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ON INTEGRAL SUM LABELING OF DENSE GRAPHS

T. NICHOLAS

Abstract. A graph is said to be a sum graph if there exists a set S of positive

integers as its vertex set with two vertices adjacent whenever their sum is in S. An

integral sum graph is defined just as the sum graph, the difference being that the

label set S is a subset of Z instead of set of positive integers. The sum number of

a given graph G is defined as the smallest number of isolated vertices which when

added to G results in a sum graph. The integral sum number of G is analogous.

In this paper, we mainly prove that any connected graph G of order n with at

least three vertices of degree (n − 1) is not an integral sum graph. We characterise

the integral sum graph G of order n having exactly two vertices of degree (n − 1)

each and hence give an alternative proof for the existence theorem of sum graphs.

1. Introduction

F. Harary [8, 9] introduced sum graphs and integral sum graphs. We denote the set

of all positive integers as N∗. By the sum u + v, we mean the sum of the labels of the

vertices u and v. The sum graph G+(S) of a finite subset S ⊂ N+ is the graph (V, E)

where V = S and an edge uv ∈ E if and only if the sum u + v ∈ S. A graph G is called

a sum graph if it is isomorphic to the sum graph G+(S) of some S ⊂ N+. The integral

sum graph G+(S) is defined just as the sum graph, the difference being that S ⊂ Z

instead of S ⊂ N∗. The sum number of a given graph G, denoted by σ(G), is defined as

the smallest nonnegative integer s such that G ∪ sK1 is a sum graph. Analogously, the

integral sum number of G denoted by ζ(G), is the smallest nonnegative integer s such

that G∪sK1 is an integral sum graph. For convenience, an integral sum graph is written

as
∫

Σ-graph. By definition, it is clear that ζ(G) ≤ σ(G) for all graphs, and G is an

integral sum graph iff ζ(G) = 0.

It is very difficult to determine σ(G) and ζ(G) for a given graph in general. But for

some special classes of graphs, such as cycles, trees [4], complete graphs [1] and complete

bipartite graphs, etc., the sum numbers have still been derived. F. Harary [9] conjectured

that every tree T with ζ(T ) = 0 is a caterpillar. Z. Chen [2] disproved this conjecture by

showing an integral sum tree that is not a caterpillar. Also, Z. Chen [2] conjectured that
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all trees are
∫

Σ-graphs. The trees proved to have integral sum labeling include: paths,
stars, generalised stars, caterpillars, Banana trees [14] and trees on 10 vertices or less [5].

F. Harary [9] proposed an open problem of characterising the graph G satisfying the
graph equation ζ(G) = σ(G). It can be easily noted that any non-trivial connected
∫

Σ-graph does not satisfy this equation. Among the graphs known to satisfy this graph
equation are: the 4-cycle C4, the cocktail party graph H2,n for n ≥ 2, K3 ∪ K1, the
complete graph Kn with n ≥ 4, the complete bipartite graph Kn,n when n ≥ 2 and the
ladder graph Pn × P2, n ≥ 2 [13, 14].

In a sum labeling of a graph G a vertex w is said to label an edge uv ∈ E(G) if and
only if w = u + v. In this case the vertex w is called a working vertex. A sum labeling
L is called an exclusive sum labeling with respect to a subgraph H of a graph G if none
of the vertices of H are working vertices. In this case H is said to be labeled exclusively.
The least number r of isolated vertices such that G = H ∪ K, is a sum graph and H is
labeled exclusively is called the exclusive sum number ε(H) of graph H [12]. Obviously
ε(H) ≥ σ(G) ≥ ζ(G). More on sum graphs, integral sum graphs and exclusive sum
number can be found in [1, 2, 3, 4, 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. For a
detailed account on variations of sum graphs and integral sum graphs, one can refer to
Gallian [5].

In [3], Z. Chen proved several properties of the integral sum labeling of the graph G
with ∆(G) < |V (G)|−1. In this paper, we characterise the integral sum graph G of order
n having exactly two vertices of degree (n − 1) each. We also prove that any connected
graph G with at least three vertices of degree (n−1) is not an integral sum graph. Using
the above characterisation, we give a simple alternate proof for the existence theorem of
sum graphs, which has already been proved by Hao [6] using degree sequences.

Throughout this paper, by a graph G we mean a connected graph with n vertices
unless otherwise mentioned. We denote Vmax(G) = {x ∈ V (G) | deg(x) = |V (G)| − 1}.

2. Main results

We use the following result from [3].

Theorem 1.([3]) Let G be a non trivial graph with an integral sum labeling f . Then

f(x) 6= 0 for every vertex x of G if and only if the maximum degree ∆(G) < |V (G)| − 1.

