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NONLOCAL CAUCHY PROBLEM FOR NONLINEAR MIXED

INTEGRODIFFERENTIAL EQUATIONS

H. L. TIDKE AND M. B. DHAKNE

Abstract. The present paper investigates the existence and uniqueness of mild and

strong solutions of a nonlinear mixed Volterra-Fredholm integrodifferential equation

with nonlocal condition. The results obtained by using Schauder fixed point theo-

rem and the theory of semigroups.

1. Introduction

Let X be a Banach space with norm ‖ · ‖. Let B = C([t0, t0 + β], X) be the Banach
space of all continuous functions from [t0, t0 + β] into X endowed with supremum norm

‖x‖B = sup{‖x(t)‖ : t ∈ [t0, t0 + β]}.

Consider the following nonlinear mixed Volterra-Fredholm integrodifferential equation of
the form:

x
′

(t) + Ax(t) = f
(

t, x(t),

∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds
)

, t ∈ [t0, t0 + β] (1.1)

x(t0) + g(t1, t2, . . . , tp, x(·)) = x0, (1.2)

where 0 ≤ t0 < t1 < t2 < · · · < tp ≤ t0 + β, −A is the infinitesimal generator of a
compact C0 semigroup T (t), t ≥ 0, in a Banach space X and the nonlinear functions
f : [t0, t0 + β]×X ×X ×X → X , g ∈ C([t0, t0 + β]p ×X ; X), k, h : [t0, t0 + β]× [t0, t0 +
β] × X → X and x0 is a given element of X . The symbol g(t1, t2, . . . , tp, x(·)) is used in
the sense that in the place of ‘·’ we can substitute only elements of the set {t1, t2, . . . tp}.
For example g(t1, t2, . . . , tp, x(·)) may be given by

g(t1, t2, . . . , tp, x(·)) =

p
∑

i=1

Cix(ti), (1.3)
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where Ci, (i = 1, 2, . . . , p) are constants. In this case, (1.3) allows the measurements

at t = t0, t1, . . . , tp, rather that just at t = t0. So more information is available. This
equations (1.1)−(1.3) can be applied in physics with better effect than equation (1.1)
with classical initial condition.

The nonlocal condition, which is a generalization of the classical initial condition,

was motivated by physical problems. The problem of existence of solutions of evolution
equation with nonlocal conditions in Banach space was first studied by [6] and he investi-
gated the existence and uniqueness of mild, strong and classical solutions of the nonlocal
Cauchy problem. The study of differential and integrodifferential equations in abstract
spaces with nonlocal condition has received much attention in recent years. We refer to

the papers of Byszewski [6, 8, 9], Byszewski and V. Lakshmikantham [5], Balachandran
and Ilamaran [2], K. Balachandran[3] and Xingmei Xue [16].

The objective of the present paper is to generalize the results of [3, 4, 6, 7, 10, 11, 12,
13, 14]. Here, we investigate the existence of mild and strong solutions of the problem

(1.1)−(1.2). The main tool employed in our analysis is based on the Schauder fixed point
theorem and semigroups theory.

The paper is organized as follows. In section 2, we present the preliminaries and the
main results. Section 3 deals with proofs of the theorems. Finally in section 4 we give
an example to illustrate the application of our results.

2. Preliminaries and main results

Before proceeding to the statement of our main results, we shall setforth some pre-
liminaries and hypotheses that will be used in our subsequent discussion.

Definition 2.1. Let {T (t)}t≥0 be a C0 semigroup of operators on X . A C0 semigroup
{T (t)}t≥0 is said to be a compact C0 semigroup of operators on X if T (t) is a compact

operator for every t > 0.

In this paper we assume that −A is the infinitesimal generator of a compact C0

semigroup {T (t)}t≥0 of operators on X , D(A) is the domain of A, t0 ≥ 0. We will need

the following sets:

Br = {x ∈ X, ‖x‖ ≤ r} and Er = {z ∈ B, ‖z‖B ≤ r},

where r > 0.

Definition 2.2. A continuous solution x of the integral equation

x(t) = T (t − t0)x0 − T (t − t0)g(t1, t2, . . . , tp, x(·))

+

∫ t

t0

T (t−s)f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

ds, t ∈ [t0, t0+β] (2.1)

is said to be a mild solution of problem (1.1)−(1.2) on [t0, t0 + β].
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Definition 2.3. A function x is said to be a strong solution of problem (1.1)−(1.2) on
[t0, t0 +β] if x is differentiable almost everywhere on [t0, t0 +β], x′ ∈ L1([t0, t0 +β], X)
and satisfying (1.1)−(1.2) a.e. on [t0, t0 + β].

