\left(r,m,n\right) + \frac{1}{b}\sum_{s=1}^{b}f\left(k,s,n\right) + \frac{1}{c}\sum_{t=1}^{c}f\left(k,m,t\right)\right] \\ &+ \left[\frac{1}{ab}\sum_{r=1}^{a}\sum_{s=1}^{b}f\left(r,s,n\right) + \frac{1}{ac}\sum_{r=1}^{a}\sum_{t=1}^{c}f\left(r,m,t\right) + \frac{1}{bc}\sum_{s=1}^{b}\sum_{t=1}^{c}f\left(k,s,t\right)\right] \\ &- \frac{1}{abc}\sum_{r=1}^{a}\sum_{s=1}^{b}\sum_{t=1}^{c}f\left(r,s,t\right) \\ &= \frac{1}{abc}\sum_{r=1}^{a}\sum_{s=1}^{b}\sum_{t=1}^{c}\left\{\sum_{u=r}^{k-1}\sum_{w=s}^{m-1}\sum_{w=t}^{n-1}\Delta_{3}\Delta_{2}\Delta_{1}f\left(u,v,w\right)\right\}, \end{split}$$
(4.6)

for all $(k, m, n) \in E$. From (4.6) and using the properties of modulus and sums we get the required inequality in (2.3). The proof is complete.

References

 G. A. Anastassiou, Multivariate Ostrowski type inequalities, Acta Math. Hungar. 76(1997), 267–278.

- [2] N. S. Barnett and S. S. Dragomir, An Ostrowski type inequality for double integrals and applications for cubature formulae, Soochow J. Math. 27(2001), 1–10.
- [3] S. S. Dragomir, N. S. Barnett and P. Cerone, An n-dimensional version of Ostrowski's inequality for mappings of Hölder type, Kyungpook Math. J. 40(2000), 65–75.
- [4] M. Matić, J. E. Pečarić and N. Ujević, Weighted version of multivariate Ostrowski type inequalities, Rocky Mountain J.Math. 31(2001), 511–538.
- [5] G. V. Milovanović, On some integral inequalities, Univ.Beograd Publ. Elek. Fak. Ser. Mat. Fiz. No.469-No.541 (1975), 119–124.
- [6] D. S. Mitrinović, J. E. Pečarić and A. M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, 1994.
- [7] A. M. Ostrowski, Über die Absolutabweichung einer differentiebraen Fuktion von ihrem Integralmitelwert, Comment.Math.Helv. 10(1938), 226–227.
- [8] B. G. Pachpatte, On an inequality of Ostrowski type in three independent variables, J. Math. Anal. Appl. 249(2000), 583–591.
- [9] B. G. Pachpatte, On a new Ostrowski type inequality in two independent variables, Tamkang J. Math. 32(2001), 45-49.
- B. G. Pachpatte, An inequality of Ostrowski type in n independent variables, Facta Univ. (Niš) Ser. Math. Inform. 16(2001), 21–24.
- [11] B. G. Pachpatte, On multivariate Ostrowski type inequalities, J. Inequal. Pure and Appl. Math. 3(4)(2002), Art.58.
- [12] B. G. Pachpatte, On multidimensional Ostrowski and Grüss type finite difference inequalities, J. Inequal. Pure and Appl. Math. 4(1)(2003), Art.7.
- [13] A. Sofo, An integral approximation in three variables, RGMIA Research Report Collection 5(3) (2002), 553–568.

57 Shri Niketan Colony, Near Abhinay Talkies, Aurangabad 431 001 (Maharashtra) India. E-mail: bgpachpatte@gmail.com