Lemma 2. Let f be an integral sum labeling of a graph G with ∆(G) = n − 1. If

x ∈ Vmax(G), then for all v ∈ V (G)\{x}, f(v) · f(x) < 0.

Proof. When f(x) = 0, the result is obvious. Let f(x) 6= 0. If f(v)f(x) > 0 for some
v ∈ V (G)\{x}, then both f(v) and f(x) are positive (the case when both are negative
is analogous). Since xv ∈ E(G) for every v(6= x), f(v) + f(x) must be a label of some
vertex and the sum is maximum for a vertex, say y. In this case, y is an isolated vertex
that leads to a contradiction. �

Theorem 3. Let f be an
∫

Σ-labeling of a graph G with ∆(G) = n − 1, n ≥ 4. If

|Vmax(G) ≥ 2, then
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(a) there exists a vertex x ∈ Vmax(G) such that f(x) = 0.

(b) For every vertex y ∈ Vmax(G)\{x}, there exists a vertex z ∈ V (G)\Vmax(G) such

that f(y) + f(z) = 0 and for every vertex u ∈ V (G), f(u) = r · f(y) where r ∈

{0, 1,−1,−2, . . . ,−(n − 2)}.

Proof. That there exists a vertex x ∈ V (G) such that f(x) = 0, is ensured by Theorem

1. Since f is an inegral sum labeling and f(x) = 0, then x ∈ Vmax(G). Now, let

x, y ∈ Vmax(G) with f(x) = 0. Let V (G) = {x, y, v1, v2, . . . , vn−2}. Let f(y) < 0. Then

f(vi) > O for all i = 1, 2, . . . , n − 2, using Lemma 2. Without loss of generality, assume

that f(v1) > f(v2) > · · · > f(vn2
). Since y is adjacent to every other vertex of G we get

f(y) + f(vi) = f(vi+1), 1 ≤ i ≤ n − 3 (1)

In particular, f(y) + f(vn−2) = 0. Put z = vn−2. Clearly f(z) 6= 0. If z ∈ Vmax(G),

then what is true for f(y) holds for f(z) also. This is a contradiction to Lemma 2 as

f(z) and each f(vi) are of the same parity. Hence z 6∈ Vmax(G). The rest of the proof is

immediate using (1). �

In fact, every vertex label of G is an integral multiple of f(y). This leads to the

following main theorem that any graph G with |Vmax(G)| ≥ 3 is not an integral sum

graph.

Theorem 4. If G(6= K3) is an
∫

Σ-graph with ∆(G) = |V (G)| − 1, then |Vmax(G)| ≤ 2.

Proof. If |Vmax(G)| > 2, we take any two vertices u, v ∈ Vmax(G) with non-zero labels.

By Theorem 3, every vertex label of G is an integer multiple of f(u) and in particular,

f(v) = k · f(u) where k is an integer 6= 0 and ±1. Then f(u) = (1/k)f(v) which is not

an integral multiple of f(v), a contradiction. Hence Vmax(G) ≤ 2. �

Theorem 5. Integral sum graph G of order n with |Vmax(G)| = 2 is unique up to

isomorphism.

Proof. Let V (G) = {x, y, v1, v2, . . . , vn−2}, where Vmax(G) = {x, y}. Let f be an integral

sum labeling of G with f(x) = 0 and f(y) = −a (a > 0). Then f(vi) = (n − i − 1)a,

1 ≤ i ≤ n − 2, using (1). Two vertices vi and vj , i 6= j are adjacent in G if and only if

f(vi) + f(vj) ≤ (n − 2)a. That is, (n− i − 1) + (n − j − 1) ≤ (n− 2) which implies that

i + j ≥ n. This adjacency condition is independent of choice of the label a. Hence the

proof is complete. �

We denote the integral sum graph G of order n with |Vmax(G)| = 2 as G∆n.
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Figure. G∆8

Theorem 6.

|E(G∆n)| =

{

1
4 (n2 + 2n− 4) when n is even and

1
4 (n2 + 2n− 3) when n is odd.

Proof. With the earlier notations for the graph G∆n., the degree sequence of the vertices

x, y, v1, v2, . . . , vn−2, is n− 1, n− 1, 2, 3, . . . , n − 3, n− 2 where the vertices v(n−2)/2 and

vn/2 would have equal degrees n/2 each when n is even; or the vertices v(n−1)/2 and

v(n+1)/2 would have equal degrees (n + 1)/2 each when n is odd. Therefore when n is

even.

|E(G∆n)| =
1

2
[(n−1)+(n−1)+2+3+· · ·+(n−2)/2+n/2+n/2+(n+2)/2+· · ·+(n−2)]

=
1

4
(n2 + 2n − 4).