We need the following theorem for further discussion:

Theorem 2.4. (Schauder fixed point theorem [15], p-37) Let S be a bounded, closed

and convex subset of a Banach space X. If f ∈ C(S, S), where C(S, S) is the set of all

compact maps from S into S, then f has at least one fixed point.

We list the following hypotheses for our convenience.

(H1) There exists a constant G1 > 0 such that

G1 = max
x∈Er

‖g(t1, t2, . . . , tp, x(·))‖.

(H2) −A is the infinitesimal generator of a compact C0 semigroup T (t), t ≥ 0 in X such
that

‖T (t)‖ ≤ M,

for some M ≥ 1.

(H3) There are constants L1, K1 and H1 such that

L1 = max
t0≤t≤t0+β

‖f(t, 0, 0, 0)‖,

K1 = max
t0≤s≤t≤t0+β

‖k(t, s, 0)‖,

H1 = max
t0≤s≤t≤t0+β

‖h(t, s, 0)‖.

With these preparations, we are now in a position to state our main results to be
proved in the present paper.

Theorem 2.5. Assume that

(A1) hypotheses (H1)−(H3) hold,

(A2) f ∈ C([t0, t0 + β] × X × X × X ; X) and there exists a constant L > 0 such that

‖f(t, x1, y1, z1) − f(t, x2, y2, z2)‖ ≤ L(‖x1 − x2‖ + ‖y1 − y2‖ + ‖z1 − z2‖),

for xi, yi, zi ∈ X, i = 1, 2 and t ∈ [t0, t0 + β].

(A3) k, h ∈ C([t0, t0 +β]× [t0, t0 +β]×X ; X) and there exist constants K, H > 0 such

that

‖k(t, s, x1) − k(t, s, x2)‖ ≤ K‖x1 − x2‖

and

‖h(t, s, x1) − h(t, s, x2)‖ ≤ H‖x1 − x2‖

for xi, yi ∈ X, i = 1, 2 and t, s ∈ [t0, t0 + β].
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(A4) The set

{x(t0) : x ∈ Er, x(t0) + g(t1, t2, . . . , tp, x(·)) = x0}

where
M [‖x0‖ + G1 + LK1β

2 + LH1β
2 + L1β]

(1 − ML[β + Kβ2 + Hβ2])
≤ r,

with ML[β + Kβ2 + Hβ2] < 1, is precompact in X.

(A5) The function g satisfies the following property

g(t1, t2, . . . , tp, (λx1 + (1 − λ)x2)(·)) = λg(t1, t2, . . . , tp, x1(·)) + (1 − λ)g(t1, t2, . . . , tp, x2(·)),

for xi ∈ Er, (i = 1, 2), λ ∈ (0, 1).

Then problem (1.1)−(1.2) has a mild solution on [t0, t0 + β].

Theorem 2.6. Assume that

(B1) hypotheses (H1)−(H3) hold,

(B2) X is a reflexive Banach space with norm ‖.‖ and x0 ∈ D(A),

(B3) g(t1, t2, . . . , tp, x(.)) ∈ D(A),

(B4) There exists a constant L > 0 such that

‖f(t1, x1, y1, z1) − f(t2, x2, y2, z2)‖ ≤ L(|t1 − t2| + ‖x1 − x2‖ + ‖y1 − y2‖ + ‖z1 − z2‖),

for xi, yi, zi ∈ X, i = 1, 2 and t1, t2 ∈ [t0, t0 + β].

(B5) There exist constants K, H > 0 such that

‖k(t1, s, x1) − k(t2, s, x2)‖ ≤ K(|t1 − t2| + ‖x1 − x2‖)

and

‖h(t1, s, x1) − h(t2, s, x2)‖ ≤ H(|t1 − t2| + ‖x1 − x2‖),

for xi, yi ∈ X, i = 1, 2 and t1, t2 ∈ [t0, t0 + β].

(B6) The set

{x(t0) : x ∈ Er, x(t0) + g(t1, t2, . . . , tp, x(·)) = x0}

where
M [‖x0‖ + G1 + LK1β

2 + LH1β
2 + L1β]

(1 − ML[β + Kβ2 + Hβ2])
≤ r,

with ML[β + Kβ2 + Hβ2] < 1, is precompact in X.
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(B7) The function g satisfies the following property

g(t1, t2, . . . , tp, (λx1 + (1 − λ)x2)(·))

= λg(t1, t2, . . . , tp, x1(·)) + (1 − λ)g(t1, t2, . . . , tp, x2(·)),

for xi ∈ Er, (i = 1, 2), λ ∈ (0, 1).

(B8) The problem (1.1)−(1.2) has at most one mild solution.

Then x is the unique strong solution of problem (1.1)−(1.2) on [t0, t0 + β].

Remark 2.7. We remark that K. Balachandran and M. Chandrasekaran in [1] have

studied existence and uniqueness of local and global solutions of special forms of the

equations (1.1)−(1.2) by using Banach fixed point theorem and analytic semigroup the-
ory. Here our approach to the problem and conditions on functions are different from

those in [1].

3. Proofs of theorems

Proof of Theorem 2.5. Let

E = {x ∈ B : x ∈ Er, x(t0) + g(t1, t2, . . . , tp, x(·)) = x0}.

It is easy to see that E is a bounded closed convex subset of B. We define a mapping

F : E → E by

(Fx)(t) = T (t− t0)x0 − T (t − t0)g(t1, t2, . . . , tp, x(·))

+

∫ t

t0

T (t − s)f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

ds, t ∈ [t0, t0+β]. (3.1)

Since all the functions involved in the definition of the operator are continuous and T (t)

is C0 semigroup operator, the operator F is continuous. For x ∈ E, t ∈ [t0, t0 + β] and

using hypotheses (H1) − (H3) and assumptions (A2), (A3), we have

‖(Fx)(t)‖ ≤ ‖T (t− t0)x0‖ + ‖T (t− t0)g(t1, t2, . . . , tp, x(·))‖

+
∥

∥

∥

∫ t

t0

T (t − s)f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

ds
∥

∥

∥

≤ M(‖x0‖ + G1) + M

∫ t

t0

[
∥

∥

∥
f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ) − f(s, 0, 0, 0)
∥

∥

∥
+ ‖f(s, 0, 0, 0)‖

]

ds

≤ M(‖x0‖ + G1)
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+ M

∫ t

t0

[

Lr + L

∫ s

t0

‖k(s, τ, x(τ)) − k(s, τ, 0) + k(s, τ, 0)‖dτ

+ L

∫ t0+β

t0

‖h(s, τ, x(τ)) − h(s, τ, 0) + h(s, τ, 0)‖dτ + L1

]

ds

≤ M(‖x0‖ + G1) + M

∫ t

t0

[Lr + Lβ(Kr + K1) + Lβ(Hr + H1) + L1]ds

≤ M [‖x0‖ + G1 + Lrβ + LKrβ2 + LK1β
2 + LHrβ2 + LH1β

2 + L1β]

≤ r. (3.2)

Thus, F maps E into itself and consequently F ∈ C(E; E).

Now, we prove that F maps E into a precompact subset F (E) of E. For this purpose,

we first show that the set E(t) = {(Fx)(t) : x ∈ E}, t ∈ [t0, t0 + β] is precompact in X .

Observe that

E(t0) = {(Fx)(t0) : x ∈ E}

= {x0 − g(t1, t2, . . . , tp, x(·)) : x ∈ Er, x(t0) + g(t1, t2, . . . , tp, x(·)) = x0}.

Therefore, according to hypothesis (A5), E(t0) is precompact in X .

Let t > t0 be fixed. For an arbitrary 0 < ǫ < t − t0, we define a mapping

(Fǫx)(t) = T (t − t0)x0 − T (t − t0)g(t1, t2, . . . , tp, x(·))

+

∫ t−ǫ

t0

T (t − s)
[

f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)]

ds.