Similarly, when n is odd, |E(G∆n)| = 1
4 (n2 + 2n − 3). �

Theorem 7. The graph G∆n, is Hamiltonion.

Proof. Since |Vmax(G)| = 2, G∆n, is 2-connected and we can always form a Hamiltonion

cycle xv1 y v2 vn−2 v3 · · · v(n+4)/2 v(n−2)/2 v(n+2)/2 vn/2 x, when n is even and a cycle

x v1 y v2 vn−2 v3 · · · v(n+3)/2 V(n−1)/2 V(n+1)/2 x when n is odd. It can be easily verified

that the edges involved in the cycle are distinct. �

Harary [9] defined a graph Gn, called Harary’s sum graph, as a sum graph over a set

of positive integers Nn = {1, 2, . . . , n}. Let < Nn−2 > denote the induced subgraph of

Gn induced by the set Nn−2 = {1, 2, . . . , n − 2}. Clearly |E(< Nn−2 >)| = |E(Gn)| − 1.

Theorem 8. The induced subgraph < Nn−2 > of Gn is isomorphic to G∆n−2.
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Proof. With the earlier notations, let V (G∆n−2) = {x, y, v1, v2, . . . , vn−4}. Consider a

bijective function f : V (< Nn−2 >) → V (G∆n−2) defined by f(1) = x, f(2) = y and

f(i) = vn−i−1, 3 ≤ i ≤ n − 2. By construction, two vertices labeled i and j, 1 ≤ i,

j ≤ n−2, are adjacent in < Nn−2 > if and only if they are adjacent in Gn. This happens

if and only if i+j ≤ n, Now f(i) and f(j) are adjacent in G∆n−2 if and only if vn−i−1 and

vn−j−1 are adjacent in G∆n−2. This is possible if and only if (n−i−1)+(n−j−1) ≥ n−2

(since G∆n−2 is of order n − 2). This implies that i + j ≤ n. Hence the theorem is

proved. �

Theorem 9. For the graph Gn, |E(Gn)| = 1
2 (

(

n
2

)

− ⌊n/2⌋).

Proof. |E(Gn)| = |E(< Nn−2 >)| + 1. That is, |E(Gn)| = |E(Gn−2)| + 1. Replacing

n with n − 2 in Theorem 6, we get |E(Gn)| = 1
4n(n − 2) when n is even and 1

4 (n − 1)2

when n is odd. Hence |E(Gn)| = 1
2 (

(

n
2

)

− ⌊n/2⌋). �

Remark 10. We have proved that |E(Gn)| = 1
2 (

(

n
2

)

− ⌊n/2⌋). Equivalently we have

|E(Gn)| = ⌊(n − 1)2/4⌋. To avoid confusion, we denote the vertex labeled i as vi in Gn.

Then deg(vi) = n − i − 1 if i ≤ ⌊n/2⌋ and n − i if i > ⌊n/2⌋.

Now we prove in the following lemma that Gn is the sum graph on n vertices with

the maximum number of edges.

Lemma 11. Let G be a sum graph on n vertices. Then |E(G)| ≤ |E(Gn)|.

Proof. We use induction on n. Clearly the result is true when n = 1, 2, 3. Assume that

it is true for all graphs having less than n vertices. Let G be a sum graph on n vertices.

Let f : V (G) → {u1, u2, . . . , un} be a vertex labeling function giving rise to sum graph

structure, where u1 < u2 < · · · < un. Clearly the vertex with label un, is an isolated

vertex in G. Let e1, e2, . . . , er be the edges arising from the vertex label un. That is,

e1 = u1iu1j , where u1i +u1j = un. Obviously the number of such edges is ≤ ⌊(n− 1)/2⌋.

Let G1 = G\{un}\{e1, e2, . . . , er}. Then G1 is a sum graph on n − 1 vertices. By

induction, |E(G1)| ≤ ⌊(n − 2)2/4⌋. Therefore, |E(G)| ≤ ⌊(n − 2)2/4⌋ + ⌊(n − 1)/2⌋. If

n = 2k + 1, then |E(G)| ≤ k(k − 1) + k = k2 = (n − 1)2/4 = |E(Gn)|, by Theorem 9. If

n = 2k, then |E(G)| ≤ (k − 1)2 + (k − 1) = k(k − 1) = n(n− 2)/4 = |E(Gn)|. Hence the

proof is complete by induction. �

The following lemma will be useful to prove the existence theorem of sum graphs.