(3.3)

Since T (t) is compact operator for every t ≥ 0, then the set Eǫ(t) = {(Fǫx)(t) : x ∈ E} is

precompact in X for every ǫ > 0. By using the equations (3.1), (3.3) and the hypotheses

(H2)−(H3) and assumptions (A4) − (A5), we obtain

‖(Fx)(t) − (Fǫx)(t)‖

≤

∫ t

t−ǫ

‖T (t − s)‖
∥

∥

∥
f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)∥

∥

∥
ds

≤ M

∫ t

t−ǫ

[
∥

∥

∥
f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ) − f(s, 0, 0, 0)
∥

∥

∥
+ ‖f(s, 0, 0, 0)‖

]

ds

≤ M

∫ t

t−ǫ

[

Lr + L

∫ s

t0

‖k(s, τ, x(τ)) − k(s, τ, 0) + k(s, τ, 0)‖dτ

+ L

∫ t0+β

t0

‖h(s, τ, x(τ)) − h(s, τ, 0) + h(s, τ, 0)‖dτ + L1

]

ds
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≤ M

∫ t

t−ǫ

[

Lr + L

∫ s

t0

(K‖x(τ) − 0‖ + ‖k(s, τ, 0)‖)dτ

+ L

∫ t0+β

t0

(H‖x(τ) − 0‖ + ‖h(s, τ, 0)‖)dτ + L1

]

ds

≤ M

∫ t

t−ǫ

[Lr + Lβ(Kr + K1) + Lβ(Hr + H1) + L1]ds

≤ M [Lr + LKrβ + LK1β + LHrβ + LH1β + L1]ǫ. (3.4)

This implies that there exist precompact sets arbitrary closed to the set E(t) = {(Fx)(t) :

x ∈ E}. Hence, the set {(Fx)(t) : x ∈ E0} is precompact in X .

Next, we show that F (E) is an uniformly equicontinuous family of functions. Let

t0 < s < t ≤ t0 + β. By using hypotheses (H2), (H3) and assumptions (A2), (A3), we

have

‖(Fx)(t) − (Fx)(s)‖

≤ ‖[T (t− t0) − T (s − t0)]‖(‖x0‖ + ‖g(t1, t2, . . . , tp, x(·))‖)

+

∫ s

t0

‖[T (t− τ) − T (s− τ)]‖

×
∥

∥

∥
f(τ, x(τ),

∫ τ

t0

k(τ, σ, x(σ))dσ,

∫ t0+β

t0

h(τ, σ, x(σ))dσ)
∥

∥

∥
dτ

+

∫ t

s

‖T (t− τ)‖
∥

∥

∥
f
(

τ, x(τ),

∫ τ

t0

k(τ, σ, x(σ))dσ,

∫ t0+β

t0

h(τ, σ, x(σ))dσ
)∥

∥

∥
dτ

≤ ‖[T (t− t0) − T (s − t0)]‖(‖x0‖ + G1) +

∫ s

t0

‖[T (t− τ) − T (s− τ)]‖

× [Lr + LKrβ + LK1β + LHrβ + LH1β + L1]dτ

+ M

∫ t

s

[Lr + LKrβ + LK1β + LHrβ + LH1β + L1]dτ. (3.5)

Here we have proceeded as in the result (3.5). The right hand side of (3.5) is independent

of x ∈ E and tends to zero as s → t as a consequence of the continuity of T (t) in the

uniform operator topology for t > 0, which follows from the compactness of T (t), t > 0.

Therefore, F (E) is equicontinuous family of functions. Thus by Arzela-Ascoli’s theorem,

F (E) is precompact. Hence by the Schauder fixed point theorem, F has a fixed point in

E and any fixed point of F is a mild solution of (1.1)−(1.2) on [t0, t0+β]. This completes

the proof of the Theorem 2.5. �

Proof of Theorem 2.6. All the assumptions of Theorem 2.5 are being satisfied, the

problem (1.1)−(1.2) has a mild solution x belonging to E. By the assumption (B8), x is

the unique mild solution of the problem (1.1)−(1.2).

Now we will show that x is unique strong solution of problem (1.1)−(1.2) on [t0, t0+β].
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Take

L2 = max
t0≤t≤t0+β

‖f(t, x(t), 0, 0)‖,

K2 = max
t0≤s≤t≤t0+β

‖k(t, s, x(s))‖,

H2 = max
t0≤s≤t≤t0+β

‖h(t, s, x(s))‖.

For 0 < θ < t − t0 and t ∈ [t0, t0 + β], we have

x(t + θ) − x(t)

= [T (t + θ − t0) − T (t − t0)]x0

− [T (t + θ − t0) − T (t− t0)]g(t1, t2, . . . , tp, x(·))

+

∫ t0+θ

t0

T (t + θ − s)f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

ds

+

∫ t+θ

t0+θ

T (t + θ − s)f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

ds

−

∫ t

t0

T (t − s)f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

ds

= T (t − t0)[T (θ) − I]x0 − T (t − t0)[T (θ) − I]g(t1, t2, . . . , tp, x(·))

+

∫ t0+θ

t0

T (t + θ − s)
[

f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

− f(s, x(s), 0, 0) + f(s, x(s), 0, 0)
]

ds

+

∫ t

t0

T (t − s)
[

f
(

s + θ, x(s + θ),

∫ s+θ

t0

k(s + θ, τ, x(τ))dτ,

∫ t0+β

t0

h(s + θ, τ, x(τ))dτ
)

− f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)
]

ds.

Using the assumptions of theorem, we have

‖x(t + θ) − x(t)‖

≤ Mθ‖Ax0‖ + Mθ‖Ag(t1, t2, . . . , tp, x(·))‖

+

∫ t0+θ

t0

M
[∥

∥

∥
f
(

s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ
)

− f(s, x(s), 0, 0)‖ + ‖f(s, x(s), 0, 0)
∥

∥

∥

]

ds

+

∫ t

t0

M
[∥

∥

∥
f
(

s + θ, x(s + θ),

∫ s+θ

t0

k(s + θ, τ, x(τ))dτ,

∫ t0+β

t0

h(s + θ, τ, x(τ))dτ
)
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− f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)
∥

∥

∥

]

ds

≤ Mθ‖Ax0‖ + Mθ‖Ag(t1, t2, . . . , tp, x(·))‖ +

∫ t0+θ

t0

ML
[

∫ s

t0

K2dτ +

∫ t0+β

t0

H2dτ
]

ds

+ M

∫ t0+θ

t0

L2ds +

∫ t

t0

ML
[

θ + ‖x(s + θ) − x(s)‖

+

∫ s

t0

K(|s + θ − s| + ‖x(τ) − x(τ)‖)dτ

+

∫ s+θ

s

K2dτ +

∫ t0+β

t0

H(|s + θ − s| + ‖x(τ) − x(τ)‖)dτ
]

ds

≤ Mθ‖Ax0‖ + Mθ‖Ag(t1, t2, . . . , tp, x(.))‖ + MLK2θβ + MLH2θβ

+ ML2θ + MLθβ + ML

∫ t

t0

‖x(s + θ) − x(s)‖ds

+ MLKθβ2 + MLK2θβ + MLHθβ2

≤ Pθ + ML

∫ t

t0

‖x(s + θ) − x(s)‖ds,

where

P = M‖Ax0‖ + M‖Ag(t1, t2, . . . , tp, x(·))‖ + MLK2β + MLH2β

+ ML2 + MLβ + MLKβ2 + MLHβ2 + MLK2β.

Thanks to Gronwall’s inequality, we get

‖x(t + θ) − x(t)‖ ≤ PθeMLβ , for t ∈ [t0, t0 + β].

Therefore, x is Lipschitz continuous on [t0, t0 + β]. The Lipschitz continuity of x on
[t0, t0 + β] combined with (B4) and (B5) of Theorem 2.6 gives that

t → f
(

t, x(t),

∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds
)

is Lipschitz continuous on [t0, t0 + β]. By Corollary 4.11, from Chapter 4 of [13] we
observe that the equation

y
′

(t) + Ay(t) = f
(

t, x(t),

∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds
)

, t ∈ [t0, t0 + β]

y(t0) = x0 − g(t1, t2, . . . , tp, x(·))

has a unique strong solution y(t) on [t0, t0 + β] satisfying the equation

y(t) = T (t − t0)x0 − T (t − t0)g(t1, t2, . . . , tp, x(·))
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+

∫ t

t0

T (t − s)f(s, x(s),

∫ s

t0

k(s, τ, x(τ))dτ,

∫ t0+β

t0

h(s, τ, x(τ))dτ)ds

= x(t), t ∈ [t0, t0 + β].

Consequently, x(t) is the strong solution of initial value problem (1.1)−(1.2) on [t0, t0+β].