Lemma 12. Let H = Gm+1, be the sum graph on the set {1, 2, . . . , m + 1}. For i,

1 ≤ i ≤ m + 1, let Hi denote the subgraph H\{ui}\{ujuk | j + k = i}. Then Hi is

a sum graph with |E(Hi)| = ⌊m2/4⌋ − (m − i) − ⌊(i − 1)/2⌋ if i ≤ ⌊(m + 1)/2⌋ and

⌊m2/4⌋ − (m − i + 1) − ⌊(i − 1)/2⌋ if i > ⌊(m + 1)/2⌋.
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Proof. The number of edges through ui = m − i if i ≤ ⌊(m + 1)/2⌋ and m − i + 1 if

i > ⌊(m + 1)/2⌋. The number of edges arising from the label i = ⌊(i − 1)/2⌋. Hence

|E(Hi)| =

{

⌊m2/4⌋ − (m − i) − ⌊(i − 1)/2⌋ if i ≤ ⌊(m + 1)/2⌋ and

⌊m2/4⌋ − (m − i + 1) − ⌊(i − 1)/2⌋ if i > ⌊(m + 1)/2⌋.
�

The above lemma underlines the fact that one of these Hi is a sum graph on m

vertices with the given number of q edges such that |E(Gm−1)| < |E(Hi)| < −|E(Gm)|.

Now the above lemmas give an alternate proof for the existence theorem of sum

graphs proved by Hao [6].

Theorem 13. A sum graph of order p and size q exists if and only if 0 ≤ q ≤ 1
2 (

(

p
2

)

) −

⌊p/2⌋).

Proof. The necessary part is proved in Lemma 11. The sufficient part is proved by

induction on p. Let 0 ≤ q ≤ 1
2 (

(

p
2

)

− ⌊p/2⌋) = ⌊(p− 1)2/4⌋. We have to prove that there

exists a sum graph on p vertices with q edges. For p = 1, 2, 3, the result is clear. Assume

that the result is true for all integers m < p and number of edges ≤ ⌊(m − 1)2/4⌋.

If q ≤ ⌊(p − 2)2/4⌋, then by induction hypothesis there is a sum graph on (p − 1)

vertices with q edges. This implies that there exists a sum graph on p vertices with q

edges by just adding an isolated vertex with sufficiently larger label. So we may assume

q ≤ ⌊(p − 1)2/4⌋. Now the result follows from the above Lemma 12. �

Example 14. Suppose p = 10. We have to prove that there exists a sum graph on 10

vertices with q ≤ ⌊92/4⌋ = 20 edges.

If q < 16, then by induction we can prove that there is a sum graph on 9 vertices

with q edges and then we can add one isolated vertex with very large label. So, we may

assume 16 < q ≤ 20. Now, let G11 = G+(N11) where N11 = {1, 2, . . . , 11} and each

vertex labeled i is denoted as vi. Then |E(G11)| = 25. As in Lemma 12, we construct

the sum graphs Hi by dropping the vertex vi and all the edges adding up to i. Then

|E(H1)| = 25 − 9 = 16, |E(H2)| = 25 − 8 − ⌊1/2⌋ = 17, |E(H3)| = 25 − 7 − 1 = 17,

|E(H4)| = 18, |E(H5)| = 18, |E(H6)| = 18, |E(H7)| = 18, |E(H8)| = 19, |E(H9)| = 19,

|E(H10)| = 20, |E(H11)| = 20. Thus, for every q between 16 and 20, we can obtain a

sum graph as one of Hi for some i.

Harary [7, p.21] defined the join of two graphs G1 and G2 denoted G1 + G2 and

consists of G1∪G2, and all lines joining V (G1) with V (G2). Harary [9] defined an integral

sum graph Gn,n over the set of integers {−n, . . . ,−2,−1, 0, 1, 2, . . . , n}. He specified the

structure of the graphs Gn,n in terms of Gn. That is, Gn,n = K1 + (Gn + Gn). In

this equation, the K1-term is realized by the integer 0, which obviously is adjacent to all

other elements of S. The two Gn-terms are G+({−1,−2, . . . ,−n}) and G+({1, 2, . . . , n}).

Clearly Gn,n is of odd order and it is the integral sum graph of order 2n + 1. It can be

easily found that |E(Gn,n)| = 3n(n + 1)/2 − ⌊n/2⌋, for any n ≥ 1.
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Now, let H = K1 + (Gm−1 + Gm), where m is any positive integer. Then it can

be easily verified that |E(H)| = m(3m − 1)/2 and H is an integral sum graph of even

order. The structure of Gn,n and H defined above suggests us to propose the following

conjecture:

Conjecture: An integral sum graph of order p and size q exists if and only if q ≤

3(p2 − 1)/8 − ⌊(p − 1)/4⌋ if p is odd and q ≤ p(3p − 2)/8 if p is even.
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