This completes the proof of Theorem 2.6. �

4. Application

In order to illustrate the applications of some of our main results, we consider the

following nonlinear mixed Volterra- Fredholm partial integrodifferential equation of the

form

wt(u, t) − wuu(u, t) = P
(

t, w(u, t),

∫ t

0

k1(t, s, w(u, s))ds,

∫ β

0

h1(t, s, w(u, s))ds
)

,

0 ≤ u ≤ π and 0 ≤ t ≤ β

(4.1)

with initial and boundary conditions

w(0, t) = w(π, t) = 0, 0 ≤ t ≤ β, (4.2)

w(u, 0) +

p
∑

i=1

w(u, ti) = w0(u), 0 < t1 < t2 < · · · < tp ≤ β. (4.3)

where P : [0, β] × R × R × R → R, k1, h1 : [0, β] × [0, β] × R → R are continuous

functions. We assume that the functions P, k1 and h1 in (4.1)−(4.3) satisfy the following

conditions:

1. There are constants L∗
1, K

∗
1 , H∗

1 and G∗
1 such that

L∗
1 = max

0≤t≤β
|P (t, 0, 0, 0)|,

K∗
1 = max

t0≤s≤t≤t0+β
|k1(t, s, 0)|,

H∗
1 = max

t0≤s≤t≤t0+β
|h1(t, s, 0)|,

G∗
1 = max{|

p
∑

i=1

w(u, ti)|, 0 ≤ u <≤ π; x ∈ Er∗}.

2. −A is the infinitesimal generator of a compact C0 semigroup T (t), t ≥ 0 in X such

that

‖T (t)‖ ≤ M∗,

for some M∗ ≥ 1.
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3. P ∈ C([0, β] × R × R × R; R) and there exists a constant L∗ > 0 such that

|P (t, x1, y1, z1) − P (t, x2, y2, z2)| ≤ L∗(|x1 − x2| + |y1 − y2| + |z1 − z2|),

for xi, yi, zi ∈ R, i = 1, 2.

4. k1, h1 ∈ C([0, β]× [0, β]×R; R) and there exist respectively constants K∗, H∗ > 0
such that

|k1(t, s, x1) − k1(t, s, x2)| ≤ K∗|x1 − x2|

and

|h1(t, s, x1) − h1(t, s, x2)| ≤ H∗|x1 − x2|,

for xi, yi ∈ R, i = 1, 2.

5. The set

{w(u, 0) : x ∈ Er∗ , w(u, 0) +

p
∑

i=1

w(u, ti) = w0(u)}

where
M∗[‖w0(u)‖ + G∗

1 + L∗K∗
1β2 + L∗H∗

1β2 + L∗
1β]

(1 − M∗L∗[β + K∗β2 + H∗β2])
≤ r∗,

for all u ∈ [0, π]; with M∗L∗[β + K∗β2 + H∗β2] < 1, is precompact in R.

First, we reduce the equations (4.1)−(4.3) into (1.1)−(1.2) by making suitable choices
of A, f, g, k and h. Let X = L2[0, π]. Define the operator A : X → X by Az = −z

′′

with
domain D(A) = {z ∈ X : z, z

′

are absolutely continuous, z
′′

∈ X and z(0) = z(π) = 0}.
Then the operator A can be written as

Az =

∞
∑

n=1

n2(z, zn)zn, z ∈ D(A)

where zn(u) = (
√

2/π)sinnu, n = 1, 2, . . . is the orthogonal set of eigenvectors of A and
A is the infinitesimal generator of a compact semigroup T (t), t ≥ 0 and is given by

T (t)z =

∞
∑

n=1

e−n2t(z, zn)zn, z ∈ X.

Define the functions f : [0, β] × X × X × X → X , k : [0, β] × [0, β] × X → X , h :
[0, β] × [0, β] × X → X and g : [0, β]p × X → X as follows

f(t, x, y, z)(u) = P (t, x(u), y(u), z(u)),

k(t, s, x)(u) = k1(t, s, x(u)),

h(t, s, x)(u) = h1(t, s, x(u)), and
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g(t1, t2, . . . , tp, x(·))(u) =

p
∑

i=1

w(u, ti)

for t ∈ [0, β], x, y, z ∈ X and 0 ≤ u ≤ π. Then the above problem (4.1)−(4.3) can be

formulated abstractly as nonlinear mixed Volterra-Fredholm integrodifferential equation

in Banach space X :

x
′

(t)+Ax(t)=f
(

t, x(t),

∫ t

t0

k(t, s, x(s))ds,

∫ t0+β

t0

h(t, s, x(s))ds
)

, t ∈ [t0, t0+β] (4.4)

x(t0) + g(t1, t2, . . . , tp, x(·)) = x0. (4.5)

Since all the hypotheses of the Theorem 2.5 are satisfied, the Theorem 2.5 can be applied
to guarantee the existence of a mild solution of the nonlinear mixed Volterra-Fredholm

partial integrodifferential equations (4.1)−(4.3).
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